Bioreduction of 4′-Hydroxychalcone in Deep Eutectic Solvents: Optimization and Efficacy with Various Yeast Strains
Abstract
:1. Introduction
2. Results and Discussion
2.1. Biocatalysts and the Determination of the Optimal Temperature of the Biotransformation Process
2.2. Use of DESs as a Medium for Selective Bioreduction Reactions
3. Materials and Methods
3.1. Analysis
3.2. Chemicals
3.3. Chemical Synthesis
- trans-4′-hydroxychalcone (trans-1):
- 1H NMR (600 MHz; DMSO-d6) δ (ppm): 10.44 (s, 1H, C-4′-OH), 8.05–8.10 (m, 2H, H-2′, and H-6′), 7.92 (d, 1H, J = 15.6 Hz, H-α), 7.85–7.89 (m, 2H, H-2, and H-6), 7.68 (d, 1H, J = 15.6 Hz, H-β), 7.42–7.47 (m, 3H, H-3, H-4, and H-5), 6.88–6.92 (m, 2H, H-3′, and H-5′). 13C NMR (151 MHz, DMSO-d6) δ: 187.14 (C=O), 162.24 (C-4′), 142.76 (C-β), 134.91 (C-1), 131.24 (C-2′ and C-6′), 130.35 (C-4), 129.12 (C-1′), 128.92 (C-2 and C-6), 128.74 (C-3 and C-5), 122.11 (C-α), 115.41 (C-3′ and C-5′).
- cis-4′-hydroxychalcone (cis-1):
- 1H NMR (600 MHz; DMSO-d6) δ (ppm): 10.48 (s, 1H, C-4′-OH), 7.81–7.83 (m, 2H, H-2′, and H-6′), 7.36–7.32 (m, 2H, H-2 and H-6), 7.23–7.28 (m, 3H, H-3, H-4, and H-5), 6.93 (d, 1H, J = 13.0 Hz, H-β), 6.80–6.84 (m, 2H, H-3′, and H-5′), 6.71 (d, 1H, J = 13.0 Hz, H-α). 13C NMR (151 MHz, DMSO-d6) δ: 192.98 (C=O), 162.55 (C-4′), 136.65 (C-β), 135.44 (C-1), 131.43 (C-2′ and C-6′), 129.05 (C-2 and C-6), 128.57 (C-4), 128.36 (C-3 and C-5), 128.28 (C-1′), 128.11 (C-α), 115.56 (C-3′ and C-5′).
- 4′-hydroxydihydrochalcone (2):
- 1H NMR (400 MHz; DMSO-d6) δ (ppm): 10.37 (s, 1H, C-4′-OH), 7.84–7.87 (m, 2H, H-2′, and H-6′), 7.24–7.28 (m, 4H, H-2, H-3, H-5, and H-6), 7.14–7.19 (m, 1H, H-4), 6.81–6.86 (m, 2H, H-3′, and H-5′), 3.23 (t, 2H, J = 7.5 Hz, CH2-α), 2.90 (t, 2H, J = 7.5 Hz, CH2-β). 13C NMR (100 MHz, DMSO-d6) δ: 197.41 (C=O), 162.07 (C-4′), 141.53 (C-1), 130.59 (C-2′ and C-6′), 128.48 and 128.36 (C-1′, C-2, C-3, C-5, and C-6), 125.92 (C-4), 115.31 (C-3′ and C-5′), 39.04 (C-α), 29.48 (C-β).
3.4. Microorganisms and Determination of the Optimal Temperature of the Biotransformation Process
3.5. Preparation of DESs
3.6. Biotransformation in DESs
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Bornscheuer, U.T.; Bucholz, K. Highlights in biocatalysis—Historical landmarks and current trends. Eng. Life Sci. 2005, 5, 309–323. [Google Scholar] [CrossRef]
- Pyser, J.B.; Chakrabarty, S.; Romero, E.O.; Narayan, A.R.H. State-of-the-Art Biocatalysis. ACS Cent. Sci. 2021, 7, 1105–1116. [Google Scholar] [CrossRef] [PubMed]
- de Oliveira, N.S.; da Silva, G.P.L.; Furlan, O.; Peña, L.C.; Bianchini, L.F.; Parahitiyawa, N.; Rosa, E.A.R. The song remains the same. The lab bench dilemma of using shaken flasks in microbial biotransformation experiments. Biocatal. Biotransformation 2023, 1–26. [Google Scholar] [CrossRef]
- Garzón-Posse, F.; Becerra-Figueroa, L.; Hernández-Arias, J.; Gamba-Sánchez, D. Whole Cells as Biocatalysts in Organic Transformations. Molecules 2018, 23, 1265. [Google Scholar] [CrossRef] [PubMed]
