Mini-Multilocus Sequence Typing Scheme for the Global Population of Neisseria gonorrhoeae
Abstract
:1. Introduction
2. Results
2.1. Identification of Informative Polymorphisms in the MLST-Related Genes of N. gonorrhoeae and Construction of Mini-MLST Profiles
2.2. MLST Genogroups as a Stable Characteristic for the Global Population of N. gonorrhoeae
2.3. Association of MLST Genogroups with Antimicrobial Susceptibility of N. gonorrhoeae Isolates
2.4. Mini-MLST Software Tool for N. gonorrhoeae
2.5. Genotyping N. gonorrhoeae Isolates Using a Mini-MLST Microarray-Based Assay
3. Discussion
4. Materials and Methods
4.1. Examination of N. gonorrhoeae Housekeeping Genes and Determination of Mini-MLST Profiles
4.2. Definition of the MLST Genogroups and Generating a Voronoi Diagram
4.3. Constructing a Phylogenetic Tree (Phylogram)
4.4. Development of the Mini-MLST Typing Tool for N. gonorrhoeae
4.5. Analysis of Antimicrobial Susceptibility and Construction of Box Plots Diagrams
4.6. Microarray-Based Assay for the Analysis of N. gonorrhoeae Isolates Using the Mini-MLST Scheme
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- World Health Organization. Enhanced Gonococcal Antimicrobial Surveillance Programme (EGASP): Surveillance Report 2022. Available online: https://www.who.int/publications/i/item/9789240088528 (accessed on 9 February 2024).
- Jacobsson, S.; Cole, M.J.; Spiteri, G.; Day, M.; Unemo, M.; Euro-GASP Network. Associations between antimicrobial susceptibility/resistance of Neisseria gonorrhoeae isolates in European Union/European Economic Area and patients’ gender, sexual orientation and anatomical site of infection, 2009–2016. BMC Infect. Dis. 2021, 21, 273. [Google Scholar] [CrossRef] [PubMed]
- Lin, X.; Chen, W.; Xie, Q.; Yu, Y.; Liao, Y.; Feng, Z.; Qin, X.; Wu, X.; Tang, S.; Zheng, H. Dissemination and genome analysis of high-level ceftriaxone-resistant penA 60.001 Neisseria gonorrhoeae strains from the Guangdong Gonococcal antibiotics susceptibility Programme (GD-GASP), 2016–2019. Emerg. Microbes Infect. 2022, 11, 344–350. [Google Scholar] [CrossRef] [PubMed]
- Golparian, D.; Unemo, M. Antimicrobial resistance prediction in Neisseria gonorrhoeae: Current status and future prospects. Expert Rev. Mol. Diagn. 2022, 22, 29–48. [Google Scholar] [CrossRef] [PubMed]
- Sanchez-Buso, L.; Cole, M.J.; Spiteri, G.; Day, M.; Jacobsson, S.; Golparian, D.; Sajedi, N.; Yeats, C.A.; Abudahab, K.; Underwood, A.; et al. Europe-wide expansion and eradication of multidrug-resistant Neisseria gonorrhoeae lineages: A genomic surveillance study. Lancet Microbe 2022, 3, 452–463. [Google Scholar] [CrossRef] [PubMed]
- Kandinov, I.; Dementieva, E.; Filippova, M.; Vinokurova, A.; Gorshkova, S.; Kubanov, A.; Solomka, V.; Shagabieva, J.; Deryabin, D.; Shaskolskiy, B.; et al. Emergence of Azithromycin-Resistant Neisseria gonorrhoeae Isolates Belonging to the NG-MAST Genogroup 12302 in Russia. Microorganisms 2023, 11, 1226. [Google Scholar] [CrossRef] [PubMed]
- Mchugh, L.; Dyda, A.; Guglielmino, C.; Buckley, C.; Lau, C.L.; Jennison, A.V.; Regan, D.G.; Wood, J.; Whiley, D.; Trembizki, E. The changing epidemiology of Neisseria gonorrhoeae genogroups and antimicrobial resistance in Queensland, Australia, 2010–15: A case series analysis of unique Neisseria gonorrhoeae isolates. Sex. Health 2023, 20, 296–302. [Google Scholar] [CrossRef] [PubMed]
