Application of Advanced Molecular Methods to Study Early-Onset Neonatal Sepsis
Abstract
:1. Introduction
2. Materials and Methods
3. PCR Techniques
3.1. Quantitative or Real-Time PCR
3.2. 16S rRNA PCR Testing
3.3. Molecular Multiplex PCR
3.4. Molecular Culture
3.5. Sequencing the Bulk DNA and/or RNA
4. Whole-Genome Sequencing
5. MicroRNAs in EOS
6. T2 Magnetic Resonance (T2MR) Technology
7. Bioinformatic Analysis
8. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Conflicts of Interest
References
- Adams-Chapman, I.; Stoll, B.J. Neonatal infection and long-term neurodevelopmental outcome in the preterm infant. Curr. Opin. Infect. Dis. 2006, 19, 290–297. [Google Scholar] [CrossRef]
- Stoll, B.J.; Hansen, N.; Fanaroff, A.A.; Wright, L.L.; Carlo, W.A.; Ehrenkranz, R.A.; Lemons, J.A.; Donovan, E.F.; Stark, A.R.; Tyson, J.E.; et al. Late-onset sepsis in very low birth weight neonates: The experience of the NICHD Neonatal Research Network. Pediatrics 2002, 110, 285–291. [Google Scholar] [CrossRef]
- Stoll, B.J.; Hansen, N.I.; Adams-Chapman, I.; Fanaroff, A.A.; Hintz, S.R.; Vohr, B.; Higgins, R.D. Neurodevelopmental and growth impairment among extremely low-birth-weight infants with neonatal infection. JAMA 2004, 292, 2357–2365. [Google Scholar] [CrossRef] [PubMed]
- Fleischmann, C.; Reichert, F.; Cassini, A.; Horner, R.; Harder, T.; Markwart, R.; Tröndle, M.; Savova, Y.; Kissoon, N.; Schlattmann, P.; et al. Global incidence and mortality of neonatal sepsis: A systematic review and meta-analysis. Arch. Dis. Child. 2021, 106, 745–752. [Google Scholar] [CrossRef] [PubMed]
- Liu, L.; Oza, S.; Hogan, D.; Perin, J.; Rudan, I.; Lawn, J.E.; Cousens, S.; Mathers, C.; Black, R.E. Global, regional, and national causes of child mortality in 2000–2013, with projections to inform post-2015 priorities: An updated systematic analysis. Lancet 2015, 385, 430–440. [Google Scholar] [CrossRef] [PubMed]
- Vergnano, S.; Sharland, M.; Kazembe, P.; Mwansambo, C.; Heath, P.T. Neonatal sepsis: An international perspective. Arch. Dis. Child. Fetal Neonatal Ed. 2005, 90, F220–F224. [Google Scholar] [CrossRef] [PubMed]
- Shah, B.A.; Padbury, J.F. Neonatal sepsis: An old problem with new insights. Virulence 2014, 5, 170–178. [Google Scholar] [CrossRef]
- Simonsen, K.A.; Anderson-Berry, A.L.; Delair, S.F.; Davies, H.D. Early-onset neonatal sepsis. Clin. Microbiol. Rev. 2014, 27, 21–47. [Google Scholar] [CrossRef]
- Wynn, J.L. Defining neonatal sepsis. Curr. Opin. Pediatr. 2016, 28, 135–140. [Google Scholar] [CrossRef]
- Stoll, B.J.; Hansen, N.; Fanaroff, A.A.; Wright, L.L.; Carlo, W.A.; Ehrenkranz, R.A.; Lemons, J.A.; Donovan, E.F.; Stark, A.R.; Tyson, J.E.; et al. Changes in pathogens causing early-onset sepsis in very-low-birth-weight infants. N. Engl. J. Med. 2002, 347, 240–247. [Google Scholar] [CrossRef]
- Stoll, B.J.; Hansen, N.I.; Higgins, R.D.; Fanaroff, A.A.; Duara, S.; Goldberg, R.; Laptook, A.; Walsh, M.; Oh, W.; Hale, E. Very low birth weight preterm infants with early onset neonatal sepsis: The predominance of gram-negative infections continues in the National Institute of Child Health and Human Development Neonatal Research Network, 2002–2003. Pediatr. Infect. Dis. J. 2005, 24, 635–639. [Google Scholar] [CrossRef]