- Crnoglavac Popović, M.; Stanišić, M.; Prodanović, R. State of the Art Technologies for High Yield Heterologous Expression and Production of Oxidoreductase Enzymes: Glucose Oxidase, Cellobiose Dehydrogenase, Horseradish Peroxidase, and Laccases in Yeasts P. pastoris and S. cerevisiae. Fermentation 2024, 10, 93. [Google Scholar] [CrossRef]
- Fu, X.; Hong, K.; Wang, H.; Zhang, C.; Lu, W. Screening and Remodeling of Enone Oxidoreductase for High Production of 2(or 5)-Ethyl-5(or 2)-methyl-4-hydroxy-3(2H)-Furanone in Saccharomyces Cerevisiae. J. Agric. Food Chem. 2022, 70, 9888–9897. [Google Scholar] [CrossRef]
- de Gonzalo, G.; Alcántara, A.R. Multienzymatic Processes Involving Baeyer–Villiger Monooxygenases. Catalysts 2021, 11, 605. [Google Scholar] [CrossRef]
- Zappaterra, F.; Costa, S.; Summa, D.; Bertolasi, V.; Semeraro, B.; Pedrini, P.; Buzzi, R.; Vertuani, S. Biotransformation of Cortisone with Rhodococcus rhodnii: Synthesis of New Steroids. Molecules 2021, 26, 1352. [Google Scholar] [CrossRef]
- Panić, M.; Delač, D.; Roje, M.; Radojčić Redovniković, I.; Cvjetko Bubalo, M. Green asymmetric reduction of acetophenone derivatives: Saccharomyces cerevisiae and aqueous natural deep eutectic solvent. Biotechnol. Lett. 2019, 41, 253–262. [Google Scholar] [CrossRef]
- Cvjetko Bubalo, M.; Mazur, M.; Radošević, K.; Radojčić Redovniković, I. Baker’s yeast-mediated asymmetric reduction of ethyl 3-oxobutanoate in deep eutectic solvents. Process. Biochem. 2015, 50, 1788–1792. [Google Scholar] [CrossRef]
- Csuka, P.; Nagy-Győr, L.; Molnár, Z.; Paizs, C.; Bódai, V.; Poppe, L. Characterization of Yeast Strains with Ketoreductase Activity for Bioreduction of Ketones. Period. Polytech. Chem. Eng. 2021, 65, 299–307. [Google Scholar] [CrossRef]
- Monna, T.; Fuhshuku, K.I. Biocatalytic reductive desymmetrization of prochiral 1,3-diketone and its application to microbial hormone synthesis. Mol. Catal. 2020, 497, 111217. [Google Scholar] [CrossRef]
- Stompor, M.; Broda, D.; Bajek-Bil, A. Dihydrochalcones: Methods of Acquisition and Pharmacological Properties—A First Systematic Review. Molecules 2019, 24, 4468. [Google Scholar] [CrossRef] [PubMed]
- Aguiar, L.O.; Silva, E.D.O.; David, J.M. Biotransformation of chalcones and flavanones: An update on their bio-based derivatizations. Biocatal. Biotransformation 2022, 40, 393–412. [Google Scholar] [CrossRef]
- Krawczyk-Łebek, A.; Dymarska, M.; Janeczko, T.; Kostrzewa-Susłow, E. New Glycosylated Dihydrochalcones Obtained by Biotransformation of 2′-Hydroxy-2-methylchalcone in Cultures of Entomopathogenic Filamentous Fungi. Int. J. Mol. Sci. 2021, 22, 9619. [Google Scholar] [CrossRef] [PubMed]
- Żyszka, B.; Anioł, M.; Lipok, J. Highly effective, regiospecific reduction of chalcone by cyanobacteria leads to the formation of dihydrochalcone: Two steps towards natural sweetness. Microb. Cell Fact. 2017, 16, 136. [Google Scholar] [CrossRef] [PubMed]
- de Matos, I.L.; Nitschke, M.; Porto, A.L.M. Regioselective and chemoselective biotransformation of 2′-hydroxychalcone derivatives by marine-derived fungi. Biocatal. Biotransformation 2023, 41, 46–56. [Google Scholar] [CrossRef]
