Preoperative Immune Cell Dysregulation Accompanies Ovarian Cancer Patients into the Postoperative Period
Abstract
:1. Introduction
2. Results
2.1. Participant Characteristics
2.2. Alterations in Peripheral Blood Cell Counts, Ratios, and Monocyte Cytokine Expression in Ovarian Cancer Patients
2.3. Alterations in Peripheral Blood Cell Counts, Ratios, and Monocyte Cytokine Expression in Ovarian Cancer Patients Postoperatively
3. Discussion
3.1. Peripheral Blood Cell Counts, Ratios and Monocyte Cytokine Expression Are Altered in Preoperative OC Patients
3.2. Early Postoperative Period Is Related to Additional Subtle Alterations in Peripheral Blood Cell Counts, Ratios and Monocyte Cytokine Expression in OC Patients
4. Materials and Methods
4.1. Study Design and Patient Selection
4.2. Blood Collection
4.3. Complete Blood Count Analysis
4.4. Peripheral Blood Mononuclear Cells Isolation
4.5. Flow Cytometric Analysis of Lymphocyte and Monocyte Subsets
4.6. Flow Cytometric Analysis of Monocyte Cytokine Expression
4.7. Statistical Analysis
5. Conclusions
5.1. Summary of Findings
5.2. Study Limitations
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Sung, H.; Ferlay, J.; Siegel, R.L.; Laversanne, M.; Soerjomataram, I.; Jemal, A.; Bray, F. Global Cancer Statistics 2020: GLOBOCAN Estimates of Incidence and Mortality Worldwide for 36 Cancers in 185 Countries. CA Cancer J. Clin. 2021, 71, 209–249. [Google Scholar] [CrossRef] [PubMed]
- Ali, A.T.; Al-Ani, O.; Al-Ani, F. Epidemiology and risk factors for ovarian cancer. Prz. Menopauzalny 2023, 22, 93–104. [Google Scholar] [CrossRef] [PubMed]
- Fabbro, M.; Colombo, P.; Leaha, C.M.; Rouanet, P.; Carrère, S.; Quenet, F.; Gutowski, M.; Mourregot, A.; D’Hondt, V.; Coupier, I.; et al. Conditional Probability of Survival and Prognostic Factors in Long-Term Survivors of High-Grade Serous Ovarian Cancer. Cancers 2020, 12, 2184. [Google Scholar] [CrossRef] [PubMed]
- Akter, S.; Rahman, M.A.; Hasan, M.N.; Akhter, H.; Noor, P.; Islam, R.; Shin, Y.; Rahman, M.D.H.; Gazi, M.S.; Huda, M.N.; et al. Recent Advances in Ovarian Cancer: Therapeutic Strategies, Potential Biomarkers, and Technological Improvements. Cells 2022, 11, 650. [Google Scholar] [CrossRef] [PubMed]
- Drakes, M.L.; Stiff, P.J. Ovarian Cancer: Therapeutic Strategies to Overcome Immune Suppression. Adv. Exp. Med. Biol. 2021, 1330, 33–54. [Google Scholar] [CrossRef] [PubMed]
- Habel, A.; Weili, X.; Hadj Ahmed, M.; Stayoussef, M.; Bouaziz, H.; Ayadi, M.; Mezlini, A.; Larbi, A.; Yaacoubi-Loueslati, B. Immune checkpoints as potential theragnostic biomarkers for epithelial ovarian cancer. Int. J. Biol. Markers 2023, 38, 3936155231186163. [Google Scholar] [CrossRef] [PubMed]
- Zhang, X.; Wu, Y.; Xu, T.; Cui, M. CAR-T Cells in the Treatment of Ovarian Cancer: A Promising Cell Therapy. Biomolecules 2023, 13, 465. [Google Scholar] [CrossRef]
