Design and Synthesis of Pleuromutilin Derivatives as Antibacterial Agents Using Quantitative Structure–Activity Relationship Model
Abstract
:1. Introduction
2. Results and Discussion
2.1. QSAR Model Evaluation
2.2. Activity Prediction and Screening of New Compounds
2.3. Syntheses
2.4. Determination of MIC
2.5. Molecular Docking Study
2.6. ADMET Result
3. Materials and Methods
3.1. Build the 2D/3D-QSAR Model
3.2. Chemistry
3.2.1. Synthesis of Compound 3
3.2.2. Synthesis of Compound 6
3.2.3. Synthesis of Compound 1
3.2.4. Synthesis of Compound 2
3.3. In Vitro Efficacy
3.4. Molecular Modeling
3.5. ADMET Evaluation
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Reygaer, W.C. An overview of the antimicrobial resistance mechanisms of bacteria. AIMS Microbiol. 2018, 4, 482–501. [Google Scholar] [CrossRef]
- Xia, J.; Xin, L.; Li, J.; Tian, L.; Wu, K.; Zhang, S.; Yan, W.; Li, H.; Zhao, Q.; Liang, C. Discovery of Quaternized Pyridine-Thiazole-Pleuromutilin Derivatives with Broad-Spectrum Antibacterial and Potent Anti-MRSA Activity. J. Med. Chem. 2023, 66, 5061–5078. [Google Scholar] [CrossRef]
- Schultz, J.R.; Costa, S.K.; Jachak, G.R.; Hegde, P.; Zimmerman, M.; Pan, Y.; Josten, M.; Ejeh, C.; Hammerstad, T.; Sahl, H.G.; et al. Identification of 5-(Aryl/Heteroaryl)amino-4-quinolones as potent membrane-disrupting agents to combat antibiotic-resistant Gram-positive bacteria. J. Med. Chem. 2022, 65, 13910–13934. [Google Scholar] [CrossRef] [PubMed]
- Kourtis, A.P.; Hatfield, K.; Baggs, J.; Mu, Y.; See, I.; Epson, E.; Nadle, J.; Kainer, M.A.; Dumyati, G.; Petit, S.; et al. Vital Signs: Epidemiology and Recent Trends in Methicillin-Resistant and in Methicillin-Susceptible Staphylococcus aureus Bloodstream InfectionsUnited States. Morbid. Mortal. Wkly. Rep. 2019, 68, 214. [Google Scholar] [CrossRef] [PubMed]
- Yang, R.; Hou, E.; Cheng, W.; Yan, X.; Zhang, T.; Li, S.; Yao, H.; Liu, J.; Guo, Y. Membrane-Targeting Neolignan-Antimicrobial Peptide Mimic Conjugates to Combat Methicillin-Resistant Staphylococcus aureus (MRSA) Infections. J. Med. Chem. 2022, 65, 16879–16892. [Google Scholar] [CrossRef]
- Vikesland, P.; Garner, E.; Gupta, S.; Kang, S.; Maile-Moskowitz, A.; Zhu, N. Differential drivers of antimicrobial resistance across the world. Acc. Chem. Res. 2019, 52, 916–924. [Google Scholar] [CrossRef] [PubMed]
- Liang, W.; Yu, Q.; Zheng, Z.; Liu, J.; Cai, Q.; Liu, S.; Lin, S. Design and synthesis of phenyl sulfide-based cationic amphiphiles as membrane-targeting antimicrobial agents against Gram-positive pathogens. J. Med. Chem. 2022, 65, 14221–14236. [Google Scholar] [CrossRef]
- Kavanagh, F.A.; Hervey, A.; Robbins, W.J. Antibiotic Substances from Basidiomycetes: VIII. Pleurotus multilus (Fr.) Sacc. and Pleurotus passeckerianus Pilat. Proc. Natl. Acad. Sci. USA 1951, 37, 570–574. [Google Scholar] [CrossRef]