- Chlipała, P.; Tronina, T.; Dymarska, M.; Urbaniak, M.; Kozłowska, E.; Stępień, Ł.; Kostrzewa-Susłow, E.; Janeczko, T. Multienzymatic biotransformation of flavokawain B by entomopathogenic filamentous fungi: Structural modifications and pharmacological predictions. Microb. Cell Fact. 2024, 23, 65. [Google Scholar] [CrossRef]
- Krawczyk-Łebek, A.; Dymarska, M.; Janeczko, T.; Kostrzewa-susłow, E. Glycosylation of Methylflavonoids in the Cultures of Entomopathogenic Filamentous Fungi as a Tool for Obtaining New Biologically Active Compounds. Int. J. Mol. Sci. 2022, 23, 5558. [Google Scholar] [CrossRef] [PubMed]
- Kozłowska, J.; Potaniec, B.; Anioł, M. Biotransformation of Hydroxychalcones as a Method of Obtaining Novel and Unpredictable Products Using Whole Cells of Bacteria. Catalysts 2020, 10, 1167. [Google Scholar] [CrossRef]
- Stompor, M.; Kałużny, M.; Żarowska, B. Biotechnological methods for chalcone reduction using whole cells of Lactobacillus, Rhodococcus and Rhodotorula strains as a way to produce new derivatives. Appl. Microbiol. Biotechnol. 2016, 100, 8371–8384. [Google Scholar] [CrossRef]
- Łużny, M.; Kaczanowska, D.; Gawdzik, B.; Wzorek, A.; Pawlak, A.; Obmińska-Mrukowicz, B.; Dymarska, M.; Kozłowska, E.; Kostrzewa-Susłow, E.; Janeczko, T. Regiospecific Hydrogenation of Bromochalcone by Unconventional Yeast Strains. Molecules 2022, 27, 3681. [Google Scholar] [CrossRef] [PubMed]
- Łużny, M.; Kozłowska, E.; Kostrzewa-Susłow, E.; Janeczko, T. Methoxychalcone by Yarrowia lipolytica Enables. Catalysts 2020, 10, 1135. [Google Scholar] [CrossRef]
- Filippucci, S.; Tasselli, G.; Kenza Labbani, F.Z.; Turchetti, B.; Rita Cramarossa, M.; Buzzini, P.; Forti, L. Non-conventional yeasts as sources of ene-reductases for the bioreduction of chalcones. Fermentation 2020, 6, 29. [Google Scholar] [CrossRef]
- Zieniuk, B.; Jasińska, K.; Wierzchowska, K.; Uğur, Ş.; Fabiszewska, A. Yarrowia lipolytica Yeast: A Treasure Trove of Enzymes for Biocatalytic Applications—A Review. Fermentation 2024, 10, 263. [Google Scholar] [CrossRef]
- Turck, D.; Castenmiller, J.; de Henauw, S.; Hirsch-Ernst, K.; Kearney, J.; Maciuk, A.; Mangelsdorf, I.; McArdle, H.J.; Naska, A.; Pelaez, C.; et al. Safety of Yarrowia lipolytica yeast biomass as a novel food pursuant to Regulation (EU) 2015/2283. EFSA J. 2019, 17, e05594. [Google Scholar]
- Turck, D.; Bohn, T.; Castenmiller, J.; De Henauw, S.; Hirsch-Ernst, K.I.; Maciuk, A.; Mangelsdorf, I.; McArdle, H.J.; Naska, A.; Pelaez, C.; et al. Safety of an extension of use of Yarrowia lipolytica yeast biomass as a novel food pursuant to Regulation (EU) 2015/2283. EFSA J. 2022, 20, e07450. [Google Scholar] [PubMed]
- Łuzny, M.; Krzywda, M.; Kozłowska, E.; Kostrzewa-Susłow, E.; Janeczko, T. Effective Hydrogenation of 3-(2”-furyl)- And 3-(2”-thienyl)-1-(2′-hydroxyphenyl)-prop-2-en-1-one in Selected Yeast Cultures. Molecules 2019, 24, 3185. [Google Scholar] [CrossRef] [PubMed]
- Perna, F.M.; Vitale, P.; Capriati, V. Deep eutectic solvents and their applications as green solvents. Curr. Opin. Green Sustain. Chem. 2020, 21, 27–33. [Google Scholar] [CrossRef]