- Marques, C.; Ferreira da Silva, F.; Sousa, I.; Nave, M. Chemotherapy-free treatment of recurrent advanced ovarian cancer: Myth or reality? Int. J. Gynecol. Cancer 2023, 33, 607–618. [Google Scholar] [CrossRef]
- Zhang, J.; Wang, L. The Emerging World of TCR-T Cell Trials Against Cancer: A Systematic Review. Technol. Cancer Res. Treat. 2019, 18, 1533033819831068. [Google Scholar] [CrossRef]
- Zhang, L.; Hou, L.; Wu, J.; Li, C.; Hu, T.; Zhu, C.; Wu, C.; Chen, C. Peripheral blood mononuclear cells (PBMCs), an ideal liquid biopsy approach to evaluate systematic immunity and predict response of neoadjuvant chemo-immunotherapy in resectable NSCLC. J. Clin. Oncol. 2022, 40, e20618. [Google Scholar] [CrossRef]
- Yang, Y.; Yang, Y.; Yang, J.; Zhao, X.; Wei, X. Tumor Microenvironment in Ovarian Cancer: Function and Therapeutic Strategy. Front. Cell Dev. Biol. 2020, 8, 758. [Google Scholar] [CrossRef]
- Salas-Benito, D.; Vercher, E.; Conde, E.; Glez-Vaz, J.; Tamayo, I.; Hervas-Stubbs, S. Inflammation and immunity in ovarian cancer. EJC Suppl. 2020, 15, 56–66. [Google Scholar] [CrossRef] [PubMed]
- Ye, S.; Chen, W.; Zheng, Y.; Wu, Y.; Xiang, L.; Li, T.; Ping, B.; Zhang, X.; Yang, H. Peripheral lymphocyte populations in ovarian cancer patients and correlations with clinicopathological features. J. Ovarian Res. 2022, 15, 43. [Google Scholar] [CrossRef] [PubMed]
- Ziegler, S.F. Division of labour by CD4(+) T helper cells. Nat. Rev. Immunol. 2016, 16, 403. [Google Scholar] [CrossRef] [PubMed]
- Kishton, R.J.; Sukumar, M.; Restifo, N.P. Metabolic regulation of T cell longevity and function in tumor immunotherapy. Cell Metab. 2017, 26, 94–109. [Google Scholar] [CrossRef] [PubMed]
- Zhang, N.; Bevan, M.J. CD8(+) T cells: Foot soldiers of the immune system. Immunity 2011, 35, 161–168. [Google Scholar] [CrossRef] [PubMed]
- Quail, D.F.; Joyce, J.A. Microenvironmental regulation of tumor progression and metastasis. Nat. Med. 2013, 19, 1423–1437. [Google Scholar] [CrossRef] [PubMed]
- Gupta, P.; Chen, C.; Chaluvally-Raghavan, P.; Pradeep, S. B Cells as an Immune-Regulatory Signature in Ovarian Cancer. Cancers 2019, 11, 894. [Google Scholar] [CrossRef] [PubMed]
- Pandey, V.; Oyer, J.L.; Igarashi, R.Y.; Gitto, S.B.; Copik, A.J.; Altomare, D.A. Anti-ovarian tumor response of donor peripheral blood mononuclear cells is due to infiltrating cytotoxic NK cells. Oncotarget 2016, 7, 7318–7328. [Google Scholar] [CrossRef]
- Sun, Y.; Yao, Z.; Zhao, Z.; Xiao, H.; Xia, M.; Zhu, X.; Jiang, X.; Sun, C. Natural killer cells inhibit metastasis of ovarian carcinoma cells and show therapeutic effects in a murine model of ovarian cancer. Exp. Ther. Med. 2018, 16, 1071–1078. [Google Scholar] [CrossRef]
