Emerging Diagnostics in Clostridioides difficile Infection
Abstract
:1. Introduction
2. Identification of Resistant and Viable Spores
3. Sampling the Community (Ribotyping and Mass Spectrometry)
NAAT and CRISPR-Cas12a (Toxin Identification)
4. Established and New Immunological and Enzyme Assays
5. Ultra-Sensitive Immunoassays and Real-Time Analysis
6. Conclusions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Giau, V.V.; Lee, H.; An, S.S.A.; Hulme, J. Recent Advances in the Treatment of C. difficile Using Biotherapeutic Agents. Infect. Drug Resist. 2019, 12, 1597–1615. [Google Scholar] [CrossRef] [PubMed]
- Marshall, A.; McGrath, J.W.; Graham, R.; McMullan, G. Food for Thought—The Link between Clostridioides difficile Metabolism and Pathogenesis. PLoS Pathog. 2023, 19, e1011034. [Google Scholar] [CrossRef] [PubMed]
- Young, M.K.; Leslie, J.L.; Madden, G.R.; Lyerly, D.M.; Carman, R.J.; Lyerly, M.W.; Stewart, D.B.; Abhyankar, M.M.; Petri, W.A. Binary Toxin Expression by Clostridioides difficile Is Associated with Worse Disease. Open Forum Infect. Dis. 2022, 9, ofac001. [Google Scholar] [CrossRef] [PubMed]
- Kirk, J.A.; Banerji, O.; Fagan, R.P. Characteristics of the Clostridium difficile Cell Envelope and Its Importance in Therapeutics. Microb. Biotechnol. 2017, 10, 76. [Google Scholar] [CrossRef] [PubMed]
- Shirley, D.-A.; Tornel, W.; Warren, C.A.; Moonah, S. Clostridioides difficile Infection in Children: Recent Updates on Epidemiology, Diagnosis, Therapy. Pediatrics 2023, 152, e2023062307. [Google Scholar] [CrossRef] [PubMed]
- Halstead, F.D.; Ravi, A.; Thomson, N.; Nuur, M.; Hughes, K.; Brailey, M.; Oppenheim, B.A. Whole Genome Sequencing of Toxigenic Clostridium difficile in Asymptomatic Carriers: Insights into Possible Role in Transmission. J. Hosp. Infect. 2019, 102, 125–134. [Google Scholar] [CrossRef] [PubMed]
- Sheth, P.M.; Douchant, K.; Uyanwune, Y.; Larocque, M.; Anantharajah, A.; Borgundvaag, E.; Dales, L.; McCreight, L.; McNaught, L.; Moore, C.; et al. Evidence of Transmission of Clostridium difficile in Asymptomatic Patients Following Admission Screening in a Tertiary Care Hospital. PLoS ONE 2019, 14, e0207138. [Google Scholar] [CrossRef]
- Gonzalez-Orta, M.; Saldana, C.; Ng-Wong, Y.; Cadnum, J.; Jencson, A.; Jinadatha, C.; Donskey, C.J. Are Many Patients Diagnosed with Healthcare-Associated Clostridioides difficile Infections Colonized with the Infecting Strain on Admission? Clin. Infect. Dis. 2019, 69, 1801–1804. [Google Scholar] [CrossRef] [PubMed]
- Knight, D.R.; Riley, T.V. Genomic Delineation of Zoonotic Origins of Clostridium difficile. Front. Public Health 2019, 7, 164. [Google Scholar] [CrossRef] [PubMed]
- Brown, K.A.; Langford, B.; Schwartz, K.L.; Diong, C.; Garber, G.; Daneman, N. Antibiotic Prescribing Choices and Their Comparative C. difficile Infection Risks: A Longitudinal Case-Cohort Study. Clin. Infect. Dis. 2021, 72, 836–844. [Google Scholar] [CrossRef] [PubMed]
- Meltzer, E.; Smollan, G.; Huppert, A.; Fluss, R.; Tal, I.; Gilboa, M.; Zilberman-Daniels, T.; Keller, N.; Rahav, G.; Regev-Yochay, G. Universal Screening for Clostridioides difficile in a Tertiary Hospital: Risk Factors for Carriage and Clinical Disease. Clin. Microbiol. Infect. 2019, 25, 1127–1132. [Google Scholar] [CrossRef] [PubMed]
- Weaver, F.M.; Trick, W.E.; Evans, C.T.; Lin, M.Y.; Adams, W.; Pho, M.T.; Bleasdale, S.C.; Mullane, K.M.; Johnson, S.; Sikka, M.K.; et al. The Impact of Recurrent Clostridium difficile Infection on Patients’ Prevention Behaviors. Infect. Control Hosp. Epidemiol. 2017, 38, 1351–1357. [Google Scholar] [CrossRef] [PubMed]
- Fu, Y.; Luo, Y.; Grinspan, A.M. Epidemiology of Community-Acquired and Recurrent Clostridioides difficile Infection. Ther. Adv. Gastroenterol. 2021, 14, 1–11. [Google Scholar] [CrossRef] [PubMed]
- Asgary, R.; Snead, J.A.; Wahid, N.A.; Ro, V.; Halim, M.; Stribling, J.C. Risks and Preventive Strategies for Clostridioides difficile Transmission to Household or Community Contacts during Transition in Healthcare Settings. Emerg. Infect. Dis. 2021, 27, 1776–1782. [Google Scholar] [CrossRef] [PubMed]
- Khun, P.A.; Phi, L.D.; Pham, P.T.; Thu Nguyen, H.T.; Huyen Vu, Q.T.; Collins, D.A.; Riley, T.V. Clostridioides (Clostridium) difficile in Children with Diarrhoea in Vietnam. Anaerobe 2022, 74, 102550. [Google Scholar] [CrossRef] [PubMed]
- Wu, Y.; Wang, Y.-Y.; Bai, L.-L.; Zhang, W.-Z.; Li, G.-W.; Lu, J.-X. A Narrative Review of Clostridioides difficile Infection in China. Anaerobe 2022, 74, 102540. [Google Scholar] [CrossRef] [PubMed]