- Gupta, D.; Gupta, R.K. Bioprotective properties of Dragon’s blood resin: In vitro evaluation of antioxidant activity and antimicrobial activity. BMC Complement. Altern. Med. 2011, 11, 361–380. [Google Scholar] [CrossRef]
- Al-Awthan, Y.S.; Bahattab, O.S. Phytochemistry and Pharmacological Activities of Dracaena cinnabari Resin. Biomed. Res. Int. 2021, 2021, 8561696. [Google Scholar] [CrossRef] [PubMed]
- Wang, S.; Shi, Y.; Ma, J.; Ye, Z.; Yao, M.; Shang, J.; Liu, J. Enhanced intradermal delivery of Dragon’s blood in biocompatible nanosuspensions hydrogel patch for skin photoprotective effect. J. Cosmet. Dermatol. 2022, 22, 1046–1062. [Google Scholar] [CrossRef] [PubMed]
- Mazur, M.; Janeczko, T.; Gładkowski, W. Lipase-mediated Baeyer-Villiger oxidation of benzylcyclopentanones in ester solvents and deep eutectic solvents. Sci. Rep. 2022, 12, 14795. [Google Scholar] [CrossRef] [PubMed]
- Grudniewska, A.; Popłoński, J. Simple and green method for the extraction of xanthohumol from spent hops using deep eutectic solvents. Sep. Purif. Technol. 2020, 250, 117196. [Google Scholar] [CrossRef]
- Di Carmine, G.; Abbott, A.P.; D’Agostino, C. Deep eutectic solvents: Alternative reaction media for organic oxidation reactions. React. Chem. Eng. 2021, 6, 582–598. [Google Scholar] [CrossRef]
- Pätzold, M.; Siebenhaller, S.; Kara, S.; Liese, A.; Syldatk, C.; Holtmann, D. Deep Eutectic Solvents as Efficient Solvents in Biocatalysis. Trends Biotechnol. 2019, 37, 943–959. [Google Scholar] [CrossRef] [PubMed]
- Paiva, A.; Craveiro, R.; Aroso, I.; Martins, M.; Reis, R.L.; Duarte, A.R.C. Natural deep eutectic solvents—Solvents for the 21st century. ACS Sustain. Chem. Eng. 2014, 2, 1063–1071. [Google Scholar] [CrossRef]
- Panić, M.; Hrvat, N.M.; Štokić, M.; Radojčić Redovniković, I.; Kovarik, Z.; Radošević, K. Natural deep eutectic solvents improve the solubility of acetylcholinesterase reactivator RS194B. Sustain. Chem. Pharm. 2022, 27, 100654. [Google Scholar] [CrossRef]
- Yang, T.X.; Zhao, L.Q.; Wang, J.; Song, G.L.; Liu, H.M.; Cheng, H.; Yang, Z. Improving Whole-Cell Biocatalysis by Addition of Deep Eutectic Solvents and Natural Deep Eutectic Solvents. ACS Sustain. Chem. Eng. 2017, 5, 5713–5722. [Google Scholar] [CrossRef]
- Nawade, B.; Yahyaa, M.; Davidovich-Rikanati, R.; Lewinsohn, E.; Ibdah, M. Optimization of Culture Conditions for the Efficient Biosynthesis of Trilobatin from Phloretin by Engineered Escherichia coli Harboring the Apple Phloretin-4′-O-glycosyltransferase. J. Agric. Food Chem. 2020, 68, 14212–14220. [Google Scholar] [CrossRef]
- Dimmock, J.R.; Murthi Kandepu, N.; Hetherington, M.; Wilson Quail, J.; Pugazhenthi, U.; Sudom, A.M.; Chamankhah, M.; Rose, P.; Pass, E.; Allen, T.M.; et al. Cytotoxic activities of Mannich bases of chalcones and related compounds. J. Med. Chem. 1998, 41, 1014–1026. [Google Scholar] [CrossRef] [PubMed]
- Vitali, A.; Giardina, B.; Delle Monache, G.; Rocca, F.; Silvestrini, A.; Tafi, A.; Botta, B. Chalcone dimethylallyltransferase from Morus nigra cell cultures. Substrate specificity studies. FEBS Lett. 2004, 557, 33–38. [Google Scholar] [CrossRef] [PubMed]