- Yin, M.; Shen, J.; Yu, S.; Fei, J.; Zhu, X.; Zhao, J.; Zhai, L.; Sadhukhan, A.; Zhou, J. Tumor-Associated Macrophages (TAMs): A Critical Activator in Ovarian Cancer Metastasis. Onco. Targets Ther. 2019, 12, 8687–8699. [Google Scholar] [CrossRef] [PubMed]
- Cheng, H.; Wang, Z.; Fu, L.; Xu, T. Macrophage Polarization in the Development and Progression of Ovarian Cancers: An Overview. Front. Oncol. 2019, 9, 421. [Google Scholar] [CrossRef] [PubMed]
- Zhang, C.; Jiang, X.; Li, Y.; Pan, X.; Gao, M.; Chen, Y.; Pang, B. Independent predictive value of blood inflammatory composite markers in ovarian cancer: Recent clinical evidence and perspective focusing on NLR and PLR. J. Ovarian Res. 2023, 16, 36. [Google Scholar] [CrossRef]
- Preston, C.C.; Maurer, M.J.; Oberg, A.L.; Visscher, D.W.; Kalli, K.R.; Hartmann, L.C.; Goode, E.L.; Knutson, K.L. The ratios of CD8+ T cells to CD4+CD25+ FOXP3+ and FOXP3- T cells correlate with poor clinical outcome in human serous ovarian cancer. PLoS ONE 2013, 8, e80063. [Google Scholar] [CrossRef]
- Yuan, X.; Zhang, J.; Li, D.; Mao, Y.; Mo, F.; Du, W.; Ma, X. Prognostic significance of tumor-associated macrophages in ovarian cancer: A meta-analysis. Gynecol. Oncol. 2017, 147, 181–187. [Google Scholar] [CrossRef] [PubMed]
- Kartikasari, A.E.R.; Huertas, C.S.; Mitchell, A.; Plebanski, M. Tumor-Induced Inflammatory Cytokines and the Emerging Diagnostic Devices for Cancer Detection and Prognosis. Front. Oncol. 2021, 11, 692142. [Google Scholar] [CrossRef]
- Mielczarek-Palacz, A.; Sikora, J.; Kondera-Anasz, Z.; Mickiewicz, P.; Mickiewicz, A. Effect of Th1/Th2 cytokine administration on proinflammatory SKOV-3 cell activation. Arch. Med. Sci. 2016, 12, 1337–1347. [Google Scholar] [CrossRef]
- Colombo, N.; Sessa, C.; Bois, A.d.; Ledermann, J.; McCluggage, W.G.; McNeish, I.; Morice, P.; Pignata, S.; Ray-Coquard, I.; Vergote, I.; et al. ESMO-ESGO consensus conference recommendations on ovarian cancer: Pathology and molecular biology, early and advanced stages, borderline tumours and recurrent disease. Int. J. Gynecol. Cancer 2019, 29, 728–760. [Google Scholar] [CrossRef]
- Tang, F.; Tie, Y.; Tu, C.; Wei, X. Surgical trauma-induced immunosuppression in cancer: Recent advances and the potential therapies. Clin. Transl. Med. 2020, 10, 199–223. [Google Scholar] [CrossRef]
- Hogan, B.V.; Peter, M.B.; Shenoy, H.G.; Horgan, K.; Hughes, T.A. Surgery induced immunosuppression. Surgeon 2011, 9, 38–43. [Google Scholar] [CrossRef]
- Alieva, M.; van Rheenen, J.; Broekman, M.L.D. Potential impact of invasive surgical procedures on primary tumor growth and metastasis. Clin. Exp. Metastasis 2018, 35, 319–331. [Google Scholar] [CrossRef] [PubMed]
- Tohme, S.; Simmons, R.L.; Tsung, A. Surgery for Cancer: A Trigger for Metastases. Cancer Res. 2017, 77, 1548–1552. [Google Scholar] [CrossRef] [PubMed]