- Sanidad, K.Z.; Zeng, M.Y. Neonatal Gut Microbiome and Immunity. Curr. Opin. Microbiol. 2020, 56, 30–37. [Google Scholar] [CrossRef] [PubMed]
- Lim, S.C.; Knight, D.R.; Riley, T.V. Clostridium difficile and One Health. Clin. Microbiol. Infect. 2020, 26, 857–863. [Google Scholar] [CrossRef] [PubMed]
- Rodriguez-Palacios, A.; Reid-Smith, R.J.; Staempfli, H.R.; Weese, J.S. Clostridium difficile Survives Minimal Temperature Recommended for Cooking Ground Meats. Anaerobe 2010, 16, 540–542. [Google Scholar] [CrossRef] [PubMed]
- Carvalho, G.M.; Ramos, C.P.; Lobato, F.C.F.; Guedes, R.M.C.; Giaretta, P.R.; Silva, R.O.S. Laboratory Diagnosis of Clostridioides (Clostridium) difficile Infection in Domestic Animals: A Short Review. Anaerobe 2022, 75, 102574. [Google Scholar] [CrossRef] [PubMed]
- Hain-Saunders, N.M.R.; Knight, D.R.; Bruce, M.; Riley, T.V. Clostridioides difficile Infection and One Health: An Equine Perspective. Environ. Microbiol. 2022, 24, 985. [Google Scholar] [CrossRef] [PubMed]
- Bjöersdorff, O.G.; Lindberg, S.; Kiil, K.; Persson, S.; Guardabassi, L.; Damborg, P. Dogs Are Carriers of Clostridioides difficile Lineages Associated with Human Community-Acquired Infections. Anaerobe 2021, 67, 102317. [Google Scholar] [CrossRef] [PubMed]
- Knetsch, C.W.; Kumar, N.; Forster, S.C.; Connor, T.R.; Browne, H.P.; Harmanus, C.; Sanders, I.M.; Harris, S.R.; Turner, L.; Morris, T.; et al. Zoonotic Transfer of Clostridium difficile Harboring Antimicrobial Resistance between Farm Animals and Humans. J. Clin. Microbiol. 2018, 56, e01384-17. [Google Scholar] [CrossRef] [PubMed]
- Knetsch, C.W.; Connor, T.R.; Mutreja, A.; van Dorp, S.M.; Sanders, I.M.; Browne, H.P.; Harris, D.; Lipman, L.; Keessen, E.C.; Corver, J.; et al. Whole Genome Sequencing Reveals Potential Spread of Clostridium difficile between Humans and Farm Animals in the Netherlands, 2002 to 2011. Euro Surveill. Bull. Eur. Mal. Transm. Eur. Commun. Dis. Bull. 2014, 19, 20954. [Google Scholar] [CrossRef] [PubMed]
- Dingle, K.E.; Didelot, X.; Quan, T.P.; Eyre, D.W.; Stoesser, N.; Marwick, C.A.; Coia, J.; Brown, D.; Buchanan, S.; Ijaz, U.Z.; et al. A Role for Tetracycline Selection in Recent Evolution of Agriculture-Associated Clostridium difficile PCR Ribotype 078. mBio 2019, 10, e02790-18. [Google Scholar] [CrossRef]
- Wu, S.; Hulme, J.P. Recent Advances in the Detection of Antibiotic and Multi-Drug Resistant Salmonella: An Update. Int. J. Mol. Sci. 2021, 22, 3499. [Google Scholar] [CrossRef]
- Bolton, D.; Marcos, P. The Environment, Farm Animals and Foods as Sources of Clostridioides difficile Infection in Humans. Foods 2023, 12, 1094. [Google Scholar] [CrossRef]
- Lemiech-Mirowska, E.; Michałkiewicz, M.; Sierocka, A.; Gaszyńska, E.; Marczak, M. The Hospital Environment as a Potential Source for Clostridioides difficile Transmission Based on Spore Detection Surveys Conducted at Paediatric Oncology and Gastroenterology Units. Int. J. Environ. Res. Public Health 2023, 20, 1590. [Google Scholar] [CrossRef] [PubMed]
- Mehdipour, M.; Gholipour, S.; Mohammadi, F.; Hatamzadeh, M.; Nikaeen, M. Incidence of Co-Resistance to Antibiotics and Chlorine in Bacterial Biofilm of Hospital Water Systems: Insights into the Risk of Nosocomial Infections. J. Infect. Public Health 2023, 16, 210–216. [Google Scholar] [CrossRef] [PubMed]
- Dyer, C.; Hutt, L.P.; Burky, R.; Joshi, L.T. Biocide Resistance and Transmission of Clostridium difficile Spores Spiked onto Clinical Surfaces from an American Health Care Facility. Appl. Environ. Microbiol. 2019, 85, e01090-19. [Google Scholar] [CrossRef]
- Chiu, C.-W.; Tsai, P.-J.; Lee, C.-C.; Ko, W.-C.; Hung, Y.-P. Inhibition of Spores to Prevent the Recurrence of Clostridioides difficile Infection—A Possibility or an Improbability? J. Microbiol. Immunol. Infect. 2021, 54, 1011–1017. [Google Scholar] [CrossRef] [PubMed]
- Malyshev, D.; Jones, I.A.; McKracken, M.; Öberg, R.; Harper, G.M.; Joshi, L.T.; Andersson, M. Hypervirulent R20291 Clostridioides difficile Spores Show Disinfection Resilience to Sodium Hypochlorite despite Structural Changes. BMC Microbiol. 2023, 23, 59. [Google Scholar] [CrossRef] [PubMed]
- Buddle, J.E.; Fagan, R.P. Pathogenicity and Virulence of Clostridioides difficile. Virulence 2023, 14, 2150452. [Google Scholar] [CrossRef] [PubMed]
- Markovska, R.; Dimitrov, G.; Gergova, R.; Boyanova, L. Clostridioides difficile, a New “Superbug”. Microorganisms 2023, 11, 845. [Google Scholar] [CrossRef] [PubMed]