- Stoll, B.J.; Hansen, N.I.; Bell, E.F.; Walsh, M.C.; Carlo, W.A.; Shankaran, S.; Laptook, A.R.; Sánchez, P.J.; Van Meurs, K.P.; Wyckoff, M.; et al. Trends in Care Practices, Morbidity, and Mortality of Extremely Preterm Neonates, 1993–2012. JAMA 2015, 314, 1039–1051. [Google Scholar] [CrossRef]
- Edmond, K.; Zaidi, A. New approaches to preventing, diagnosing, and treating neonatal sepsis. PLoS Med. 2010, 7, e1000213. [Google Scholar] [CrossRef]
- Kuzniewicz, M.W.; Puopolo, K.M.; Fischer, A.; Walsh, E.M.; Li, S.; Newman, T.B.; Kipnis, P.; Escobar, G.J. A Quantitative, Risk-Based Approach to the Management of Neonatal Early-Onset Sepsis. JAMA Pediatr. 2017, 171, 365–371. [Google Scholar] [CrossRef]
- Achten, N.B.; Klingenberg, C.; Benitz, W.E.; Stocker, M.; Schlapbach, L.J.; Giannoni, E.; Bokelaar, R.; Driessen, G.J.A.; Brodin, P.; Uthaya, S.; et al. Association of Use of the Neonatal Early-Onset Sepsis Calculator with Reduction in Antibiotic Therapy and Safety: A Systematic Review and Meta-analysis. JAMA Pediatr. 2019, 173, 1032–1040. [Google Scholar] [CrossRef]
- Glaser, M.A.; Hughes, L.M.; Jnah, A.; Newberry, D. Neonatal Sepsis: A Review of Pathophysiology and Current Management Strategies. Adv. Neonatal Care 2021, 21, 49–60. [Google Scholar] [CrossRef] [PubMed]
- Iroh Tam, P.Y.; Bendel, C.M. Diagnostics for neonatal sepsis: Current approaches and future directions. Pediatr. Res. 2017, 82, 574–583. [Google Scholar] [CrossRef] [PubMed]
- Schelonka, R.L.; Chai, M.K.; Yoder, B.A.; Hensley, D.; Brockett, R.M.; Ascher, D.P. Volume of blood required to detect common neonatal pathogens. J. Pediatr. 1996, 129, 275–278. [Google Scholar] [CrossRef] [PubMed]
- Bromiker, R.; Elron, E.; Klinger, G. Do Neonatal Infections Require a Positive Blood Culture? Am. J. Perinatol. 2020, 37, S18–S21. [Google Scholar] [CrossRef] [PubMed]
- Stein, A.; Soukup, D.; Rath, P.M.; Felderhoff-Müser, U. Diagnostic Accuracy of Multiplex Polymerase Chain Reaction in Early Onset Neonatal Sepsis. Children 2023, 10, 1809. [Google Scholar] [CrossRef] [PubMed]
- Sinnar, S.A.; Schiff, S.J. The Problem of Microbial Dark Matter in Neonatal Sepsis. Emerg. Infect. Dis. 2020, 26, 2543–2548. [Google Scholar] [CrossRef]
- Cotten, C.M. Adverse consequences of neonatal antibiotic exposure. Curr. Opin. Pediatr. 2016, 28, 141–149. [Google Scholar] [CrossRef]
- Greenberg, R.G.; Chowdhury, D.; Hansen, N.I.; Smith, P.B.; Stoll, B.J.; Sánchez, P.J.; Das, A.; Puopolo, K.M.; Mukhopadhyay, S.; Higgins, R.D.; et al. Prolonged duration of early antibiotic therapy in extremely premature infants. Pediatr. Res. 2019, 85, 994–1000. [Google Scholar] [CrossRef]
- Cuna, A.; Morowitz, M.J.; Ahmed, I.; Umar, S.; Sampath, V. Dynamics of the preterm gut microbiome in health and disease. Am. J. Physiol. Gastrointest. Liver Physiol. 2021, 320, G411–G419. [Google Scholar] [CrossRef] [PubMed]
- Henriquez-Camacho, C.; Losa, J. Biomarkers for sepsis. Biomed. Res. Int. 2014, 2014, 547818. [Google Scholar] [CrossRef] [PubMed]
- Ng, P.C. Diagnostic markers of infection in neonates. Arch. Dis. Child. Fetal Neonatal Ed. 2004, 89, F229–F235. [Google Scholar] [CrossRef] [PubMed]
- Venkatesh, M.; Flores, A.; Luna, R.A.; Versalovic, J. Molecular microbiological methods in the diagnosis of neonatal sepsis. Expert. Rev. Anti Infect. Ther. 2010, 8, 1037–1048. [Google Scholar] [CrossRef] [PubMed]