- Ramirez, M.F.; Ai, D.; Bauer, M.; Vauthey, J.; Gottumukkala, V.; Kee, S.; Shon, D.; Truty, M.; Kuerer, H.M.; Kurz, A.; et al. Innate immune function after breast, lung, and colorectal cancer surgery. J. Surg. Res. 2015, 194, 185–193. [Google Scholar] [CrossRef] [PubMed]
- Ng, C.S.H.; Lau, K.K.W. Surgical trauma and immune functional changes following major lung resection. Indian J. Surg. 2015, 77, 49–54. [Google Scholar] [CrossRef] [PubMed]
- Gong, J.; Jiang, H.; Shu, C.; Hu, M.; Huang, Y.; Liu, Q.; Li, R. Prognostic value of lymphocyte-to-monocyte ratio in ovarian cancer: A meta-analysis. J. Ovarian Res. 2019, 12, 51. [Google Scholar] [CrossRef] [PubMed]
- Paik, E.S.; Sohn, I.; Baek, S.; Shim, M.; Choi, H.J.; Kim, T.; Choi, C.H.; Lee, J.; Kim, B.; Lee, Y.; et al. Nomograms Predicting Platinum Sensitivity, Progression-Free Survival, and Overall Survival Using Pretreatment Complete Blood Cell Counts in Epithelial Ovarian Cancer. Cancer Res. Treat. 2017, 49, 635–642. [Google Scholar] [CrossRef] [PubMed]
- Nowak, M.; Głowacka, E.; Lewkowicz, P.; Banasik, M.; Szyłło, K.; Zimna, K.; Bednarska, K.; Klink, M. Sub-optimal primary surgery leads to unfavorable immunological changes in ovarian cancer patients. Immunobiology 2018, 223, 1–7. [Google Scholar] [CrossRef] [PubMed]
- Wu, M.; Chen, X.; Lou, J.; Zhang, S.; Zhang, X.; Huang, L.; Sun, R.; Huang, P.; Pan, S.; Wang, F. Changes in regulatory T cells in patients with ovarian cancer undergoing surgery: Preliminary results. Int. Immunopharmacol. 2017, 47, 244–250. [Google Scholar] [CrossRef] [PubMed]
- Napoletano, C.; Bellati, F.; Landi, R.; Pauselli, S.; Marchetti, C.; Visconti, V.; Sale, P.; Liberati, M.; Rughetti, A.; Frati, L.; et al. Ovarian cancer cytoreduction induces changes in T cell population subsets reducing immunosuppression. J. Cell. Mol. Med. 2010, 14, 2748–2759. [Google Scholar] [CrossRef]
- Ulevicius, J.; Jasukaitiene, A.; Bartkeviciene, A.; Dambrauskas, Z.; Gulbinas, A.; Urboniene, D.; Paskauskas, S. Dysregulation of Peripheral Blood Mononuclear Cells and Immune-Related Proteins during the Early Post-Operative Immune Response in Ovarian Cancer Patients. Cancers 2023, 16, 190. [Google Scholar] [CrossRef]
- Reid, B.M.; Permuth, J.B.; Sellers, T.A. Epidemiology of ovarian cancer: A review. Cancer Biol. Med. 2017, 14, 9–32. [Google Scholar] [CrossRef] [PubMed]
- Berek, J.S.; Renz, M.; Kehoe, S.; Kumar, L.; Friedlander, M. Cancer of the ovary, fallopian tube, and peritoneum: 2021 update. Int. J. Gynaecol. Obstet. 2021, 155 (Suppl. S1), 61–85. [Google Scholar] [CrossRef] [PubMed]
- Li, Z.; Hong, N.; Robertson, M.; Wang, C.; Jiang, G. Preoperative red cell distribution width and neutrophil-to-lymphocyte ratio predict survival in patients with epithelial ovarian cancer. Sci. Rep. 2017, 7, 43001. [Google Scholar] [CrossRef] [PubMed]