- Mizusawa, M.; Carroll, K.C. Advances and Required Improvements in Methods to Diagnosing Clostridioides difficile Infections in the Healthcare Setting. Expert. Rev. Mol. Diagn. 2021, 21, 311–321. [Google Scholar] [CrossRef] [PubMed]
- Peng, Z.; Ling, L.; Stratton, C.W.; Li, C.; Polage, C.R.; Wu, B.; Tang, Y.-W. Advances in the Diagnosis and Treatment of Clostridium difficile Infections. Emerg. Microbes Infect. 2018, 7, 15. [Google Scholar] [CrossRef] [PubMed]
- Reigadas, E.; Alcalá, L.; Marín, M.; Martín, A.; Bouza, E. Clinical, Immunological and Microbiological Predictors of Poor Outcome in Clostridium difficile Infection. Diagn. Microbiol. Infect. Dis. 2017, 88, 330–334. [Google Scholar] [CrossRef]
- Savolainen, R.; Koskinen, J.M.; Mentula, S.; Koskinen, J.O.; Kaukoranta, S.-S. Prospective Evaluation of the mariPOC Test for Detection of Clostridioides difficile Glutamate Dehydrogenase and Toxins A/B. J. Clin. Microbiol. 2020, 58, e01872-19. [Google Scholar] [CrossRef] [PubMed]
- Yamada, Y.; Miyazaki, M.; Kushima, H.; Komiya, Y.; Nakashima, A.; Ishii, H.; Imakyure, O. Impact of Nucleic Acid Amplification Test on Clinical Outcomes in Patients with Clostridioides difficile Infection. Antibiotics 2023, 12, 428. [Google Scholar] [CrossRef] [PubMed]
- Goldenberg, S.D.; Bisnauthsing, K.N.; Patel, A.; Postulka, A.; Wyncoll, D.; Schiff, R.; French, G.L. Point-of-Care Testing for Clostridium difficile Infection: A Real-World Feasibility Study of a Rapid Molecular Test in Two Hospital Settings. Infect. Dis. Ther. 2014, 3, 295–306. [Google Scholar] [CrossRef] [PubMed]
- Chung, H.-S.; Park, J.S.; Shin, B.-M. Laboratory Diagnostic Methods for Clostridioides difficile Infection: The First Systematic Review and Meta-Analysis in Korea. Ann. Lab. Med. 2021, 41, 171–180. [Google Scholar] [CrossRef] [PubMed]
- Budi, N.; Safdar, N.; Rose, W.E. Treatment Issues in Recurrent Clostridioides difficile Infections and the Possible Role of Germinants. FEMS Microbes 2020, 1, xtaa001. [Google Scholar] [CrossRef] [PubMed]
- Baron, S.; Ostrowsky, B.; Nori, P.; Drory, D.; Levi, M.H.; Szymczak, W.A.; Rinke, M.L.; Southern, W. Screening of Clostridioides difficile Carriers in an Urban Academic Medical Center: Understanding Implications of Disease. Infect. Control Hosp. Epidemiol. 2020, 41, 149–153. [Google Scholar] [CrossRef] [PubMed]
- Chilton, C.H.; Pickering, D.S.; Freeman, J. Microbiologic Factors Affecting Clostridium difficile Recurrence. Clin. Microbiol. Infect. 2018, 24, 476–482. [Google Scholar] [CrossRef] [PubMed]
- Zeng, J.; Wang, H.; Dong, M.; Tian, G.-B. Clostridioides difficile Spore: Coat Assembly and Formation. Emerg. Microbes Infect. 2022, 11, 2340–2349. [Google Scholar] [CrossRef] [PubMed]
- Baloh, M.; Sorg, J.A. Clostridioides difficile Spore Germination: Initiation to DPA Release. Curr. Opin. Microbiol. 2022, 65, 101–107. [Google Scholar] [CrossRef] [PubMed]
- Wei, D.; Chen, S.; Liu, Q. Review of Fluorescence Suppression Techniques in Raman Spectroscopy. Appl. Spectrosc. Rev. 2015, 50, 387–406. [Google Scholar] [CrossRef]
- Liang, D.; Liu, S.; Li, M.; Zhu, Y.; Zhao, L.; Sun, L.; Ma, Y.; Zhao, G. Effects of Different Bacteriostats on the Dynamic Germination of Clostridium perfringens Spores. Foods 2023, 12, 1834. [Google Scholar] [CrossRef] [PubMed]
- Shrestha, R.; Sorg, J.A. Terbium Chloride Influences Clostridium difficile Spore Germination. Anaerobe 2019, 58, 80–88. [Google Scholar] [CrossRef] [PubMed]
- Ikeno, S.; Maekawa, T.; Hara, N. Multi-Functional Silver Nanoparticles for High-Throughput Endospore Sensing. Biosensors 2022, 12, 68. [Google Scholar] [CrossRef]
- Awasti, N.; Anand, S. A Fluorescence Spectroscopic Method for Rapid Detection of Bacterial Endospores: Proof of Concept. JDS Commun. 2022, 3, 97–100. [Google Scholar] [CrossRef] [PubMed]
- Xiong, Y.; Yang, W.; Huang, S.; Chen, X.; Wang, Q.; Ni, J.; Lin, Z. Competitive Substitution in Europium Metal-Organic Gel for Signal-on Electrochemiluminescence Detection of Dipicolinic Acid. Mikrochim. Acta 2023, 190, 426. [Google Scholar] [CrossRef] [PubMed]
- Cetinkaya, Y.; Yurt, M.N.Z.; Avni Oktem, H.; Yilmaz, M.D. A Monostyryl Boradiazaindacene (BODIPY)-Based Lanthanide-Free Colorimetric and Fluorogenic Probe for Sequential Sensing of Copper (II) Ions and Dipicolinic Acid as a Biomarker of Bacterial Endospores. J. Hazard. Mater. 2019, 377, 299–304. [Google Scholar] [CrossRef] [PubMed]
- Malyshev, D.; Dahlberg, T.; Wiklund, K.; Andersson, P.O.; Henriksson, S.; Andersson, M. Mode of Action of Disinfection Chemicals on the Bacterial Spore Structure and Their Raman Spectra. Anal. Chem. 2021, 93, 3146–3153. [Google Scholar] [CrossRef] [PubMed]