- Pammi, M.; Flores, A.; Versalovic, J.; Leeflang, M.M.G. Molecular assays for the diagnosis of sepsis in neonates. Cochrane Database Syst. Rev. 2017, 2, CD011926. [Google Scholar] [CrossRef]
- Rutanga, J.P.; Van Puyvelde, S.; Heroes, A.S.; Muvunyi, C.M.; Jacobs, J.; Deborggraeve, S. 16S metagenomics for diagnosis of bloodstream infections: Opportunities and pitfalls. Expert. Rev. Mol. Diagn. 2018, 18, 749–759. [Google Scholar] [CrossRef] [PubMed]
- Haque, S.M.; Jahan, N.; Mannan, M.A.; Hasan, M.; Begum, M.; Rob, S.; Akhter, M.; Yasmin, S.; Hasnat, S.K. Identification of bacterial isolates in neonatal sepsis and their antimicrobial susceptibility. Mymensingh Med. J. 2014, 23, 709–714. [Google Scholar]
- Church, D.L.; Cerutti, L.; Gürtler, A.; Griener, T.; Zelazny, A.; Emler, S. Performance and Application of 16S rRNA Gene Cycle Sequencing for Routine Identification of Bacteria in the Clinical Microbiology Laboratory. Clin. Microbiol. Rev. 2020, 33, e00053-19. [Google Scholar] [CrossRef]
- Fukuda, K.; Ogawa, M.; Taniguchi, H.; Saito, M. Molecular Approaches to Studying Microbial Communities: Targeting the 16S Ribosomal RNA Gene. J. UOEH 2016, 38, 223–232. [Google Scholar] [CrossRef] [PubMed]
- Hassan, R.M.; El Enany, M.G.; Rizk, H.H. Evaluation of broad-range 16S rRNA PCR for the diagnosis of bloodstream infections: Two years of experience. J. Infect. Dev. Ctries. 2014, 8, 1252–1258. [Google Scholar] [CrossRef]
- El-Amir, M.I.; El-Feky, M.A.; Abo Elwafa, D.A.; Abd-Elmawgood, E.A. Rapid diagnosis of neonatal sepsis by PCR for detection of 16S rRNA gene, while blood culture and PCR results were similar in E. coli-predominant EOS cases. Infect. Drug Resist. 2019, 12, 2703–2710. [Google Scholar] [CrossRef] [PubMed]
- Hayder Hamad, M.; Eidan Hadi, M.; Ajam, I.K. Comparison between Polymerase Chain Reaction and Blood Culture for Diagnosis of Neonatal Sepsis. Arch. Razi Inst. 2023, 78, 221–226. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Zhao, J.; Yao, Y.; Yang, L.; Zhao, D.; Liu, S. The Accuracy of 16S rRNA Polymerase Chain Reaction for the Diagnosis of Neonatal Sepsis: A Meta-Analysis. BioMed Res. Int. 2021, 2021, 5550387. [Google Scholar] [CrossRef] [PubMed]
- Budding, A.E.; Hoogewerf, M.; Vandenbroucke-Grauls, C.M.J.E.; Savelkoul, P.H.M. Automated Broad-Range Molecular Detection of Bacteria in Clinical Samples. J. Clin. Microbiol. 2016, 54, 934–943. [Google Scholar] [CrossRef] [PubMed]
- Chang, S.S.; Hsu, H.L.; Cheng, J.C.; Tseng, C.P. An efficient strategy for broad-range detection of low abundance bacteria without DNA decontamination of PCR reagents. PLoS ONE 2011, 6, e20303. [Google Scholar] [CrossRef] [PubMed]
- Humphrey, B.; McLeod, N.; Turner, C.; Sutton, J.M.; Dark, P.M.; Warhurst, G. Removal of Contaminant DNA by Combined UV-EMA Treatment Allows Low Copy Number Detection of Clinically Relevant Bacteria Using Pan-Bacterial Real-Time PCR. PLoS ONE 2015, 10, e0132954. [Google Scholar] [CrossRef]
- Davis, N.M.; Proctor, D.M.; Holmes, S.P.; Relman, D.A.; Callahan, B.J. Simple statistical identification and removal of contaminant sequences in marker-gene and metagenomics data. Microbiome 2018, 6, 226. [Google Scholar] [CrossRef]