- Deng, Y.; Zhang, Y.; Chen, X.H.; Li, C.H. Antibacterial activity evaluation of pleuromutilin derivatives with 4(3H)-quinazolinone scaffold against methicillin-resistant Staphylococcusaureus. Eur. J. Med. Chem. 2023, 246, 114960. [Google Scholar] [CrossRef]
- Xia, J.; Li, Y.; He, C.; Yong, C.; Wang, L.; Fu, H.; He, X.L.; Wang, Z.Y.; Liu, D.F.; Zhang, Y.Y. Synthesis and biological activities of oxazolidinone pleuromutilin derivatives as a potent anti-MRSA agent. ACS Infect. Dis. 2023, 9, 1711–1729. [Google Scholar] [CrossRef]
- Shang, R.F.; Wang, J.T.; Guo, W.Z.; Liang, J.P. Efficient antibacterial agents: A review of the synthesis, biological evaluation and mechanism of pleuromutilin derivatives. Curr. Top. Med. Chem. 2013, 13, 3013–3025. [Google Scholar] [CrossRef] [PubMed]
- Burch, D.G. Tiamulin activity against Brachyspira hyodysenteriae. Vet. Rec. 2008, 163, 760. [Google Scholar] [PubMed]
- Xiao, X.; Sun, J.; Yang, T.; Fang, X.; Wu, D.; Xiong, Y.Q.; Cheng, J.; Chen, Y.; Shi, W.; Liu, Y.H. In vivo pharmacokinetic/pharmacodynamic profiles of valnemulin in an experimental intratracheal Mycoplasma gallisepticum infection model. Antimicrob. Agents Chemother. 2015, 59, 3754–3760. [Google Scholar] [CrossRef] [PubMed]
- Scangarella-Oman, N.E.; Shawar, R.M.; Bouchillon, S.; Hoban, D. Microbiological profile of a new topical antibacterial: Retapamulin ointment 1%. Expert Rev. Anti-Infect. Ther. 2009, 7, 269–279. [Google Scholar] [CrossRef] [PubMed]
- Chahine, E.B.; Sucher, A.J. Lefamulin: The first systemic pleuromutilin antibiotic. Ann. Pharmacother. 2020, 54, 1203–1214. [Google Scholar] [CrossRef] [PubMed]
- Poulsen, S.M.; Karlsson, M.; Johansson, L.B.; Vester, B. The pleuromutilin drugs tiamulin and valnemulin bind to the RNA at the peptidyl transferase centre on the ribosome. Mol. Microbiol. 2001, 41, 1091–1099. [Google Scholar] [CrossRef] [PubMed]
- Goethe, O.; Heuer, A.; Ma, X.S.; Wang, Z.X.; Herzon, S.B. Antibacterial properties and clinical potential of pleuromutilins. Nat. Prod. Rep. 2019, 36, 220–247. [Google Scholar] [CrossRef]
- Du, Q.S.; Huang, R.B.; Chou, K.C. Recent advances in QSAR and their applications in predicting the activities of chemical molecules, peptides and proteins for drug design. Curr. Protein Pept. Sci. 2008, 9, 248–260. [Google Scholar] [CrossRef]
- Puzyn, T.; Rasulev, B.; Gajewicz, A.; Hu, X.; Dasari, T.P.; Michalkova, A.; Hwang, M.; Toropov, A.; Leszczynska, D.; Leszczynski, J. Using nano-QSAR to predict the cytotoxicity of metal oxide nanoparticles. Nat. Nanotechnol. 2011, 6, 175–178. [Google Scholar] [CrossRef]
- Dearden, J.C.; Cronin, M.T.D.; Kaiser, K.L.E. How not to develop a quantitative structure–activity or structure–property relationship (QSAR/QSPR). SAR QSAR Environ. Res. 2009, 20, 241–266. [Google Scholar] [CrossRef]