- Andryukov, B.G.; Karpenko, A.A.; Lyapun, I.N. Learning from Nature: Bacterial Spores as a Target for Current Technologies in Medicine. Sovrem. Tekhnologii Med. 2021, 12, 105–122. [Google Scholar] [CrossRef] [PubMed]
- Vuotto, C.; Donelli, G.; Buckley, A.; Chilton, C. Clostridioides difficile Biofilm. Adv. Exp. Med. Biol. 2024, 1435, 249–272. [Google Scholar] [CrossRef] [PubMed]
- Rashid, T.; Haghighi, F.; Hasan, I.; Bassères, E.; Alam, M.J.; Sharma, S.V.; Lai, D.; DuPont, H.L.; Garey, K.W. Activity of Hospital Disinfectants against Vegetative Cells and Spores of Clostridioides difficile Embedded in Biofilms. Antimicrob. Agents Chemother. 2019, 64, e01031-19. [Google Scholar] [CrossRef] [PubMed]
- Burns, D.A.; Minton, N.P. Sporulation Studies in Clostridium difficile. J. Microbiol. Methods 2011, 87, 133–138. [Google Scholar] [CrossRef]
- Tang, T.; Julian, T.; Ma, D.; Yang, Y.; Li, M.; Hosokawa, Y.; Yalikun, Y. A Review on Intelligent Impedance Cytometry Systems: Development, Applications and Advances. Anal. Chim. Acta 2023, 1269, 341424. [Google Scholar] [CrossRef] [PubMed]
- Moore, J.H.; Salahi, A.; Honrado, C.; Warburton, C.; Warren, C.A.; Swami, N.S. Quantifying Bacterial Spore Germination by Single-Cell Impedance Cytometry for Assessment of Host Microbiota Susceptibility to Clostridioides difficile Infection. Biosens. Bioelectron. 2020, 166, 112440. [Google Scholar] [CrossRef] [PubMed]
- Lee, W.-T.; Wu, Y.-N.; Chen, Y.-H.; Wu, S.-R.; Shih, T.-M.; Li, T.-J.; Yang, L.-X.; Yeh, C.-S.; Tsai, P.-J.; Shieh, D.-B. Octahedron Iron Oxide Nanocrystals Prohibited Clostridium difficile Spore Germination and Attenuated Local and Systemic Inflammation. Sci. Rep. 2017, 7, 8124. [Google Scholar] [CrossRef] [PubMed]
- Chen, Y.-H.; Li, T.-J.; Tsai, B.-Y.; Chen, L.-K.; Lai, Y.-H.; Li, M.-J.; Tsai, C.-Y.; Tsai, P.-J.; Shieh, D.-B. Vancomycin-Loaded Nanoparticles Enhance Sporicidal and Antibacterial Efficacy for Clostridium difficile Infection. Front. Microbiol. 2019, 10, e01141. [Google Scholar] [CrossRef] [PubMed]
- Ribis, J.W.; Melo, L.; Shrestha, S.; Giacalone, D.; Rodriguez, E.E.; Shen, A.; Rohlfing, A. Single-Spore Germination Analyses Reveal That Calcium Released during Clostridioides difficile Germination Functions in a Feedforward Loop. mSphere 2023, 8, e00005-23. [Google Scholar] [CrossRef] [PubMed]
- Mazutis, L.; Gilbert, J.; Ung, W.L.; Weitz, D.A.; Griffiths, A.D.; Heyman, J.A. Single-Cell Analysis and Sorting Using Droplet-Based Microfluidics. Nat. Protoc. 2013, 8, 870–891. [Google Scholar] [CrossRef] [PubMed]
- Bernier, L.S.; Junier, P.; Stan, G.-B.; Stanley, C.E. Spores-on-a-Chip: New Frontiers for Spore Research. Trends Microbiol. 2022, 30, 515–518. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Z.; Guo, Q.; Wang, Y.; Huang, H. High-Throughput Screening of Microbial Strains in Large-Scale Microfluidic Droplets. Front. Bioeng. Biotechnol. 2023, 11, 1105277. [Google Scholar] [CrossRef] [PubMed]
- Li, Z.-Y.; Peng, X. Application of Droplet-Based Microfluidics in Microbial Research. Sichuan Da Xue Xue Bao Yi Xue Ban 2023, 54, 673–678. [Google Scholar] [CrossRef] [PubMed]
- Tu, R.; Zhang, Y.; Hua, E.; Bai, L.; Huang, H.; Yun, K.; Wang, M. Droplet-Based Microfluidic Platform for High-Throughput Screening of Streptomyces. Commun. Biol. 2021, 4, 647. [Google Scholar] [CrossRef] [PubMed]
- Calderaro, A.; Chezzi, C. MALDI-TOF MS: A Reliable Tool in the Real Life of the Clinical Microbiology Laboratory. Microorganisms 2024, 12, 322. [Google Scholar] [CrossRef] [PubMed]
- Calderaro, A.; Buttrini, M.; Martinelli, M.; Farina, B.; Moro, T.; Montecchini, S.; Arcangeletti, M.C.; Chezzi, C.; De Conto, F. Rapid Classification of Clostridioides Difficile Strains Using MALDI-TOF MS Peak-Based Assay in Comparison with PCR-Ribotyping. Microorganisms 2021, 9, 661. [Google Scholar] [CrossRef] [PubMed]
- Stauning, M.A.; Jensen, C.S.; Staalsøe, T.; Kurtzhals, J.A.L. Detection and Quantification of Plasmodium falciparum in Human Blood by Matrix-Assisted Laser Desorption/Ionization Time-of-Flight Mass Spectrometry: A Proof of Concept Study. Malar. J. 2023, 22, 285. [Google Scholar] [CrossRef] [PubMed]
- Calderaro, A.; Buttrini, M.; Farina, B.; Montecchini, S.; Martinelli, M.; Arcangeletti, M.C.; Chezzi, C.; De Conto, F. Characterization of Clostridioides difficile Strains from an Outbreak Using MALDI-TOF Mass Spectrometry. Microorganisms 2022, 10, 1477. [Google Scholar] [CrossRef]