- Sanchez-Gonzalez, M.; Rosazza, J.P.N. Microbial Transformations of Chalcones: Hydroxylation, O -Demethylation, and Cyclization to Flavanones. J. Nat. Prod. 2004, 67, 553–558. [Google Scholar] [CrossRef] [PubMed]
- Lewis, J.A.; Jacobo, E.P.; Palmer, N.; Vermerris, W.; Sattler, S.E.; Brozik, J.A.; Sarath, G.; Kang, C. Structural and Interactional Analysis of the Flavonoid Pathway Proteins: Chalcone Synthase, Chalcone Isomerase and Chalcone Isomerase-like Protein. Int. J. Mol. Sci. 2024, 25, 5651. [Google Scholar] [CrossRef] [PubMed]
- Furumura, S.; Ozaki, T.; Sugawara, A.; Morishita, Y.; Tsukada, K.; Ikuta, T.; Inoue, A.; Asai, T. Identification and Functional Characterization of Fungal Chalcone Synthase and Chalcone Isomerase. J. Nat. Prod. 2023, 86, 398–405. [Google Scholar] [CrossRef] [PubMed]
- Jach, M.E.; Malm, A. Yarrowia lipolytica as an Alternative and Valuable Source of Nutritional and Bioactive Compounds for Humans. Molecules 2022, 27, 27–29. [Google Scholar] [CrossRef] [PubMed]
- López-Trujillo, J.; Mellado-Bosque, M.; Ascacio-Valdés, J.A.; Prado-Barragán, L.A.; Hernández-Herrera, J.A.; Aguilera-Carbó, A.F. Temperature and pH Optimization for Protease Production Fermented by Yarrowia lipolytica from Agro-Industrial Waste. Fermentation 2023, 9, 819. [Google Scholar] [CrossRef]
- Hammond, O.S.; Bowron, D.T.; Edler, K.J. The Effect of Water upon Deep Eutectic Solvent Nanostructure: An Unusual Transition from Ionic Mixture to Aqueous Solution. Angew. Chem. 2017, 129, 9914–9917. [Google Scholar] [CrossRef]
- Gabriele, F.; Chiarini, M.; Germani, R.; Tiecco, M.; Spreti, N. Effect of water addition on choline chloride/glycol deep eutectic solvents: Characterization of their structural and physicochemical properties. J. Mol. Liq. 2019, 291, 111301. [Google Scholar] [CrossRef]
- Yadav, A.; Pandey, S. Densities and viscosities of (choline chloride + urea) deep eutectic solvent and its aqueous mixtures in the temperature range 293.15 K to 363.15 K. J. Chem. Eng. Data 2014, 59, 2221–2229. [Google Scholar] [CrossRef]
- Moghimi, M.; Roosta, A. Physical properties of aqueous mixtures of (choline chloride + glucose) deep eutectic solvents. J. Chem. Thermodyn. 2019, 129, 159–165. [Google Scholar] [CrossRef]
- López-Salas, N.; Vicent-Luna, J.M.; Imberti, S.; Posada, E.; Roldán, M.J.; Anta, J.A.; Balestra, S.R.G.; Madero Castro, R.M.; Calero, S.; Jiménez-Riobóo, R.J.; et al. Looking at the “water-in-Deep-Eutectic-Solvent” System: A Dilution Range for High Performance Eutectics. ACS Sustain. Chem. Eng. 2019, 7, 17565–17573. [Google Scholar] [CrossRef]
- Janeczko, T.; Gładkowski, W.; Kostrzewa-Susłow, E. Microbial transformations of chalcones to produce food sweetener derivatives. J. Mol. Catal. B Enzym. 2013, 98, 55–61. [Google Scholar] [CrossRef]
- Lutz, R.T.; Jordan, R.H. cis-Benzalacetophenone. J. Am. Chem. Soc. 1950, 72, 4090–4091. [Google Scholar] [CrossRef]
- Iwata, S.; Nishino, T.; Inoue, H.; Nagata, N.; Satomi, Y.; Nishino, H.; Shibata, S. Antitumorigenic activity of chalcones (II). Photo-isomerization of chalcones and correlation with their biological activities. Biol. Pharm. Bull. 1997, 20, 1266–1270. [Google Scholar] [CrossRef] [PubMed]