- Martinez-Mayorga, K.; Rosas-Jiménez, J.G.; Gonzalez-Ponce, K.; López-López, E.; Neme, A.; Medina-Franco, J.L. The pursuit of accurate predictive models of the bioactivity of small molecules. Chem. Sci. 2024, 15, 1938–1952. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Z.; Li, K.; Zhang, G.Y.; Tang, Y.Z.; Jin, Z. Design, synthesis and biological activities of novel pleuromutilin derivatives with a substituted triazole moiety as potent antibacterial agents. Eur. J. Med. Chem. 2020, 204, 112604. [Google Scholar] [CrossRef] [PubMed]
- Powers, D.M.W. Evaluation: From Precision, Recall and F-Factor to ROC, Informedness, Markedness & Correlation. J. Mach. Learn. Technol. 2008, 2, 2229–3981. [Google Scholar]
- Chicco, D.; Jurman, G. The advantages of the Matthews correlation coefficient (MCC) over F1 score and accuracy in binary classification evaluation. BMC Genom. 2020, 21, 6. [Google Scholar] [CrossRef]
- Ulrike, G. Variable importance assessment in regression: Linear regression versus random forest. Amer. Statist. 2009, 15, 308–319. [Google Scholar]
- Huang, S.Y.; Zou, X. Scoring and lessons learned with the CSAR benchmark using an improved iterative knowledge-based scoring function. J. Chem. Inf. Model. 2011, 51, 2097–2106. [Google Scholar] [CrossRef]
- Eyal, Z.; Matzov, D.; Krupkin, M.; Paukner, S.; Riedl, R.; Rozenberg, H.; Zimmerman, E.; Bashan, A.; Yonath, A. A novel pleuromutilin antibacterial compound, its binding mode and selectivity mechanism. Sci. Rep. 2016, 6, 39004. [Google Scholar] [CrossRef]
- Liu, Q.; Zhang, H.; Yi, Y.; Wang, P.; Pu, W.; Wang, S.; Shang, R. Synthesis and evaluation of novel pleuromutilin derivatives targeting the 50S ribosomal subunit for antibacterial ability. Eur. J. Med. Chem. 2023, 262, 115882. [Google Scholar] [CrossRef] [PubMed]
- Yu, D.; Wang, X.Z.; Huang, S.H.; Li, C.H. Antibacterial activity evaluation of synthetic novel pleuromutilin derivatives in vitro and in experimental infection mice. Eur. J. Med. Chem. 2018, 162, 194–202. [Google Scholar]
- Fan, Y.; Liu, Y.; Wang, H.; Shi, T.; Shang, R. Novel pleuromutilin derivatives with substituted 6-methylpyrimidine: Design, synthesis and antibacterial evaluation. Eur. J. Med. Chem. 2020, 207, 112735. [Google Scholar] [CrossRef]
- Chen, L.; Yang, D.; Pan, Z.; Lai, L.; Liu, J.; Fang, B.; Shi, S. Synthesis and Antimicrobial Activity of the Hybrid Molecules between Sulfonamides and Active Antimicrobial Pleuromutilin Derivative. Chem. Biol. Drug Des. 2015, 86, 239–245. [Google Scholar] [CrossRef] [PubMed]
- Jin, Z.; Wang, L.; Gao, H.; Zhou, Y.H.; Tang, Y.Z. Design, synthesis and biological evaluation of novel pleuromutilin derivatives possessing acetamine phenyl linker. Eur. J. Med. Chem. 2019, 181, 111594. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Z.S.; Huang, Y.Z.; Luo, J.; Jin, Z.; Liu, Y.H.; Tang, Y.Z. Synthesis and antibacterial activities of novel pleuromutilin derivatives bearing an aminothiophenol moiety. Chem. Biol. Drug Des. 2018, 92, 1627–1637. [Google Scholar] [CrossRef] [PubMed]
- Ling, Y.; Wang, X.; Wang, H.; Yu, J.; Tang, J.; Wang, D.; Chen, G.; Huang, J.; Li, Y.; Zheng, H. Design, Synthesis, and Antibacterial Activity of Novel Pleuromutilin Derivatives Bearing an Amino Thiazolyl Ring. Arch. Pharm. 2012, 345, 638–646. [Google Scholar] [CrossRef] [PubMed]