- Stackebrandt, E.; Goebel, B.M. Taxonomic Note: A Place for DNA-DNA Reassociation and 16S rRNA Sequence Analysis in the Present Species Definition in Bacteriology. Int. J. Syst. Evol. Microbiol. 1994, 44, 846–849. [Google Scholar] [CrossRef]
- Jensen, M.A.; Webster, J.A.; Straus, N. Rapid identification of bacteria on the basis of polymerase chain reaction-amplified ribosomal DNA spacer polymorphisms. Appl. Environ. Microbiol. 1993, 59, 945–952. [Google Scholar] [CrossRef]
- Gürtler, V.; Stanisich, V.A. New approaches to typing and identification of bacteria using the 16S–23S rDNA spacer region. Microbiology 1996, 142 Pt 1, 3–16. [Google Scholar] [CrossRef]
- Dierikx, T.; Budding, A.; Bos, M.; van Laerhoven, H.; van der Schoor, S.; Niemarkt, H.; Benninga, M.; van Kaam, A.; Visser, D.; de Meij, T. Potential of Molecular Culture in Early Onset Neonatal Sepsis Diagnosis: A Proof of Principle Study. Microorganisms 2023, 11, 960. [Google Scholar] [CrossRef]
- Lefterova, M.I.; Suarez, C.J.; Banaei, N.; Pinsky, B.A. Next-Generation Sequencing for Infectious Disease Diagnosis and Management: A Report of the Association for Molecular Pathology. J. Mol. Diagn. 2015, 17, 623–634. [Google Scholar] [CrossRef] [PubMed]
- Byron, S.A.; Van Keuren-Jensen, K.R.; Engelthaler, D.M.; Carpten, J.D.; Craig, D.W. Translating RNA sequencing into clinical diagnostics: Opportunities and challenges. Nat. Rev. Genet. 2016, 17, 257–271. [Google Scholar] [CrossRef] [PubMed]
- Conesa, A.; Madrigal, P.; Tarazona, S.; Gomez-Cabrero, D.; Cervera, A.; McPherson, A.; Szcześniak, M.W.; Gaffney, D.J.; Elo, L.L.; Zhang, X.; et al. Erratum to: A survey of best practices for RNA-seq data analysis. Genome Biol. 2016, 17, 181. [Google Scholar] [CrossRef] [PubMed]
- Friedman, R.C.; Farh, K.K.; Burge, C.B.; Bartel, D.P. Most mammalian mRNAs are conserved targets of microRNAs. Genome Res. 2009, 19, 92–105. [Google Scholar] [CrossRef] [PubMed]
- Alles, J.; Fehlmann, T.; Fischer, U.; Backes, C.; Galata, V.; Minet, M.; Hart, M.; Abu-Halima, M.; Grässer, F.A.; Lenhof, H.P.; et al. An estimate of the total number of true human miRNAs. Nucleic Acids Res. 2019, 47, 3353–3364. [Google Scholar] [CrossRef] [PubMed]
- Benz, F.; Roy, S.; Trautwein, C.; Roderburg, C.; Luedde, T. Circulating MicroRNAs as Biomarkers for Sepsis. Int. J. Mol. Sci. 2016, 17, 78. [Google Scholar] [CrossRef] [PubMed]
- Dhas, B.B.; Dirisala, V.R.; Bhat, B.V. Expression Levels of Candidate Circulating microRNAs in Early-Onset Neonatal Sepsis Compared with Healthy Newborns. Genom. Insights 2018, 11, 1178631018797079. [Google Scholar] [CrossRef] [PubMed]
- El-Hefnawy, S.M.; Mostafa, R.G.; El Zayat, R.S.; Elfeshawy, E.M.; Abd El-Bari, H.M.; El-Monem Ellaithy, M.A. Biochemical and molecular study on serum miRNA-16a and miRNA-451 as neonatal sepsis biomarkers. Biochem. Biophys. Rep. 2021, 25, 100915. [Google Scholar] [CrossRef] [PubMed]
- El-Khazragy, N.; Mohamed, N.M.; Mostafa, M.F.; Elnakib, M.; Hemida, E.H.A.; Salah, A.; Fawzy, N.M.; Safwat, G.; Emam, M.M.; Mahran, N.A.; et al. miRNAs: Novel noninvasive biomarkers as diagnostic and prognostic tools in neonatal sepsis. Diagn. Microbiol. Infect. Dis. 2023, 107, 116053. [Google Scholar] [CrossRef] [PubMed]