- Carneiro, L.G.; Pinto, T.C.A.; Moura, H.; Barr, J.; Domingues, R.M.C.P.; Ferreira, E.D.O. MALDI-TOF MS: An Alternative Approach for Ribotyping Clostridioides difficile Isolates in Brazil. Anaerobe 2021, 69, 102351. [Google Scholar] [CrossRef] [PubMed]
- Emele, M.F.; Joppe, F.M.; Riedel, T.; Overmann, J.; Rupnik, M.; Cooper, P.; Kusumawati, R.L.; Berger, F.K.; Laukien, F.; Zimmermann, O.; et al. Proteotyping of Clostridioides difficile as Alternate Typing Method to Ribotyping Is Able to Distinguish the Ribotypes RT027 and RT176 From Other Ribotypes. Front. Microbiol. 2019, 10, 2087. [Google Scholar] [CrossRef] [PubMed]
- Abdrabou, A.M.M.; Sy, I.; Bischoff, M.; Arroyo, M.J.; Becker, S.L.; Mellmann, A.; von Müller, L.; Gärtner, B.; Berger, F.K. Discrimination between Hypervirulent and Non-Hypervirulent Ribotypes of Clostridioides difficile by MALDI-TOF Mass Spectrometry and Machine Learning. Eur. J. Clin. Microbiol. Infect. Dis. 2023, 42, 1373–1381. [Google Scholar] [CrossRef] [PubMed]
- McDonald, L.C.; Gerding, D.N.; Johnson, S.; Bakken, J.S.; Carroll, K.C.; Coffin, S.E.; Dubberke, E.R.; Garey, K.W.; Gould, C.V.; Kelly, C.; et al. Clinical Practice Guidelines for Clostridium difficile Infection in Adults and Children: 2017 Update by the Infectious Diseases Society of America (IDSA) and Society for Healthcare Epidemiology of America (SHEA). Clin. Infect. Dis. 2018, 66, e1–e48. [Google Scholar] [CrossRef] [PubMed]
- Martínez-Meléndez, A.; Camacho-Ortiz, A.; Morfin-Otero, R.; Maldonado-Garza, H.J.; Villarreal-Treviño, L.; Garza-González, E. Current Knowledge on the Laboratory Diagnosis of Clostridium difficile Infection. World J. Gastroenterol. 2017, 23, 1552–1567. [Google Scholar] [CrossRef] [PubMed]
- Jia, X.; Wang, Y.; Zhang, W.; Li, W.; Bai, L.; Lu, J.; Ma, C.; Wu, Y. A Rapid Multiplex Real-Time PCR Detection of Toxigenic Clostridioides difficile Directly from Fecal Samples. 3 Biotech 2023, 13, 54. [Google Scholar] [CrossRef] [PubMed]
- Polage, C.R.; Gyorke, C.E.; Kennedy, M.A.; Leslie, J.L.; Chin, D.L.; Wang, S.; Nguyen, H.H.; Huang, B.; Tang, Y.-W.; Lee, L.W.; et al. Overdiagnosis of Clostridium difficile Infection in the Molecular Test Era. JAMA Intern. Med. 2015, 175, 1792–1801. [Google Scholar] [CrossRef] [PubMed]
- Lloyd, A.; Pasupuleti, V.; Thota, P.; Pant, C.; Rolston, D.D.K.; Hernandez, A.V.; Benites-Zapata, V.A.; Fraser, T.G.; Donskey, C.J.; Deshpande, A. Accuracy of Loop-Mediated Isothermal Amplification for the Diagnosis of Clostridioides difficile Infection: A Systematic Review. Diagn. Microbiol. Infect. Dis. 2015, 82, 4–10. [Google Scholar] [CrossRef] [PubMed]
- Buss, S.N.; Leber, A.; Chapin, K.; Fey, P.D.; Bankowski, M.J.; Jones, M.K.; Rogatcheva, M.; Kanack, K.J.; Bourzac, K.M. Multicenter Evaluation of the BioFire FilmArray Gastrointestinal Panel for Etiologic Diagnosis of Infectious Gastroenteritis. J. Clin. Microbiol. 2015, 53, 915–925. [Google Scholar] [CrossRef] [PubMed]
- Zhan, Z.; Guo, J.; Xiao, Y.; He, Z.; Xia, X.; Huang, Z.; Guan, H.; Ling, X.; Li, J.; Diao, B.; et al. Comparison of BioFire FilmArray Gastrointestinal Panel versus Luminex xTAG Gastrointestinal Pathogen Panel (xTAG GPP) for Diarrheal Pathogen Detection in China. Int. J. Infect. Dis. 2020, 99, 414–420. [Google Scholar] [CrossRef] [PubMed]
- Lee, H.S.; Plechot, K.; Gohil, S.; Le, J. Clostridium difficile: Diagnosis and the Consequence of Over Diagnosis. Infect. Dis. Ther. 2021, 10, 687–697. [Google Scholar] [CrossRef]
- Mah, R.; Locher, K.; Steiner, T.S.; Stefanovic, A. Clostridioides difficile PCR Tcdb Cycle Threshold Predicts Toxin EIA Positivity but Not Severity of Infection. Anaerobe 2023, 82, 102755. [Google Scholar] [CrossRef] [PubMed]
- Truong, C.; Schroeder, L.F.; Gaur, R.; Anikst, V.E.; Komo, I.; Watters, C.; McCalley, E.; Kulik, C.; Pickham, D.; Lee, N.J.; et al. Clostridium difficile Rates in Asymptomatic and Symptomatic Hospitalized Patients Using Nucleic Acid Testing. Diagn. Microbiol. Infect. Dis. 2017, 87, 365–370. [Google Scholar] [CrossRef] [PubMed]
- Yan, W.X.; Hunnewell, P.; Alfonse, L.E.; Carte, J.M.; Keston-Smith, E.; Sothiselvam, S.; Garrity, A.J.; Chong, S.; Makarova, K.S.; Koonin, E.V.; et al. Functionally Diverse Type V CRISPR-Cas Systems. Science 2019, 363, 88–91. [Google Scholar] [CrossRef] [PubMed]
- Kaminski, M.M.; Abudayyeh, O.O.; Gootenberg, J.S.; Zhang, F.; Collins, J.J. CRISPR-Based Diagnostics. Nat. Biomed. Eng. 2021, 5, 643–656. [Google Scholar] [CrossRef] [PubMed]