- Wang, X.; Ling, Y.; Wang, H.; Yu, J.; Tang, J.; Zheng, H.; Zhao, X.; Wang, D.; Chen, G.; Qiu, W.; et al. Novel pleuromutilin derivatives as antibacterial agents: Synthesis, biological evaluation and molecular docking studies. Bioorg. Med. Chem. Lett. 2012, 22, 6166–6172. [Google Scholar] [CrossRef] [PubMed]
- Shang, R.; Pu, X.; Xu, X.; Xin, Z.; Zhang, C.; Guo, W.; Liu, Y.; Liang, J. Synthesis and biological activities of novel pleuromutilin derivatives with a substituted thiadiazole moiety as potent drug-resistant bacteria inhibitors. J. Med. Chem. 2014, 57, 5664–5678. [Google Scholar] [CrossRef] [PubMed]
- Shang, R.F.; Wang, G.H.; Xu, X.M.; Liu, S.J.; Zhang, C.; Yi, Y.P.; Liang, J.P.; Liu, Y. Synthesis and biological evaluation of new pleuromutilin derivatives as antibacterial agents. Molecules 2014, 19, 19050–19065. [Google Scholar] [CrossRef] [PubMed]
- Shang, R.; Liu, Y.; Xin, Z.; Guo, W.; Guo, Z.; Hao, B.; Liang, J. Synthesis and antibacterial evaluation of novel pleuromutilin derivatives. Eur. J. Med. Chem. 2013, 63, 231–238. [Google Scholar] [CrossRef]
- Shang, R.; Wang, S.; Xu, X.; Yi, Y.; Guo, W.; Liu, Y.; Liang, J. Chemical synthesis and biological activities of novel pleuromutilin derivatives with substituted amino moiety. PLoS ONE 2013, 8, e82595. [Google Scholar] [CrossRef]
- Zhang, Z.S.; Huang, Y.Z.; Luo, J.; Wang, B.F.; Jin, Z.; Liu, Y.H.; Tang, Y.Z. Synthesis and Antibacterial Activity against MRSA of Pleuromutilin Derivatives Possessing a Mercaptoethylamine Linker. Med. Chem. 2018, 14, 585–594. [Google Scholar] [CrossRef]
- Li, Y.G.; Wang, J.X.; Zhang, G.N.; Zhu, M.; You, X.F.; Wang, Y.C.; Zhang, F. Design, synthesis, and biological activity evaluation of a series of pleuromutilin derivatives with novel C14 side chains. Bioorg. Med. Chem. Lett. 2020, 30, 126969. [Google Scholar] [CrossRef]
- Tang, Y.; Luo, J.; Chen, X.; Wang, B.; Shen, X.; Liu, J. Synthesis and in vitro antibacterial activity of four novel pleuromutilin derivatives. J. Chil. Chem. Soc. 2013, 58, 1537–1540. [Google Scholar] [CrossRef]
- Dreier, I.; Hansen, H.; Nielsen, P.; Vester, B. A click chemistry approach to pleuromutilin derivatives. Part 3: Extended footprinting analysis and excellent MRSA inhibition for a derivative with an adenine phenyl side chain. Bioorg. Med. Chem. Lett. 2014, 24, 1043–1046. [Google Scholar] [CrossRef] [PubMed]
- Hirokawa, Y.; Kinoshita, H.; Tanaka, T.; Nakamura, T.; Fujimoto, K.; Kashimoto, S.; Kojima, T.; Kato, S. Pleuromutilin derivatives having a purine ring. Part 2: Influence of the central spacer on the antibacterial activity against Gram-positive pathogens. Bioorg. Med. Chem. Lett. 2009, 19, 170–174. [Google Scholar] [CrossRef] [PubMed]