- Ernst, L.M.; Mithal, L.B.; Mestan, K.; Wang, V.; Mangold, K.A.; Freedman, A.; Das, S. Umbilical cord miRNAs to predict neonatal early onset sepsis. PLoS ONE 2021, 16, e0249548. [Google Scholar] [CrossRef] [PubMed]
- Fouda, E.; Elrazek Midan, D.A.; Ellaban, R.; El-Kousy, S.; Arafat, E. The diagnostic and prognostic role of MiRNA 15b and MiRNA 378a in neonatal sepsis. Biochem. Biophys. Rep. 2021, 26, 100988. [Google Scholar] [CrossRef] [PubMed]
- Zhao, Y.; Lu, C.; Zhu, R.; Hu, X. Study on identification of a three-microRNA panel in serum for diagnosing neonatal early onset sepsis. J. Matern. Fetal Neonatal Med. 2023, 36, 2280527. [Google Scholar] [CrossRef] [PubMed]
- Zhao, Z.; Zhang, J. Lower Expression of miR-26a in PBMCs Indicates the Occurrence of Early-Onset Neonatal Sepsis and Is Partly Mediated by the Upregulation of PTEN. Front. Pediatr. 2021, 9, 678205. [Google Scholar] [CrossRef]
- García-Giménez, J.L.; Seco-Cervera, M.; Tollefsbol, T.O.; Romá-Mateo, C.; Peiró-Chova, L.; Lapunzina, P.; Pallardó, F.V. Epigenetic biomarkers: Current strategies and future challenges for their use in the clinical laboratory. Crit. Rev. Clin. Lab. Sci. 2017, 54, 529–550. [Google Scholar] [CrossRef]
- García-Giménez, J.L.; Mena-Mollá, S.; Beltrán-García, J.; Sanchis-Gomar, F. Challenges in the analysis of epigenetic biomarkers in clinical samples. Clin. Chem. Lab. Med. 2017, 55, 1474–1477. [Google Scholar] [CrossRef]
- Han, W.; Li, S.; Wang, N.; Chen, X.; Ma, J.; Liang, J.; Hao, L.; Ren, C. MiRNAs as biomarkers for diagnosis of neonatal sepsis: A systematic review and meta-analysis. J. Matern. Fetal Neonatal Med. 2023, 36, 2217317. [Google Scholar] [CrossRef]
- Fatmi, A.; Rebiahi, S.A.; Chabni, N.; Zerrouki, H.; Azzaoui, H.; Elhabiri, Y.; Benmansour, S.; Ibáñez-Cabellos, J.S.; Smahi, M.C.; Aribi, M.; et al. miRNA-23b as a biomarker of culture-positive neonatal sepsis. Mol. Med. 2020, 26, 94. [Google Scholar] [CrossRef] [PubMed]
- Wang, X.; Wang, X.; Liu, X.; Wang, X.; Xu, J.; Hou, S.; Zhang, X.; Ding, Y. miR-15a/16 are upreuglated in the serum of neonatal sepsis patients and inhibit the LPS-induced inflammatory pathway. Int. J. Clin. Exp. Med. 2015, 8, 5683–5690. [Google Scholar] [PubMed]
- Lou, Y.; Huang, Z. microRNA-15a-5p participates in sepsis by regulating the inflammatory response of macrophages and targeting TNIP2. Exp. Ther. Med. 2020, 19, 3060–3068. [Google Scholar] [CrossRef] [PubMed]
- Cheng, Q.; Tang, L.; Wang, Y. Regulatory role of miRNA-26a in neonatal sepsis. Exp. Ther. Med. 2018, 16, 4836–4842. [Google Scholar] [CrossRef] [PubMed]
- Lucignano, B.; Cento, V.; Agosta, M.; Ambrogi, F.; Albitar-Nehme, S.; Mancinelli, L.; Mattana, G.; Onori, M.; Galaverna, F.; Di Chiara, L.; et al. Effective Rapid Diagnosis of Bacterial and Fungal Bloodstream Infections by T2 Magnetic Resonance Technology in the Pediatric Population. J. Clin. Microbiol. 2022, 60, e0029222. [Google Scholar] [CrossRef]
- Boomer, J.S.; Green, J.M.; Hotchkiss, R.S. The changing immune system in sepsis. Virulence 2014, 5, 45–56. [Google Scholar] [CrossRef]
- Liao, W.; Xiao, H.; He, J.; Huang, L.; Liao, Y.; Qin, J.; Yang, Q.; Qu, L.; Ma, F.; Li, S. Identification and verification of feature biomarkers associated with immune cells in neonatal sepsis. Eur. J. Med. Res. 2023, 28, 105. [Google Scholar] [CrossRef]