- Ceran, M.U.; Tasdemir, U.; Colak, E.; Güngör, T. Can complete blood count inflammatory parameters in epithelial ovarian cancer contribute to prognosis?—A survival analysis. J. Ovarian Res. 2019, 12, 16. [Google Scholar] [CrossRef] [PubMed]
- Hufnagel, D.H.; Cozzi, G.D.; Crispens, M.A.; Beeghly-Fadiel, A. Platelets, Thrombocytosis, and Ovarian Cancer Prognosis: Surveying the Landscape of the Literature. Int. J. Mol. Sci. 2020, 21, 8169. [Google Scholar] [CrossRef]
- Giannakeas, V.; Kotsopoulos, J.; Cheung, M.C.; Rosella, L.; Brooks, J.D.; Lipscombe, L.; Akbari, M.R.; Austin, P.C.; Narod, S.A. Analysis of Platelet Count and New Cancer Diagnosis Over a 10-Year Period. JAMA Netw. Open 2022, 5, e2141633. [Google Scholar] [CrossRef] [PubMed]
- Gao, Y.; Liu, C.J.; Li, H.Y.; Xiong, X.M.; Li, G.L.; In ‘t Veld, S.G.; Cai, G.Y.; Xie, G.Y.; Zeng, S.Q.; Wu, Y.; et al. Platelet RNA enables accurate detection of ovarian cancer: An intercontinental, biomarker identification study. Protein Cell 2023, 14, 579–590. [Google Scholar] [CrossRef] [PubMed]
- Wang, W.; Zou, W.; Liu, J.R. Tumor-infiltrating T cells in epithelial ovarian cancer: Predictors of prognosis and biological basis of immunotherapy. Gynecol. Oncol. 2018, 151, 1–3. [Google Scholar] [CrossRef]
- Santoiemma, P.P.; Powell, D.J. Tumor infiltrating lymphocytes in ovarian cancer. Cancer Biol. Ther. 2015, 16, 807–820. [Google Scholar] [CrossRef]
- Lee, Y.J.; Chung, Y.S.; Lee, J.; Nam, E.J.; Kim, S.W.; Kim, S.; Kim, Y.T. Pretreatment lymphocytopenia is an adverse prognostic biomarker in advanced-stage ovarian cancer. Cancer Med. 2019, 8, 564–571. [Google Scholar] [CrossRef]
- Milne, K.; Alexander, C.; Webb, J.R.; Sun, W.; Dillon, K.; Kalloger, S.E.; Gilks, C.B.; Clarke, B.; Köbel, M.; Nelson, B.H. Absolute lymphocyte count is associated with survival in ovarian cancer independent of tumor-infiltrating lymphocytes. J. Transl. Med. 2012, 10, 33. [Google Scholar] [CrossRef] [PubMed]
- Huang, Q.; Zhou, L.; Zeng, W.; Ma, Q.; Wang, W.; Zhong, M.; Yu, Y. Prognostic Significance of Neutrophil-to-Lymphocyte Ratio in Ovarian Cancer: A Systematic Review and Meta-Analysis of Observational Studies. Cell. Physiol. Biochem. 2017, 41, 2411–2418. [Google Scholar] [CrossRef] [PubMed]
- Tian, C.; Song, W.; Tian, X.; Sun, Y. Prognostic significance of platelet-to-lymphocyte ratio in patients with ovarian cancer: A meta-analysis. Eur. J. Clin. Investig. 2018, 48, e12917. [Google Scholar] [CrossRef] [PubMed]
- Waki, K.; Kawano, K.; Tsuda, N.; Komatsu, N.; Yamada, A. CD4/CD8 ratio is a prognostic factor in IgG nonresponders among peptide vaccine-treated ovarian cancer patients. Cancer Sci. 2020, 111, 1124–1131. [Google Scholar] [CrossRef] [PubMed]