- Talwar, C.S.; Park, K.-H.; Ahn, W.-C.; Kim, Y.-S.; Kwon, O.S.; Yong, D.; Kang, T.; Woo, E. Detection of Infectious Viruses Using CRISPR-Cas12-Based Assay. Biosensors 2021, 11, 301. [Google Scholar] [CrossRef] [PubMed]
- Fu, X.; Sun, J.; Ye, Y.; Zhang, Y.; Sun, X. A Rapid and Ultrasensitive Dual Detection Platform Based on Cas12a for Simultaneous Detection of Virulence and Resistance Genes of Drug-Resistant Salmonella. Biosens. Bioelectron. 2022, 195, 113682. [Google Scholar] [CrossRef] [PubMed]
- Jiang, T.; Hu, X.; Lin, C.; Xia, Z.; Yang, W.; Zhu, Y.; Xu, H.; Tang, H.; Shen, J. Rapid Visualization of Clostridioides difficile Toxins A and B by Multiplex RPA Combined with CRISPR-Cas12a. Front. Microbiol. 2023, 14, 1119395. [Google Scholar] [CrossRef] [PubMed]
- Murdoch, C.C.; Skaar, E.P. Nutritional Immunity: The Battle for Nutrient Metals at the Host-Pathogen Interface. Nat. Rev. Microbiol. 2022, 20, 657–670. [Google Scholar] [CrossRef] [PubMed]
- Perry, J.D.; Asir, K.; Halimi, D.; Orenga, S.; Dale, J.; Payne, M.; Carlton, R.; Evans, J.; Gould, F.K. Evaluation of a Chromogenic Culture Medium for Isolation of Clostridium difficile within 24 Hours. J. Clin. Microbiol. 2010, 48, 3852–3858. [Google Scholar] [CrossRef] [PubMed]
- Han, S.B.; Chang, J.; Shin, S.H.; Park, K.G.; Lee, G.D.; Park, Y.G.; Park, Y.-J. Performance of chromID Clostridium difficile Agar Compared with BBL C. difficile Selective Agar for Detection of C. difficile in Stool Specimens. Ann. Lab. Med. 2014, 34, 376–379. [Google Scholar] [CrossRef] [PubMed]
- Yang, J.J.; Nam, Y.S.; Kim, M.J.; Cho, S.Y.; You, E.; Soh, Y.S.; Lee, H.J. Evaluation of a Chromogenic Culture Medium for the Detection of Clostridium difficile. Yonsei Med. J. 2014, 55, 994–998. [Google Scholar] [CrossRef] [PubMed]
- Lister, M.; Stevenson, E.; Heeg, D.; Minton, N.P.; Kuehne, S.A. Comparison of Culture Based Methods for the Isolation of Clostridium difficile from Stool Samples in a Research Setting. Anaerobe 2014, 28, 226–229. [Google Scholar] [CrossRef] [PubMed]
- Mirzaei, E.Z.; Rajabnia, M.; Sadeghi, F.; Ferdosi-Shahandashti, E.; Sadeghi-Haddad-Zavareh, M.; Khafri, S.; Davoodabadi, A. Diagnosis of Clostridioides difficile Infection by Toxigenic Culture and PCR Assay. Iran. J. Microbiol. 2018, 10, 287–293. [Google Scholar] [PubMed]
- Raeisi, H.; Azimirad, M.; Asadzadeh Aghdaei, H.; Yadegar, A.; Zali, M.R. Rapid-Format Recombinant Antibody-Based Methods for the Diagnosis of Clostridioides difficile Infection: Recent Advances and Perspectives. Front. Microbiol. 2022, 13, 1043214. [Google Scholar] [CrossRef] [PubMed]
- Ramos, C.P.; Lopes, E.O.; Diniz, A.N.; Lobato, F.C.F.; Vilela, E.G.; Silva, R.O.S. Evaluation of Glutamate Dehydrogenase (GDH) and Toxin A/B Rapid Tests for Clostridioides (Prev. Clostridium) difficile Diagnosis in a University Hospital in Minas Gerais, Brazil. Braz. J. Microbiol. 2020, 51, 1139–1143. [Google Scholar] [CrossRef] [PubMed]
- Diniz, A.N.; Coura, F.M.; Rupnik, M.; Adams, V.; Stent, T.L.; Rood, J.I.; de Oliveira, C.A.; Lobato, F.C.F.; Silva, R.O.S. The Incidence of Clostridioides Difficile and Clostridium perfringens netF-Positive Strains in Diarrheic Dogs. Anaerobe 2018, 49, 58–62. [Google Scholar] [CrossRef] [PubMed]
- Liu, C.; Tang, C.; Han, Y.; Xu, Y.; Ni, F.; Jin, K.; Liu, G. A 2-Step Algorithm Combining Glutamate Dehydrogenase and Nucleic Acid Amplification Tests for the Detection of Clostridioides difficile in Stool Specimens. Eur. J. Clin. Microbiol. Infect. Dis. 2021, 40, 345–351. [Google Scholar] [CrossRef] [PubMed]
- Han, D.K.; Oh, J.; Lee, J.; Cho, Y.G.; Park, J.S.; Choi, J.S.; Kim, D.S.; Kwon, J. Paper-Based Multiplex Analytical Device for Simultaneous Detection of Clostridioides difficile Toxins and Glutamate Dehydrogenase. Biosens. Bioelectron. 2021, 176, 112894. [Google Scholar] [CrossRef] [PubMed]
- Ni, Y.; Rosier, B.J.H.M.; van Aalen, E.A.; Hanckmann, E.T.L.; Biewenga, L.; Pistikou, A.-M.M.; Timmermans, B.; Vu, C.; Roos, S.; Arts, R.; et al. A Plug-and-Play Platform of Ratiometric Bioluminescent Sensors for Homogeneous Immunoassays. Nat. Commun. 2021, 12, 4586. [Google Scholar] [CrossRef] [PubMed]
- Adamson, H.; Ajayi, M.O.; Gilroy, K.E.; McPherson, M.J.; Tomlinson, D.C.; Jeuken, L.J.C. Rapid Quantification of C. difficile Glutamate Dehydrogenase and Toxin B (TcdB) with a NanoBiT Split-Luciferase Assay. Anal. Chem. 2022, 94, 8156–8163. [Google Scholar] [CrossRef] [PubMed]
- Hensbergen, P.J.; Klychnikov, O.I.; Bakker, D.; van Winden, V.J.C.; Ras, N.; Kemp, A.C.; Cordfunke, R.A.; Dragan, I.; Deelder, A.M.; Kuijper, E.J.; et al. A Novel Secreted Metalloprotease (CD2830) from Clostridium difficile Cleaves Specific Proline Sequences in LPXTG Cell Surface Proteins. Mol. Cell. Proteom. 2014, 13, 1231–1244. [Google Scholar] [CrossRef] [PubMed]