- Unemo, M.; Dillon, J.A. Review and international recommendation of methods for typing neisseria gonorrhoeae isolates and their implications for improved knowledge of gonococcal epidemiology, treatment, and biology. Clin. Microbiol. Rev. 2011, 24, 447–458. [Google Scholar] [CrossRef] [PubMed]
- Town, K.; Bolt, H.; Croxford, S.; Cole, M.; Harris, S.; Field, N.; Hughes, G. Neisseria gonorrhoeae molecular typing for understanding sexual networks and antimicrobial resistance transmission: A systematic review. J. Infect. 2018, 76, 507–514. [Google Scholar] [CrossRef] [PubMed]
- Maiden, M.C.; Jansen van Rensburg, M.J.; Bray, J.E.; Earle, S.G.; Ford, S.A.; Jolley, K.A.; Mccarthy, N.D. MLST revisited: The gene-by-gene approach to bacterial genomics. Nat. Rev. Microbiol. 2013, 11, 728–736. [Google Scholar] [CrossRef]
- Maiden, M.C.; Bygraves, J.A.; Feil, E.; Morelli, G.; Russell, J.E.; Urwin, R.; Zhang, Q.; Zhou, J.; Zurth, K.; Caugant, D.A.; et al. Multilocus sequence typing: A portable approach to the identification of clones within populations of pathogenic microorganisms. Proc. Natl. Acad. Sci. USA 1998, 95, 3140–3145. [Google Scholar] [CrossRef]
- Jolley, K.A.; Bray, J.E.; Maiden, M.C. Open-access bacterial population genomics: BIGSdb software, the PubMLST.org website and their applications. Wellcome Open Res. 2018, 3, 124. [Google Scholar] [CrossRef] [PubMed]
- Golparian, D.; Cole, M.J.; Sánchez-Busó, L.; Day, M.; Jacobsson, S.; Uthayakumaran, T.; Abad, R.; Bercot, B.; Caugant, D.A.; Heuer, D.; et al. Antimicrobial-resistant Neisseria gonorrhoeae in Europe in 2020 compared with in 2013 and 2018: A retrospective genomic surveillance study. Lancet Microbe 2024, 5, e478–e488. [Google Scholar] [CrossRef] [PubMed]
- Yahara, K.; Ma, K.C.; Mortimer, T.D.; Shimuta, K.; Nakayama, S.I.; Hirabayashi, A.; Suzuki, M.; Jinnai, M.; Ohya, H.; Kuroki, T.; et al. Emergence and evolution of antimicrobial resistance genes and mutations in Neisseria gonorrhoeae. Genome Med. 2021, 13, 51. [Google Scholar] [CrossRef] [PubMed]
- Trembizki, E.; Doyle, C.; Jennison, A.; Smith, H.; Bates, J.; Lahra, M.; Whiley, D.; On Behalf of The Grand Study Investigators. A Neisseria gonorrhoeae strain with a meningococcal mtrR sequence. J. Med. Microbiol. 2014, 63, 1113–1115. [Google Scholar] [CrossRef] [PubMed]
- Joseph, S.J.; Thomas, J.C.; Schmerer, M.W.; Cartee, J.C.; St. Cyr, S.; Schlanger, K.; Kersh, E.N.; Raphael, B.H.; Gernert, K.M.; Antimicrobial Resistant Neisseria Gonorrhoeae Working Group. Global Emergence and Dissemination of Neisseria gonorrhoeae ST-9363 Isolates with Reduced Susceptibility to Azithromycin. Genome Biol. Evol. 2022, 14, evab287. [Google Scholar] [CrossRef] [PubMed]
- Ameyama, S.; Onodera, S.; Takahata, M.; Minami, S.; Maki, N.; Endo, K.; Goto, H.; Suzuki, H.; Oishi, Y. Mosaic-Like Structure of Penicillin-Binding Protein 2 Gene (penA) in Clinical Isolates of Neisseria gonorrhoeae with Reduced Susceptibility to Cefixime. Antimicrob. Agents Chemother. 2002, 46, 3744–3749. [Google Scholar] [CrossRef] [PubMed]
- Chen, S.C.; Yin, Y.P.; Chen, X.S. Cephalosporin-Resistant Neisseria gonorrhoeae Clone, China. Emerg. Infect. Dis. 2018, 24, 804–806. [Google Scholar] [CrossRef] [PubMed]