- Cai, L.; Song, Y.; Zhao, X. Prognostic significance of lymphocyte monocyte ratio in patients with ovarian cancer. Medicine 2020, 99, e19638. [Google Scholar] [CrossRef]
- Schweer, D.; McAtee, A.; Neupane, K.; Richards, C.; Ueland, F.; Kolesar, J. Tumor-Associated Macrophages and Ovarian Cancer: Implications for Therapy. Cancers 2022, 14, 2220. [Google Scholar] [CrossRef] [PubMed]
- Franklin, R.A.; Liao, W.; Sarkar, A.; Kim, M.V.; Bivona, M.R.; Liu, K.; Pamer, E.G.; Li, M.O. The Cellular and Molecular Origin of Tumor-associated Macrophages. Science 2014, 344, 921–925. [Google Scholar] [CrossRef] [PubMed]
- Freedman, R.S.; Ma, Q.; Wang, E.; Gallardo, S.T.; Gordon, I.O.; Shin, J.W.; Jin, P.; Stroncek, D.; Marincola, F.M. Migration deficit in monocyte-macrophages in human ovarian cancer. Cancer Immunol. Immunother. 2008, 57, 635–645. [Google Scholar] [CrossRef] [PubMed]
- Ingersoll, S.B.; Stoltzfus, G.P.; Merchant, M.H.; Ahmad, S.; Edwards, C.R.; Ahmed, A.; Oyer, J.L.; Finkler, N.J.; Holloway, R.W.; Edwards, J.R. Comparison of the cytotoxic response against ovarian cancer by immune effector cells isolated and expanded from normal donors and ovarian cancer patients. Cytotherapy 2012, 14, 716–723. [Google Scholar] [CrossRef]
- Zaborowski, M.P.; Stefens-Stawna, P.; Osztynowicz, K.; Piorunek, T.; Batura-Gabryel, H.; Dyzmann-Sroka, A.; Kozubski, W.; Nowak-Markwitz, E.; Michalak, S. Granzyme B in peripheral blood mononuclear cells as a measure of cell-mediated immune response in paraneoplastic neurological syndromes and malignancy. Cancer Immunol. Immunother. 2021, 70, 1277–1289. [Google Scholar] [CrossRef]
- Zhang, M.; He, Y.; Sun, X.; Li, Q.; Wang, W.; Zhao, A.; Di, W. A high M1/M2 ratio of tumor-associated macrophages is associated with extended survival in ovarian cancer patients. J. Ovarian Res. 2014, 7, 19. [Google Scholar] [CrossRef] [PubMed]
- Macciò, A.; Gramignano, G.; Cherchi, M.C.; Tanca, L.; Melis, L.; Madeddu, C. Role of M1-polarized tumor-associated macrophages in the prognosis of advanced ovarian cancer patients. Sci. Rep. 2020, 10, 6096. [Google Scholar] [CrossRef] [PubMed]
- Browning, L.; Patel, M.R.; Horvath, E.B.; Tawara, K.; Jorcyk, C.L. IL-6 and ovarian cancer: Inflammatory cytokines in promotion of metastasis. Cancer Manag. Res. 2018, 10, 6685–6693. [Google Scholar] [CrossRef] [PubMed]
- Souza, J.C.; Ribeiro, R.S.; Pimenta, T.M.; Martins, B.S.; Rangel, L.B.A. The role of pro-inflammatory components, carcinoma-associated fibroblasts, and tumor-associated macrophages in ovarian cancer progression and metastasis. J. Cancer Metastasis Treat. 2023, 9, 3. [Google Scholar] [CrossRef]
- Lan, T.; Chen, L.; Wei, X. Inflammatory Cytokines in Cancer: Comprehensive Understanding and Clinical Progress in Gene Therapy. Cells 2021, 10, 100. [Google Scholar] [CrossRef]