- Klychnikov, O.I.; Shamorkina, T.M.; Weeks, S.D.; van Leeuwen, H.C.; Corver, J.; Drijfhout, J.W.; van Veelen, P.A.; Sluchanko, N.N.; Strelkov, S.V.; Hensbergen, P.J. Discovery of a New Pro-Pro Endopeptidase, PPEP-2, Provides Mechanistic Insights into the Differences in Substrate Specificity within the PPEP Family. J. Biol. Chem. 2018, 293, 11154–11165. [Google Scholar] [CrossRef] [PubMed]
- Ng, K.K.; Reinert, Z.E.; Corver, J.; Resurreccion, D.; Hensbergen, P.J.; Prescher, J.A. A Bioluminescent Sensor for Rapid Detection of PPEP-1, a Clostridioides difficile Biomarker. Sensors 2021, 21, 7485. [Google Scholar] [CrossRef] [PubMed]
- Crobach, M.J.T.; Planche, T.; Eckert, C.; Barbut, F.; Terveer, E.M.; Dekkers, O.M.; Wilcox, M.H.; Kuijper, E.J. European Society of Clinical Microbiology and Infectious Diseases: Update of the Diagnostic Guidance Document for Clostridium difficile Infection. Clin. Microbiol. Infect. 2016, 22 (Suppl. S4), S63–S81. [Google Scholar] [CrossRef] [PubMed]
- Sandlund, J.; Bartolome, A.; Almazan, A.; Tam, S.; Biscocho, S.; Abusali, S.; Bishop, J.J.; Nolan, N.; Estis, J.; Todd, J.; et al. Ultrasensitive Detection of Clostridioides difficile Toxins A and B by Use of Automated Single-Molecule Counting Technology. J. Clin. Microbiol. 2018, 56, e00908-18. [Google Scholar] [CrossRef] [PubMed]
- Pollock, N.R.; Banz, A.; Chen, X.; Williams, D.; Xu, H.; Cuddemi, C.A.; Cui, A.X.; Perrotta, M.; Alhassan, E.; Riou, B.; et al. Comparison of Clostridioides difficile Stool Toxin Concentrations in Adults with Symptomatic Infection and Asymptomatic Carriage Using an Ultrasensitive Quantitative Immunoassay. Clin. Infect. Dis. 2019, 68, 78–86. [Google Scholar] [CrossRef] [PubMed]
- Banz, A.; Lantz, A.; Riou, B.; Foussadier, A.; Miller, M.; Davies, K.; Wilcox, M. Sensitivity of Single-Molecule Array Assays for Detection of Clostridium difficile Toxins in Comparison to Conventional Laboratory Testing Algorithms. J. Clin. Microbiol. 2018, 56, e00452-18. [Google Scholar] [CrossRef] [PubMed]
- Song, L.; Zhao, M.; Duffy, D.C.; Hansen, J.; Shields, K.; Wungjiranirun, M.; Chen, X.; Xu, H.; Leffler, D.A.; Sambol, S.P.; et al. Development and Validation of Digital Enzyme-Linked Immunosorbent Assays for Ultrasensitive Detection and Quantification of Clostridium difficile Toxins in Stool. J. Clin. Microbiol. 2015, 53, 3204–3212. [Google Scholar] [CrossRef] [PubMed]
- Landry, M.L.; Topal, J.E.; Estis, J.; Katzenbach, P.; Nolan, N.; Sandlund, J. High Agreement Between an Ultrasensitive Clostridioides difficile Toxin Assay and a C. difficile Laboratory Algorithm Utilizing GDH-and-Toxin Enzyme Immunoassays and Cytotoxin Testing. J. Clin. Microbiol. 2020, 58, e01629-19. [Google Scholar] [CrossRef] [PubMed]
- Huang, B.; Li, H.; Jin, D.; Stratton, C.W.; Tang, Y.-W. Real-Time Cellular Analysis for Quantitative Detection of Functional Clostridium difficile Toxin in Stool. Expert. Rev. Mol. Diagn. 2014, 14, 281–291. [Google Scholar] [CrossRef] [PubMed]
- Shen, Y.; Lin, S.; You, P.; Chen, Y.; Luo, Y.; Song, X.; Chen, Y.; Jin, D. Rapid Discrimination between Clinical Clostridioides difficile Infection and Colonization by Quantitative Detection of TcdB Toxin Using a Real-Time Cell Analysis System. Front. Microbiol. 2024, 15, 1348892. [Google Scholar] [CrossRef] [PubMed]
- Konoshenko, M.Y.; Lekchnov, E.A.; Vlassov, A.V.; Laktionov, P.P. Isolation of Extracellular Vesicles: General Methodologies and Latest Trends. Biomed. Res. Int. 2018, 2018, 8545347. [Google Scholar] [CrossRef] [PubMed]
- Elfassy, A.; Kalina, W.V.; French, R.; Nguyen, H.; Tan, C.; Sebastian, S.; Wilcox, M.H.; Davies, K.; Kutzler, M.A.; Jansen, K.U.; et al. Development and Clinical Validation of an Automated Cell Cytotoxicity Neutralization Assay for Detecting Clostridioides difficile Toxins in Clinically Relevant Stools Samples. Anaerobe 2021, 71, 102415. [Google Scholar] [CrossRef] [PubMed]
- Nho, S.W.; Kim, M.; Kim, S.-J.; Foley, S.L.; Nayak, R.; Kweon, O.; Cerniglia, C.E. Pragmatic Strategy for Fecal Specimen Storage and the Corresponding Test Methods for Clostridioides difficile Diagnosis. Pathogens 2021, 10, 1049. [Google Scholar] [CrossRef] [PubMed]
- Stone, L. Nature Milestones in Human Microbiota: Faecal Microbiota Transplantation for Clostridioides difficile Infection. Available online: https://www.nature.com/articles/d42859-019-00008-0 (accessed on 10 June 2024).