- Baas, P.; Cerfontain, H. Conformational study on some β-phenyl-α,β-unsaturated ketones. Tetrahedron 1977, 33, 1509–1511. [Google Scholar] [CrossRef]
- Fernandez, D.; Parola, A.J.; Branco, L.C.; Afonso, C.A.M.; Pina, F. Thermal and photochemical properties of 4′-hydroxyflavylium in water-ionic liquid biphasic systems. J. Photochem. Photobiol. A Chem. 2004, 168, 185–189. [Google Scholar] [CrossRef]
- Norikane, Y.; Itoh, H.; Arai, T. Photochemistry of 2′-hydroxychalcone. One-way cis-trans photoisomerization induced by adiabatic intramolecular hydrogen atom transfer. J. Phys. Chem. A 2002, 106, 2766–2776. [Google Scholar] [CrossRef]
- Norikane, Y.; Itoh, H.; Arai, T. Control of the photoisomerization mode of carbon-carbon double bond by intramolecular hydrogen bond; one-way photoisomerization of 2′-hydroxychalcone induced by adiabatic intramolecular hydrogen atom transfer. Chem. Lett. 2000, 1, 1094–1095. [Google Scholar] [CrossRef]
- Matsushima, R.; Kageyama, H. Photochemical cyclization of 2′-hydroxychalcones. J. Chem. Soc. Perkin Trans. 1985, 2, 743–748. [Google Scholar] [CrossRef]
- Roque, A.; Lima, J.C.; Parola, A.J.; Pina, F. Substitution and solvent effects in the chalcones isomerization barrier of flavylium photochromic systems. Photochem. Photobiol. Sci. 2007, 6, 381–385. [Google Scholar] [CrossRef] [PubMed]
- Kalchevski, D.A.; Petrov, V.; Tadjer, A.; Nenov, A. Impacts of hydroxylation on the photophysics of chalcones: Insights into the relation between the chemical composition and the electronic structure. Phys. Chem. Chem. Phys. 2018, 20, 8924–8934. [Google Scholar] [CrossRef] [PubMed]
- Pina, F.; Roque, A.; Melo, M.J.; Maestri, M.; Belladelli, L.; Balzani, V. Multistate/multifunctional molecular-level systems: Light and pH switching between the various forms of a synthetic flavylium salt. Chem. A Eur. J. 1998, 4, 1184–1191. [Google Scholar] [CrossRef]
- Sidharth, S.N.; Yuvaraj, A.R.; Hui, T.J.; Sarojini, B.K.; Mashitah, M.Y.; Hegde, G. Light induced properties of chalcones correlated with molecular structure and photophysical properties for permanent optical storage device. Adv. Mater. Res. 2014, 1033–1034, 1149–1153. [Google Scholar] [CrossRef]
4′-Hydroxychalcone | 4′-Hydroxydihydrochalcone | |||
---|---|---|---|---|
trans-1 | cis-1 | 2 | ||
H-α | 7.92 d, J = 15.6 Hz | 6.71 d, J = 13.0 Hz | CH2-α | 3.23 t, J = 7.5 Hz |
H-β | 7.68 d, J = 15.6 Hz | 6.93 d, J = 13.0 Hz | CH2-β | 2.90 t, J = 7.5 Hz |
C-α | 122.11 | 128.11 | 39.04 | |
C-β | 142.76 | 136.65 | 29.48 |
DES 1 | DES 2 | DES 3 | DES 4 | DES 5 | DES 6 | DES 7 | DES 8 | DES 9 | |
---|---|---|---|---|---|---|---|---|---|
1 h | |||||||||
cis-1 | 20.0 ± 0.2 | 18.8 ± 1.5 | 12.7 ± 0.9 | 13.7 ± 2.8 | 7.8 ± 0.8 | 0.5 ± 0.2 | 5.4 ± 0.4 | 3.9 ± 0.4 | 6.2 ± 1.1 |
trans-1 | 70.8 ± 4.1 | 60.7 ± 5.3 | 3.2 ± 0.7 | 78.2 ± 2.0 | 40.2 ± 3.9 | 0.2 ± 0.2 | 79.8 ± 0.2 | 85.4 ± 0.7 | 79.0 ± 1.6 |
2 | 9.2 ± 4.0 | 20.5 ± 6.7 | 84.1 ± 0.9 | 8.1 ± 4.8 | 51.9 ± 4.6 | 99.3 ± 0.3 | 14.8 ± 0.5 | 10.7 ± 0.3 | 14.7 ± 0.6 |