- Liao, Y.; Xie, Q.; Yin, X.; Li, X.; Xie, J.; Wu, X.; Tang, S.; Liu, M.; Zeng, L.; Pan, Y.; et al. penA profile of Neisseria gonorrhoeae in Guangdong, China: Novel penA alleles are related to decreased susceptibility to ceftriaxone or cefixime. Int. J. Antimicrob. Agents 2024, 63, 107101. [Google Scholar] [CrossRef] [PubMed]
- Wang, D.; Wang, Y.; Li, Y.; Xiu, L.; Yong, G.; Yang, Y.; Gu, W.; Peng, J. Identification of ceftriaxone-resistant Neisseria gonorrhoeae FC428 clone and isolates harboring a novel mosaic penA gene in Chengdu in 2019–2020. Ann. Clin. Microbiol. Antimicrob. 2023, 22, 73. [Google Scholar] [CrossRef]
- Jolley, K.A.; Maiden, M.C. Using multilocus sequence typing to study bacterial variation: Prospects in the genomic era. Future Microbiol. 2014, 9, 623–630. [Google Scholar] [CrossRef]
- Harrison, O.B.; Clemence, M.; Dillard, J.P.; Tang, C.M.; Trees, D.; Grad, Y.H.; Maiden, M.C. Genomic analyses of Neisseria gonorrhoeae reveal an association of the gonococcal genetic island with antimicrobial resistance. J. Infect. 2016, 73, 578–587. [Google Scholar] [CrossRef] [PubMed]
- Nykrynova, M.; Barton, V.; Bezdicek, M.; Lengerova, M.; Skutkova, H. Identification of highly variable sequence fragments in unmapped reads for rapid bacterial genotyping. BMC Genom. 2022, 23, 445. [Google Scholar] [CrossRef] [PubMed]
- Dufkova, K.; Bezdicek, M.; Cuprova, K.; Pantuckova, D.; Nykrynova, M.; Brhelova, E.; Kocmanova, I.; Hodova, S.; Hanslianova, M.; Juren, T.; et al. Sequencing Independent Molecular Typing of Staphylococcus aureus Isolates: Approach for Infection Control and Clonal Characterization. Microbiol. Spectr. 2022, 10, e0181721. [Google Scholar] [CrossRef] [PubMed]
- Bezdicek, M.; Nykrynova, M.; Sedlar, K.; Kralova, S.; Hanslikova, J.; Komprdova, A.; Skutkova, H.; Kocmanova, I.; Mayer, J.; Lengerova, M. Rapid high-resolution melting genotyping scheme for Escherichia coli based on MLST derived single nucleotide polymorphisms. Sci. Rep. 2021, 11, 16572. [Google Scholar] [CrossRef] [PubMed]
- Whiley, D.M.; Goire, N.; Rahimi, F.; Lahra, M.M.; Limnios, A.E.; Nissen, M.D.; Sloots, T.P. Real-time PCR genotyping of Neisseria gonorrhoeae isolates using 14 informative single nucleotide polymorphisms on gonococcal housekeeping genes. J. Antimicrob. Chemother. 2013, 68, 322–328. [Google Scholar] [CrossRef] [PubMed]
- Trembizki, E.; Smith, H.; Lahra, M.M.; Chen, M.; Donovan, B.; Fairley, C.K.; Guy, R.; Kaldor, J.; Regan, D.; Ward, J.; et al. High-throughput informative single nucleotide polymorphism-based typing of Neisseria gonorrhoeae using the Sequenom MassARRAY iPLEX platform. J. Antimicrob. Chemother. 2014, 69, 1526–1532. [Google Scholar] [CrossRef]
- Zhang, L.; Zhang, C.; Zeng, Y.; Li, Y.; Huang, S.; Wang, F.; Peng, J. Emergence and Characterization of a Ceftriaxone-Resistant Neisseria gonorrhoeae FC428 Clone Evolving Moderate-Level Resistance to Azithromycin in Shenzhen, China. Infect. Drug Resist. 2021, 14, 4271–4276. [Google Scholar] [CrossRef] [PubMed]
- Thomas, J.C.T.; Joseph, S.J.; Cartee, J.C.; Pham, C.D.; Schmerer, M.W.; Schlanger, K.; St Cyr, S.; Kersh, E.N.; Raphael, B.H.; Antimicrobial Resistant Neisseria gonorrhoeae Working Group. Phylogenomic analysis reveals persistence of gonococcal strains with reduced-susceptibility to extended-spectrum cephalosporins and mosaic penA-34. Nat. Commun. 2021, 12, 3801. [Google Scholar] [CrossRef] [PubMed]