- Knoth, C.; Humphries, R.; Johnson, J.K.; Patel, A.; Lima, A.; Silbert, S.; Vinjé, J. Multicenter Evaluation of BioCode GPP for Syndromic Molecular Detection of Gastrointestinal Pathogens from Stool Specimens. J. Clin. Microbiol. 2024, 62, e0154523. [Google Scholar] [CrossRef]
- Alonso, C.D.; Kelly, C.P.; Garey, K.W.; Gonzales-Luna, A.J.; Williams, D.; Daugherty, K.; Cuddemi, C.; Villafuerte-Gálvez, J.; White, N.C.; Chen, X.; et al. Ultrasensitive and Quantitative Toxin Measurement Correlates with Baseline Severity, Severe Outcomes, and Recurrence Among Hospitalized Patients with Clostridioides difficile Infection. Clin. Infect. Dis. 2022, 74, 2142–2149. [Google Scholar] [CrossRef] [PubMed]
- Sandlund, J.; Estis, J.; Katzenbach, P.; Nolan, N.; Hinson, K.; Herres, J.; Pero, T.; Peterson, G.; Schumaker, J.-M.; Stevig, C.; et al. 2356. Increased Clinical Specificity with Ultrasensitive Detection of Clostridioides difficile Toxins: Reduction of Overdiagnosis Compared with Nucleic Acid Amplification Tests. Open Forum Infect. Dis. 2019, 6, S811–S812. [Google Scholar] [CrossRef]
- Ziegler, M.J.; Flores, E.J.; Epps, M.; Hopkins, K.; Glaser, L.; Mull, N.K.; Pegues, D.A. Clostridioides difficile Dynamic Electronic Order Panel, an Effective Automated Intervention to Reduce Inappropriate Inpatient Ordering. Infect. Control Hosp. Epidemiol. 2023, 44, 1294–1299. [Google Scholar] [CrossRef] [PubMed]
- Alsoubani, M.; Chow, J.K.; Rodday, A.M.; Kent, D.; Snydman, D.R. Comparative Effectiveness of Fidaxomicin vs Vancomycin in Populations with Immunocompromising Conditions for the Treatment of Clostridioides difficile Infection: A Single-Center Study. Open Forum Infect. Dis. 2024, 11, ofad622. [Google Scholar] [CrossRef] [PubMed]
- Stoian, M.; Andone, A.; Boeriu, A.; Bândilă, S.R.; Dobru, D.; Laszlo, S. Ștefan; Corău, D.; Arbănași, E.M.; Russu, E.; Stoian, A. COVID-19 and Clostridioides difficile Coinfection Analysis in the Intensive Care Unit. Antibiotics 2024, 13, 367. [Google Scholar] [CrossRef] [PubMed]
Test Method | Type | Sensitivity | Specificity | Time to Result | Cost | Comments |
---|---|---|---|---|---|---|
PCR | Molecular | 80–100% | 87–99% | Hours | High | Detects toxin genes, may over diagnose due to asymptomatic carriage. |
EIA | Immunological | 52–75% | 96–98% | Hours | Low | Detects toxins A and/or B, low sensitivity. |
GDH-EIA | Enzymatic | 50–99% | 70–100% | Hours | Low | Cannot differentiate between toxigenic and non-toxigenic strains. |
TC | Microbiological | 90–95% | 90–95% | 3–5 Days | High | Gold standard, time-consuming, subject to user expertise. |
CCNA | Cell-based | 90–95% | 95–98% | 24–48 h | High | Gold standard for toxin detection, time-consuming. |
MALDI-TOF MS | Mass Spectrometry | 90–100% | 90–100% | Minutes | Medium | Rapid identification of strains, effective for epidemiological studies. |
LAMP | Molecular | 90–100% | 94.5–99.1% | Minutes to Hours | Medium | High sensitivity, simpler than PCR, suitable for point-of-care testing. |
SIMOA | Molecular /Immunoassay | 97.7% (tcdA) 100% (tcdB | 100% | Minutes to Hours | High | Automated, detects individual molecules, high performance in identifying true CDI. |
Singulex Clarity | Molecular/ Immunoassay | 97.7% (tcdA) 100% (tcdB) | 100% | <40 min | High | Automated, high specificity and sensitivity, suitable for standalone CDI diagnostics. |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hulme, J.P. Emerging Diagnostics in Clostridioides difficile Infection. Int. J. Mol. Sci. 2024, 25, 8672. https://doi.org/10.3390/ijms25168672
Hulme JP. Emerging Diagnostics in Clostridioides difficile Infection. International Journal of Molecular Sciences. 2024; 25(16):8672. https://doi.org/10.3390/ijms25168672
Chicago/Turabian StyleHulme, John P. 2024. "Emerging Diagnostics in Clostridioides difficile Infection" International Journal of Molecular Sciences 25, no. 16: 8672. https://doi.org/10.3390/ijms25168672
APA StyleHulme, J. P. (2024). Emerging Diagnostics in Clostridioides difficile Infection. International Journal of Molecular Sciences, 25(16), 8672. https://doi.org/10.3390/ijms25168672