- van Horssen, R.; Ten Hagen, T.L.M.; Eggermont, A.M.M. TNF-alpha in cancer treatment: Molecular insights, antitumor effects, and clinical utility. Oncologist 2006, 11, 397–408. [Google Scholar] [CrossRef] [PubMed]
- Wilke, C.M.; Wei, S.; Wang, L.; Kryczek, I.; Kao, J.; Zou, W. Dual biological effects of the cytokines interleukin-10 and interferon-γ. Cancer Immunol. Immunother. 2011, 60, 1529–1541. [Google Scholar] [CrossRef]
- Li, Z.; Chen, L.; Qin, Z. Paradoxical Roles of IL-4 in Tumor Immunity. Cell. Mol. Immunol. 2009, 6, 415–422. [Google Scholar] [CrossRef] [PubMed]
- Wang, X.; Yang, C.; Körner, H.; Ge, C. Tumor Necrosis Factor: What Is in a Name? Cancers 2022, 14, 5270. [Google Scholar] [CrossRef]
- Monaco, G.; Lee, B.; Xu, W.; Mustafah, S.; Hwang, Y.Y.; Carré, C.; Burdin, N.; Visan, L.; Ceccarelli, M.; Poidinger, M.; et al. RNA-Seq Signatures Normalized by mRNA Abundance Allow Absolute Deconvolution of Human Immune Cell Types. Cell Rep. 2019, 26, 1627–1640.e7. [Google Scholar] [CrossRef]
- Gupta, M.; Babic, A.; Beck, A.H.; Terry, K. TNF-α expression, risk factors, and inflammatory exposures in ovarian cancer: Evidence for an inflammatory pathway of ovarian carcinogenesis? Hum. Pathol. 2016, 54, 82–91. [Google Scholar] [CrossRef]
- Charles, K.A.; Kulbe, H.; Soper, R.; Escorcio-Correia, M.; Lawrence, T.; Schultheis, A.; Chakravarty, P.; Thompson, R.G.; Kollias, G.; Smyth, J.F.; et al. The tumor-promoting actions of TNF-alpha involve TNFR1 and IL-17 in ovarian cancer in mice and humans. J. Clin. Investig. 2009, 119, 3011–3023. [Google Scholar] [CrossRef] [PubMed]
- Kovács, A.R.; Pál, L.; Szűcs, S.; Lukács, L.; Póka, R.; Lampé, R. Phagocytic function of monocytes and neutrophil granulocytes in ovarian cancer. Orv. Hetil. 2018, 159, 1353–1359. [Google Scholar] [CrossRef] [PubMed]
- Kovács, A.R.; Lukács, L.; Pál, L.; Szűcs, S.; Kovács, K.S.; Lampé, R. Recovery of the Decreased Phagocytic Function of Peripheral Monocytes and Neutrophil Granulocytes following Cytoreductive Surgery in Advanced Stage Epithelial Ovarian Cancer. Medicina 2023, 59, 1602. [Google Scholar] [CrossRef] [PubMed]
- Tarique, A.A.; Logan, J.; Thomas, E.; Holt, P.G.; Sly, P.D.; Fantino, E. Phenotypic, functional, and plasticity features of classical and alternatively activated human macrophages. Am. J. Respir. Cell Mol. Biol. 2015, 53, 676–688. [Google Scholar] [CrossRef]
- Wiehagen, K.R.; Girgis, N.M.; Yamada, D.H.; Smith, A.A.; Chan, S.R.; Grewal, I.S.; Quigley, M.; Verona, R.I. Combination of CD40 Agonism and CSF-1R Blockade Reconditions Tumor-Associated Macrophages and Drives Potent Antitumor Immunity. Cancer. Immunol. Res. 2017, 5, 1109–1121. [Google Scholar] [CrossRef]
Characteristic | OC Group (n = 13) | Control Group (n = 23) | p-Value |
---|---|---|---|
Age (years), median (IQR) | 58 (49–67) | 59 (49–61) | 0.75 |