3 h | |||||||||
cis-1 | 22.5 ± 2.5 | 18.1 ± 1.7 | 9.5 ± 1.1 | 18.8 ± 1.5 | 1.1 ± 0.4 | 0.0 | 4.8 ± 0.3 | 3.7 ± 0.1 | 5.0 ± 0.5 |
trans-1 | 61.2 ± 5.6 | 37.4 ± 8.3 | 3.9 ± 0.2 | 65.5 ± 5.4 | 1.2 ± 0.4 | 0.0 | 84.7 ± 1.3 | 84.1 ± 1.7 | 75.4 ± 1.3 |
2 | 16.3 ± 6.6 | 44.4 ± 9.0 | 86.5 ± 0.9 | 15.7 ± 5.0 | 97.8 ± 0.8 | 100.0 | 10.5 ± 1.4 | 12.3 ± 1.7 | 19.6 ± 0.9 |
6 h | |||||||||
cis-1 | 62.5 ± 3.5 | 41.7 ± 4.3 | 7.7 ± 0.4 | 22.7 ± 1.4 | 0.0 | 0.0 | 20.7 ± 1.7 | 18.4 ± 1.1 | 17.3 ± 4.6 |
trans-1 | 26.9 ± 2.2 | 15.0 ± 5.3 | 3.6 ± 0.4 | 64.4 ± 0.8 | 0.0 | 0.0 | 67.5 ± 2.7 | 69.9 ± 0.6 | 63.5 ± 0.7 |
2 | 10.5 ± 4.6 | 43.2 ± 9.2 | 88.7 ± 0.6 | 12.8 ± 12.8 | 100.0 | 100.0 | 11.8 ± 1.1 | 11.7 ± 1.1 | 19.2 ± 4.2 |
24 h | |||||||||
cis-1 | 29.2 ± 1.8 | 22.6 ± 1.5 | 3.7 ± 0.6 | 37.5 ± 2.3 | 0.3 ± 0.1 | 0.1 ± 0.1 | 31.4 ± 5.4 | 25.8 ± 4.3 | 23.0 ± 3.6 |
trans-1 | 54.6 ± 2.7 | 25.2 ± 0.6 | 3.2 ± 0.8 | 34.7 ± 2.1 | 0.7 ± 0.4 | 0.2 ± 0.0 | 55.6 ± 3.6 | 61.6 ± 5.2 | 61.0 ± 4.9 |
2 | 16.2 ± 1.2 | 52.4 ± 2.2 | 93.1 ± 1.4 | 27.8 ± 2.7 | 99.0 ± 0.4 | 99.7 ± 0.1 | 13.1 ± 2.1 | 12.6 ± 1.0 | 16.0 ± 3.0 |
96 h | |||||||||
cis-1 | 32.5 ± 5.5 | 15.4 ± 0.2 | 1.7 ± 0.3 | 22.3 ± 0.9 | 0.0 | 0.0 | 36.1 ± 2.4 | 32.8 ± 4.4 | 20.0 ± 3.3 |
trans-1 | 38.7 ± 2.3 | 25.6 ± 2.6 | 2.7 ± 0.9 | 43.2 ± 3.4 | 2.1 ± 1.3 | 0.6 ± 0.1 | 49.9 ± 2.7 | 53.8 ± 4.6 | 42.2 ± 0.7 |
2 | 28.9 ± 7.6 | 59.0 ± 2.7 | 95.6 ± 0.7 | 34.5 ± 2.5 | 97.9 ± 1.3 | 99.40.1 | 14.0 ± 2.7 | 13.4 ± 0.2 | 37.8 ± 4.0 |
DES 10 | DES 11 | * DES 11 100 mg | DES 12 | DES 13 | DES 14 | DES 15 | DES 16 | |
---|---|---|---|---|---|---|---|---|
1 h | ||||||||
cis-1 | 9.1 ± 3.6 | 7.7 ± 0.1 | 9.9 ± 0.7 | 4.8 ± 2.7 | 0.0 | 9.1 ± 1.4 | 5.5 ± 0.8 | 0.3 ± 0.1 |
trans-1 | 70.4 ± 12.0 | 77.0 ± 2.0 | 86.1 ± 1.7 | 25.9 ± 3.1 | 2.7 ± 2.3 | 78.1 ± 1.3 | 66.8 ± 1.4 | 2.3 ± 1.6 |
2 | 20.5 ± 8.4 | 15.3 ± 2.1 | 4.0 ± 1.0 | 71.0 ± 3.5 | 97.3 ± 2.3 | 12.8 ± 2.7 | 27.7 ± 1.0 | 97.4 ± 1.6 |
3 h | ||||||||
cis-1 | 14.3 ± 3.6 | 7.6 ± 0.5 | 11.0 ± 0.9 | 0.7 ± 0.1 | 0.1 ± 0.1 | 18.2 ± 3.7 | 4.8 ± 1.7 | 0.0 |
trans-1 | 71.3 ± 11.3 | 56.9 ± 4.0 | 80.4 ± 3.3 | 2.8 ± 1.4 | 2.1 ± 1.8 | 62.2 ± 8.6 | 22.5 ± 6.3 | 1.2 ± 0.8 |
2 | 12.0 ± 4.1 | 35.5 ± 3.6 | 8.6 ± 2.4 | 96.5 ± 1.4 | 97.8 ± 1.9 | 19.6 ± 4.9 | 72.7 ± 7.9 | 98.8 ± 0.8 |
6 h | ||||||||
cis-1 | 19.4 ± 6.0 | 5.4 ± 1.0 | 3.2 ± 0.3 | 0.5 ± 0.1 | 0.0 | 10.7 ± 0.8 | 2.8 ± 0.5 | 0.0 |
trans-1 | 68.1 ± 9.5 | 48.0 ± 5.6 | 83.8 ± 2.2 | 1.6 ± 1.1 | 2.0 ± 1.4 | 61.6 ± 7.2 | 4.3 ± 0.6 | 0.6 ± 0.2 |
2 | 12.5 ± 4.2 | 46.6 ± 5.5 | 13.0 ± 2.4 | 97.8 ± 1.2 | 98.0 ± 1.4 | 27.7 ± 6.4 | 92.9 ± 0.2 | 99.4 ± 0.2 |
24 h | ||||||||
cis-1 | 16.1 ± 4.1 | 3.8 ± 1.2 | 2.9 ± 0.3 | 0.2 ± 0.1 | 0.0 | 22.6 ± 2.5 | 2.5 ± 0.4 | 0.0 |
trans-1 | 68.3 ± 7.8 | 23.2 ± 5.8 | 75.1 ± 6.7 | 1.6 ± 1.2 | 0.1 ± 0.1 | 41.4 ± 7.6 | 3.7 ± 1.1 | 0.6 ± 0.2 |
2 | 15.6 ± 3.2 | 73.0 ± 7.3 | 22.0 ± 7.0 | 98.3 ± 1.2 | 99.9 ± 0.1 | 36 ± 5.1 | 93.8 ± 0.9 | 99.4 ± 0.2 |
96 h | ||||||||
cis-1 | 40.2 ± 3.9 | 3.6 ± 0.6 | 4.0 ± 0.2 | 0.0 | 0.0 | 29.4 ± 0.3 | 1.2 ± 0.2 | 0.3 ± 0.1 |