- Bai, Y.; Zhao, N.; Zhang, Z.; Jia, Y.; Zhang, G.; Dong, G. Identification and validation of a novel four-gene diagnostic model for neonatal early-onset sepsis with bacterial infection. Eur. J. Pediatr. 2023, 182, 977–985. [Google Scholar] [CrossRef]
Advantages | Disadvantages |
---|---|
1. Detection of small quantity of microbial (bacterial or fungal) DNA or RNA 2. Rapid results within hours 3. Identification of a variety of pathogens (detection of polymicrobial infections) 4. Identification of pathogens not easily cultured | 1. False-positive results due to contamination 2. Not available information on antibiotic susceptibility 3. High cost 4. Certain techniques require specialized laboratories and personnel. |
miRNA | Number of Patients vs. Controls | AUC | Sensitivity | Specificity | Levels | Study |
---|---|---|---|---|---|---|
miR-15a-5p | 43 vs. 59 | 0.67 | Downregulated | Zhao et al., 2023 [56] | ||
miR-15b | 25 vs. 25 | 76% | 88% | Upregulated | Fouda et al., 2021 [55] | |
miR-16-5p | 43 vs. 59 | 0.68 | Upregulated | Zhao et al., 2023 [56] | ||
miR-16a | 25 vs. 25 | 0.968 | 88% | 98% | Upregulated | El-Hefnawy et al., 2021 [52] |
miR-451 | 25 vs. 25 | 64% | 61% | Upregulated | El-Hefnawy et al., 2021 [52] | |
miR-378a | 25 vs. 25 | 60% | 88% | Downregulated | Fouda et al., 2021 [55] | |
miR-26a | 51 vs. 102 | Downregulated | Zhao and Zhang, 2021 [57] | |||
miR-223 | 25 vs. 25 | Downregulated | Dhas et al., 2018 [51] | |||
miR-223-5p | 20 vs. 21 | 0.988 | Upregulated | Ernst et al., 2021 [54] | ||
miR-132 | 25 vs. 25 | Downregulated | Dhas et al., 2018 [51] | |||
miR-211-5p | 20 vs. 21 | 0.787 | Upregulated | Ernst et al., 2021 [54] | ||
miR-34a | 70 vs. 70 | 0.94 | 89% | 97% | Downregulated | El-Khazragy et al., 2023 [53] |
miR-1 | 70 vs. 70 | 0.82 | 81% | 83% | Upregulated | El-Khazragy et al., 2023 [53] |
miR-124 | 70 vs. 70 | 0.85 | 86% | 83% | Upregulated | El-Khazragy et al., 2023 [53] |
miR-23b | 27 vs. 13 | Downregulated in neonates who died of sepsis Upregulated in neonates who survived | Fatmi et al., 2020 [61] | |||
Combination of miR-15a-5p, miR-223-3p, and miR-16-5p | 43 vs. 59 | 0.85 | 74.6% | 86% | miR-15a-5p and miR-233-3p downregulated miR-16-6p upregulated | Zhao et al., 2023 [56] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kosmeri, C.; Giapros, V.; Serbis, A.; Baltogianni, M. Application of Advanced Molecular Methods to Study Early-Onset Neonatal Sepsis. Int. J. Mol. Sci. 2024, 25, 2258. https://doi.org/10.3390/ijms25042258
Kosmeri C, Giapros V, Serbis A, Baltogianni M. Application of Advanced Molecular Methods to Study Early-Onset Neonatal Sepsis. International Journal of Molecular Sciences. 2024; 25(4):2258. https://doi.org/10.3390/ijms25042258
Chicago/Turabian StyleKosmeri, Chrysoula, Vasileios Giapros, Anastasios Serbis, and Maria Baltogianni. 2024. "Application of Advanced Molecular Methods to Study Early-Onset Neonatal Sepsis" International Journal of Molecular Sciences 25, no. 4: 2258. https://doi.org/10.3390/ijms25042258
APA StyleKosmeri, C., Giapros, V., Serbis, A., & Baltogianni, M. (2024). Application of Advanced Molecular Methods to Study Early-Onset Neonatal Sepsis. International Journal of Molecular Sciences, 25(4), 2258. https://doi.org/10.3390/ijms25042258