- Hirokawa, Y.; Kinoshita, H.; Tanaka, T.; Nakamura, T.; Fujimoto, K.; Kashimoto, S.; Kojima, T.; Kato, S. Pleuromutilin derivatives having a purine ring. Part 1: New compounds with promising antibacterial activity against resistant Gram-positive pathogens. Bioorg. Med. Chem. Lett. 2008, 18, 3556–3561. [Google Scholar] [CrossRef] [PubMed]
- Ling, C.Y.; Tao, Y.L.; Chu, W.J.; Wang, H.; Wang, H.D.; Yang, Y.S. Design, synthesis and antibacterial activity of novel pleuromutilin derivatives with 4H-pyran-4-one and pyridin-4-one substitution in the C-14 side chain. Chin. Chem. Lett. 2016, 27, 235–240. [Google Scholar] [CrossRef]
- Ling, C.; Fu, L.; Gao, S.; Chu, W.; Wang, H.; Huang, Y.; Chen, X.; Yang, Y. Design, synthesis, and structure-activity relationship studies of novel thioether pleuromutilin derivatives as potent antibacterial agents. J. Med. Chem. 2014, 57, 4772–4795. [Google Scholar] [CrossRef] [PubMed]
- Li, B.; Zhang, Z.; Zhang, J.F.; Liu, J.; Zuo, X.Y.; Chen, F.; Zhang, G.Y.; Fang, H.Q.; Jin, Z.; Tang, Y.Z. Design, synthesis and biological evaluation of pleuromutilin-Schiff base hybrids as potent anti-MRSA agents in vitro and in vivo. Eur. J. Med. Chem. 2021, 223, 113624. [Google Scholar] [CrossRef] [PubMed]
- Yi, Y.; Fu, Y.; Dong, P.; Qin, W.; Liu, Y.; Liang, J.; Shang, R. Synthesis and Biological Activity Evaluation of Novel Heterocyclic Pleuromutilin Derivatives. Molecules 2017, 22, 996. [Google Scholar] [CrossRef]
- Huang, S.Y.; Wang, X.; Shen, D.Y.; Chen, F.; Zhang, G.Y.; Zhang, Z.; Li, K.; Jin, Z.; Du, D.; Tang, Y.Z. Design, synthesis and biological evaluation of novel pleuromutilin derivatives as potent anti-MRSA agents targeting the 50S ribosome. Bioorg. Med. Chem. Lett. 2021, 38, 116138. [Google Scholar] [CrossRef]
- Heidtmann, C.V.; Voukia, F.; Hansen, N.; Sørensen, H.; Urlund, B.; Nielsen, S.; Pedersen, M.; Kelawi, N.; Andersen, N.; Pedersen, M.; et al. Discovery of a Potent Adenine-Benzyltriazolo-Pleuromutilin Conjugate with Pronounced Antibacterial Activity against MRSA. J. Med. Chem. 2020, 63, 15693–15708. [Google Scholar] [CrossRef] [PubMed]
- Fang, H.Q.; Zeng, J.; Wang, S.K.; Wang, X.; Chen, F.; Li, B.; Liu, J.; Jin, Z.; Liu, Y.H.; Tang, Y.Z. Discovery of Novel Pleuromutilin Derivatives as Potent Antibacterial Agents for the Treatment of MRSA Infection. Molecules 2022, 27, 931. [Google Scholar] [CrossRef] [PubMed]
- Mu, S.; Liu, H.; Zhang, L.; Wang, X.; Xue, F.; Zhang, Y. Synthesis and Biological Evaluation of Novel Thioether Pleuromutilin Derivatives. Biol. Pharm. Bull. 2017, 40, 1165–1173. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.G.; Wang, J.X.; Zhang, G.N.; Zhu, M.; You, X.F.; Hu, X.X.; Zhang, F.; Wang, Y.C. Antibacterial Activity and Structure-Activity Relationship of a Series of Newly Synthesized Pleuromutilin Derivatives. Chem. Biodivers. 2019, 16, e1800560. [Google Scholar] [CrossRef] [PubMed]
- Ai, X.; Pu, X.; Yi, Y.; Liu, Y.; Xu, S.; Liang, J.; Shang, R. Synthesis and Pharmacological Evaluation of Novel Pleuromutilin Derivatives with Substituted Benzimidazole Moieties. Molecules 2016, 21, 1488. [Google Scholar] [CrossRef] [PubMed]