trans-1 | 44.0 ± 1.0 | 8.6 ± 4.4 | 65.8 ± 2.1 | 1.3 ± 0.4 | 2.7 ± 1.8 | 28.5 ± 3.1 | 1.0 ± 0.7 | 0.3 ± 0.1 |
2 | 15.9 ± 3.0 | 87.6 ± 3.8 | 30.3 ± 1.9 | 98.7 ± 0.4 | 97.3 ± 1.8 | 42.1 ± 2.8 | 97.8 ± 0.8 | 99.4 ± 0.2 |
R. rubra KCh 4 | R. mucilaginosa IHEM18459 | R. marina KCh 77 | R. rubra KCh 82 | R. glutinis KCh 242 | D. hansenii MI1a | |
---|---|---|---|---|---|---|
1 h | ||||||
cis-1 | 4.6 ± 0.7 | 14.0 ± 0.5 | 10.1 ± 3.0 | 5.8 ± 0.4 | 13.0 ± 1.1 | 6.6 ± 0.3 |
trans-1 | 85.2 ± 1.0 | 77.4 ± 2.2 | 72.6 ± 2.7 | 89.9 ± 0.5 | 85.2 ± 1.3 | 91.5 ± 0.6 |
2 | 10.2 ± 1.5 | 8.5 ± 2.6 | 17.2 ± 2.0 | 4.3 ± 0.2 | 1.8 ± 0.2 | 1.9 ± 0.3 |
3 h | ||||||
cis-1 | 7.2 ± 0.3 | 15.6 ± 2.1 | 9.6 ± 3.3 | 12.9 ± 0.4 | 18.4 ± 2.4 | 12.3 ± 1.5 |
trans-1 | 64.1 ± 1.3 | 59.5 ± 2.6 | 50.2 ± 5.0 | 71.6 ± 0.7 | 78.7 ± 2.6 | 84.1 ± 1.7 |
2 | 28.7 ± 1.0 | 24.9 ± 3.9 | 40.1 ± 7.5 | 15.5 ± 1.0 | 2.9 ± 0.2 | 3.6 ± 0.2 |
6 h | ||||||
cis-1 | 13.5 ± 0.4 | 17.0 ± 0.7 | 9.6 ± 3.8 | 17.9 ± 2.1 | 22.5 ± 1.5 | 23.0 ± 1.3 |
trans-1 | 46.2 ± 2.1 | 45.0 ± 4.7 | 14.2 ± 3.1 | 57.6 ± 3.3 | 74.3 ± 1.0 | 69.6 ± 2.1 |
2 | 40.3 ± 1.9 | 37.9 ± 4.9 | 76.2 ± 6.9 | 24.5 ± 5.1 | 3.3 ± 0.6 | 7.4 ± 0.9 |
24 h | ||||||
cis-1 | 7.2 ± 1.7 | 10.4 ± 1.4 | 4.6 ± 1.6 | 18.2 ± 5.1 | 16.6 ± 1.3 | 35.1 ± 2.5 |
trans-1 | 8.5 ± 3.2 | 26.3 ± 6.5 | 1.1 ± 0.7 | 9.8 ± 3.3 | 80.0 ± 2.3 | 46.6 ± 7.8 |
2 | 84.3 ± 4.8 | 63.3 ± 7.2 | 94.3 ± 2.7 | 72.0 ± 8.4 | 3.4 ± 1.0 | 18.2 ± 5.9 |
96 h | ||||||
cis-1 | 3.0 ± 1.4 | 11.8 ± 4.9 | 1.9 ± 0.3 | 11.7 ± 0.7 | 32.4 ± 2.2 | 37.3 ± 1.3 |
trans-1 | 1.9 ± 1.0 | 12.8 ± 5.2 | 2.7 ± 0.3 | 2.0 ± 0.1 | 62.1 ± 3.8 | 38.3 ± 2.3 |
2 | 95.1 ± 1.7 | 75.5 ± 10.1 | 95.4 ± 0.2 | 86.3 ± 0.7 | 5.4 ± 1.9 | 24.3 ± 2.5 |
DES | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | ||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
% H2O | 30 | 50 | 70 | 30 | 50 | 70 | 10 | 30 | 50 | 10 | 30 | 50 | 70 | 30 | 50 | 70 | ||||
HBD | glucose | fructose | urea | glycerol | sorbitol | |||||||||||||||
Molar ratio HBA:HBD | 2:1 | 1.9:1 | 1:2 | 1:2 | 1:1 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chlipała, P.; Janeczko, T.; Mazur, M. Bioreduction of 4′-Hydroxychalcone in Deep Eutectic Solvents: Optimization and Efficacy with Various Yeast Strains. Int. J. Mol. Sci. 2024, 25, 7152. https://doi.org/10.3390/ijms25137152
Chlipała P, Janeczko T, Mazur M. Bioreduction of 4′-Hydroxychalcone in Deep Eutectic Solvents: Optimization and Efficacy with Various Yeast Strains. International Journal of Molecular Sciences. 2024; 25(13):7152. https://doi.org/10.3390/ijms25137152
Chicago/Turabian StyleChlipała, Paweł, Tomasz Janeczko, and Marcelina Mazur. 2024. "Bioreduction of 4′-Hydroxychalcone in Deep Eutectic Solvents: Optimization and Efficacy with Various Yeast Strains" International Journal of Molecular Sciences 25, no. 13: 7152. https://doi.org/10.3390/ijms25137152
APA StyleChlipała, P., Janeczko, T., & Mazur, M. (2024). Bioreduction of 4′-Hydroxychalcone in Deep Eutectic Solvents: Optimization and Efficacy with Various Yeast Strains. International Journal of Molecular Sciences, 25(13), 7152. https://doi.org/10.3390/ijms25137152