Body mass index (kg/m2), median (IQR) | 22.9 (22.1–28.8) | 23.7 (21.9–28.7) | 0.85 |
Stage of OC, n (%) | |||
IIIA | 3 (23.1) | NA | NA |
IIIB | 3 (23.1) | NA | NA |
IIIC | 4 (30.7) | NA | NA |
IVB | 3 (23.1) | NA | NA |
Histologic type of OC, n (%) | |||
Low-grade serous carcinoma | 1 (7.7) | NA | NA |
High-grade serous carcinoma | 9 (69.2) | NA | NA |
Mucinous carcinoma | 1 (7.7) | NA | NA |
Serous endometrioid carcinoma | 2 (15.4) | NA | NA |
Cell Type | OC Group (n = 13) | Control Group (n = 23) | p-Value |
---|---|---|---|
WBCs | 6.8 (4.9–7.9) | 5.6 (4.4–6.4) | 0.09 |
Neutrophils | 4.5 (3.3–5.3) | 3.1 (2.3–3.5) | 0.01 |
Eosinophils | 0.1 (0.04–0.2) | 0.1 (0.1–0.1) | 0.36 |
Basophils | 0.03 (0.03–0.06) | 0.04 (0.02–0.04) | 0.8 |
Lymphocytes | 1.3 (1.1–1.8) | 1.9 (1.3–2.3) | 0.13 |
Monocytes | 0.5 (0.2–1) | 0.4 (0.4–0.5) | 0.72 |
RBCs | 4.2 (4–4.4) | 4.5 (4.4–4.7) | 0.06 |
Plts | 372 (322–400) | 267.5 (234–289) | <0.001 |
Immune System Component | Effect on OC Progression | Current Study Findings in Preoperative OC Patients |
---|---|---|
CD3+ T cells | Complex | ↓ |
CD4+ T cells | Complex | ↔ |
CD8+ T cells | Tumor-inhibiting | ↓ |
CD19+ B cells | Complex | ↑ |
NK cells | Tumor-inhibiting | ↔ |
M1 monocytes | Tumor-inhibiting | ↔ |
M2 monocytes | Tumor-promoting | ↑ |
IL-1β | Tumor-promoting | ↔ |
IL-4 | Complex | ↔ |
IL-6 | Tumor-promoting | ↑ |
IL-10 | Complex | ↓ |
IL-12 | Tumor-inhibiting | ↔ |
TNFα | Complex | Tendecy of ↓ |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ulevicius, J.; Jasukaitiene, A.; Bartkeviciene, A.; Dambrauskas, Z.; Gulbinas, A.; Urboniene, D.; Paskauskas, S. Preoperative Immune Cell Dysregulation Accompanies Ovarian Cancer Patients into the Postoperative Period. Int. J. Mol. Sci. 2024, 25, 7087. https://doi.org/10.3390/ijms25137087
Ulevicius J, Jasukaitiene A, Bartkeviciene A, Dambrauskas Z, Gulbinas A, Urboniene D, Paskauskas S. Preoperative Immune Cell Dysregulation Accompanies Ovarian Cancer Patients into the Postoperative Period. International Journal of Molecular Sciences. 2024; 25(13):7087. https://doi.org/10.3390/ijms25137087
Chicago/Turabian StyleUlevicius, Jonas, Aldona Jasukaitiene, Arenida Bartkeviciene, Zilvinas Dambrauskas, Antanas Gulbinas, Daiva Urboniene, and Saulius Paskauskas. 2024. "Preoperative Immune Cell Dysregulation Accompanies Ovarian Cancer Patients into the Postoperative Period" International Journal of Molecular Sciences 25, no. 13: 7087. https://doi.org/10.3390/ijms25137087
APA StyleUlevicius, J., Jasukaitiene, A., Bartkeviciene, A., Dambrauskas, Z., Gulbinas, A., Urboniene, D., & Paskauskas, S. (2024). Preoperative Immune Cell Dysregulation Accompanies Ovarian Cancer Patients into the Postoperative Period. International Journal of Molecular Sciences, 25(13), 7087. https://doi.org/10.3390/ijms25137087