- Fu, L.; Ling, Y.; Guo, X.; He, H.; Yang, Y. Synthesis and antibacterial activity of pleuromutilin derivatives with novel C(14) side chain. Chin. Chem. Lett. 2012, 23, 9–12. [Google Scholar] [CrossRef]
- Zhang, Z.; Zhang, Z.S.; Wang, X.; Xi, G.L.; Jin, Z.; Tang, Y.Z. A click chemistry approach to pleuromutilin derivatives, evaluation of anti-MRSA activity and elucidation of binding mode by surface plasmon resonance and molecular docking. J. Enzym. Inhib. Med. Chem. 2021, 36, 2087–2103. [Google Scholar] [CrossRef]
- Gao, M.L.; Zeng, J.; Fang, X.; Luo, J.; Jin, Z.; Liu, Y.H.; Tang, Y.Z. Design, synthesis and antibacterial evaluation of novel pleuromutilin derivatives possessing piperazine linker. Eur. J. Med. Chem. 2017, 127, 286–295. [Google Scholar] [CrossRef]
- Zhang, G.Y.; Zhang, Z.; Li, K.; Liu, J.; Li, B.; Jin, Z.; Liu, Y.H.; Tang, Y.Z. Design, synthesis and biological evaluation of novel pleuromutilin derivatives containing piperazine and 1,2,3-triazole linker. Bioorg. Chem. 2020, 105, 104398. [Google Scholar] [CrossRef]
- Liu, H.X.; Ma, D.L.; Cui, G.; Zhang, Y.; Xue, F.Q. Design, synthesis and antibacterial activities of pleuromutilin derivatives. J. Asian Nat. Prod. Res. 2021, 23, 123–137. [Google Scholar] [CrossRef]
- Liu, J.; Zhang, G.Y.; Zhang, Z.; Li, B.; Chai, F.; Wang, Q.; Zhou, Z.D.; Xu, L.L.; Wang, S.K.; Jin, Z.; et al. Design, synthesis, in vitro and in vivo evaluation against MRSA and molecular docking studies of novel pleuromutilin derivatives bearing 1, 3, 4-oxadiazole linker. Bioorg. Chem. 2021, 112, 104956. [Google Scholar] [CrossRef]
- Xie, C.; Zhang, S.; Zhang, W.; Wu, C.; Yong, C.; Sun, Y.; Zeng, Z.; Zhang, Q.; Huang, Z.; Chen, T.; et al. Synthesis, biological activities, and docking study of novel chalcone-pleuromutilin derivatives. Chem. Biol. Drug Des. 2020, 96, 836–849. [Google Scholar] [CrossRef]
- Deng, Y.; Tang, D.; Wang, Q.R.; Huang, S.; Fu, L.Z.; Li, C.H. Semi-synthesis, antibacterial activity, and molecular docking study of novel pleuromutilin derivatives bearing cinnamic acids moieties. Arch. Pharm. 2019, 352, e1800266. [Google Scholar] [CrossRef] [PubMed]
- Fu, L.; Liu, X.; Ling, C.; Cheng, J.; Guo, X.; He, H.; Ding, S.; Yang, Y. Design, synthesis, and structure-activity relationship studies of conformationally restricted mutilin 14-carbamates. Bioorg. Med. Chem. Lett. 2012, 22, 814–819. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Xie, C.; Liu, Y.; Shang, F.; Shao, R.; Yu, J.; Wu, C.; Yao, X.; Liu, D.; Wang, Z. Synthesis, biological activities and docking studies of pleuromutilin derivatives with piperazinyl urea linkage. J. Enzym. Inhib. Med. Chem. 2021, 36, 764–775. [Google Scholar] [CrossRef] [PubMed]
- Liu, H.; Xiao, S.; Zhang, D.; Mu, S.; Zhang, L.; Wang, X.; Xue, F. Synthesis and Antibacterial Activity of Novel Pleuromutilin Derivatives. Biol. Pharm. Bull. 2015, 38, 1041–1048. [Google Scholar] [CrossRef] [PubMed]