- Kubanov, A.A.; Solomka, V.S.; Shpilevaya, M.V.; Verbenko, D.A.; Deryabin, D.G.; Kandinov, I.D.; Dementieva, E.I.; Gryadunov, D.A.; Shaskolskiy, B.L. Diversity of NG-MAST and MLST sequence types in Russian clinical isolates of Neisseria gonorrhoeae carrying the «mosaic» allele of the penA gene. Mol. Genet. Microbiol. Virol. 2022, 37, 179–186. [Google Scholar] [CrossRef]
- Dufkova, K.; Bezdicek, M.; Nykrynova, M.; Kocmanova, I.; Kubackova, P.; Hanslikova, J.; Fejkova, K.; Mayer, J.; Lengerova, M. Rapid Identification of Pseudomonas aeruginosa International High-Risk Clones Based on High-Resolution Melting Analysis. Microbiol. Spectr. 2023, 11, e0357122. [Google Scholar] [CrossRef]
- Andersson, P.; Tong, S.Y.; Bell, J.M.; Turnidge, J.D.; Giffard, P.M. Minim typing-a rapid and low cost MLST based typing tool for Klebsiella pneumoniae. PLoS ONE 2012, 7, e33530. [Google Scholar] [CrossRef] [PubMed]
- Schaeffer, J.; Lippert, K.; Pleininger, S.; Stoger, A.; Hasenberger, P.; Stadlbauer, S.; Heger, F.; Eigentler, A.; Geusau, A.; Indra, A.; et al. Association of Phylogenomic Relatedness among Neisseria gonorrhoeae Strains with Antimicrobial Resistance, Austria, 2016–2020. Emerg. Infect. Dis. 2022, 28, 1694–1698. [Google Scholar] [CrossRef] [PubMed]
- Gryadunov, D.A.; Shaskolskiy, B.L.; Nasedkina, T.V.; Rubina, A.Y.; Zasedatelev, A.S. The EIMB Hydrogel Microarray Technology: Thirty Years Later. Acta Naturae 2018, 10, 4–18. [Google Scholar] [CrossRef] [PubMed]
- Okonechnikov, K.; Golosova, O.; Fursov, M.; UGENE team. Unipro UGENE: A unified bioinformatics toolkit. Bioinformatics 2012, 28, 1166–1167. [Google Scholar] [CrossRef]
- Shaskolskiy, B.; Kandinov, I.; Kravtsov, D.; Vinokurova, A.; Gorshkova, S.; Filippova, M.; Kubanov, A.; Solomka, V.; Deryabin, D.; Dementieva, E.; et al. Hydrogel Droplet Microarray for Genotyping Antimicrobial Resistance Determinants in Neisseria gonorrhoeae Isolates. Polymers 2021, 13, 3889. [Google Scholar] [CrossRef]
- Bock, G.; Goode, J. The Limits of Reductionism in Biology; Novartis Foundation Symposium; John Wiley and Sons: Chichester, UK, 1998; Volume 228, ISBN 978-0-470-51549-5. [Google Scholar]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kandinov, I.; Shaskolskiy, B.; Kravtsov, D.; Filippova, M.; Larkin, A.; Gryadunov, D. Mini-Multilocus Sequence Typing Scheme for the Global Population of Neisseria gonorrhoeae. Int. J. Mol. Sci. 2024, 25, 5781. https://doi.org/10.3390/ijms25115781
Kandinov I, Shaskolskiy B, Kravtsov D, Filippova M, Larkin A, Gryadunov D. Mini-Multilocus Sequence Typing Scheme for the Global Population of Neisseria gonorrhoeae. International Journal of Molecular Sciences. 2024; 25(11):5781. https://doi.org/10.3390/ijms25115781
Chicago/Turabian StyleKandinov, Ilya, Boris Shaskolskiy, Dmitry Kravtsov, Marina Filippova, Anatoliy Larkin, and Dmitry Gryadunov. 2024. "Mini-Multilocus Sequence Typing Scheme for the Global Population of Neisseria gonorrhoeae" International Journal of Molecular Sciences 25, no. 11: 5781. https://doi.org/10.3390/ijms25115781
APA StyleKandinov, I., Shaskolskiy, B., Kravtsov, D., Filippova, M., Larkin, A., & Gryadunov, D. (2024). Mini-Multilocus Sequence Typing Scheme for the Global Population of Neisseria gonorrhoeae. International Journal of Molecular Sciences, 25(11), 5781. https://doi.org/10.3390/ijms25115781