- Prabha, T.; Selvinthanuja, C.; Hemalatha, S.; Sengottuvelu, S.; Senthil, J. Machine learning algorithm used to build a QSAR model for pyrazoline scaffold as anti-tubercular agent. J. Med. Pharm. Allied Sci. 2021, 10, 4024–4030. [Google Scholar] [CrossRef]
- Gérard, B. Analysis of a random forests model. J. Mach. Learn. Res. 2012, 13, 1063–1095. [Google Scholar]
- Wang, Y.L.; Wang, F.; Shi, X.X.; Jia, C.Y.; Wu, F.X.; Hao, G.F.; Yang, G.F. Cloud 3D-QSAR: A web tool for the development of quantitative structure-activity relationship models in drug discovery. Brief. Bioinform. 2021, 22, 276. [Google Scholar] [CrossRef]
- Yi, Y.; Zhang, J.; Zuo, J.; Zhang, M.; Yang, S.; Huang, Z.; Li, G.; Shang, R.; Lin, S. Novel pyridinium cationic pleuromutilin analogues overcoming bacterial multidrug resistance. Eur. J. Med. Chem. 2023, 251, 115269. [Google Scholar] [CrossRef]
Precision | Recall | F1-Score | Support | |
---|---|---|---|---|
Class-0 | 0.80 | 0.83 | 0.82 | 24 |
Class-1 | 0.83 | 0.81 | 0.82 | 37 |
Class-2 | 0.77 | 0.77 | 0.77 | 35 |
Compound | 2D-QSAR | 3D-QSAR (pMIC) |
---|---|---|
1 | Class-0 | 6.22 |
2 | Class-0 | 5.83 |
Compound | MIC (μg/mL) | |
---|---|---|
MRSA ATCC 43300 | S. aureus ATCC 29213 | |
Tiamulin | 0.0625 | 0.5 |
1 | <0.0625 | <0.0625 |
2 | 1 | 1 |
Comp. | Property | Absorption | Distribution | Metabolism | Excretion | Toxicity | |
---|---|---|---|---|---|---|---|
LogP | LogPapp | BBB | CYP450 1A2 Inhibitor | CYP450 3A4 Substrate | T1/2 | Ames LD50 | |
1 | Poor aqueous solubility | Optimal | BBB− | Non-inhibitor | Non-substrate | Low | Negative Low-toxicity |
2 | Poor aqueous solubility | Optimal | BBB− | Non-inhibitor | Non-substrate | Low | Negative Low-toxicity |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, J.; Liu, Q.; Zhao, H.; Li, G.; Yi, Y.; Shang, R. Design and Synthesis of Pleuromutilin Derivatives as Antibacterial Agents Using Quantitative Structure–Activity Relationship Model. Int. J. Mol. Sci. 2024, 25, 2256. https://doi.org/10.3390/ijms25042256
Zhang J, Liu Q, Zhao H, Li G, Yi Y, Shang R. Design and Synthesis of Pleuromutilin Derivatives as Antibacterial Agents Using Quantitative Structure–Activity Relationship Model. International Journal of Molecular Sciences. 2024; 25(4):2256. https://doi.org/10.3390/ijms25042256
Chicago/Turabian StyleZhang, Jiaming, Qinqin Liu, Haoxia Zhao, Guiyu Li, Yunpeng Yi, and Ruofeng Shang. 2024. "Design and Synthesis of Pleuromutilin Derivatives as Antibacterial Agents Using Quantitative Structure–Activity Relationship Model" International Journal of Molecular Sciences 25, no. 4: 2256. https://doi.org/10.3390/ijms25042256
APA StyleZhang, J., Liu, Q., Zhao, H., Li, G., Yi, Y., & Shang, R. (2024). Design and Synthesis of Pleuromutilin Derivatives as Antibacterial Agents Using Quantitative Structure–Activity Relationship Model. International Journal of Molecular Sciences, 25(4), 2256. https://doi.org/10.3390/ijms25042256