In Vivo PET Detection of Lung Micrometastasis in Mice by Targeting Endothelial VCAM-1 Using a Dual-Contrast PET/MRI Probe
Abstract
:1. Introduction
2. Results
2.1. Non-Radiolabelled VCAM-, IgG- or BSA-MPIO Conjugates
2.1.1. Synthesis and Loading of Conjugates
2.1.2. Ex Vivo Quantitation of VCAM-MPIO Binding in Pulmonary Metastasis Model
2.2. Radiolabelled VCAM-, IgG- or BSA-MPIO Conjugates
In Vitro Binding of [89Zr]-DFO-VCAM-MPIO
2.3. In Vivo Imaging
2.3.1. In Vivo PET Imaging of [89Zr]-DFO-VCAM-MPIO in Pulmonary Metastasis Model
2.3.2. Post Mortem PET Imaging of [89Zr]-DFO-VCAM-MPIO in Pulmonary Metastasis Model
2.4. Ex Vivo Analysis
2.4.1. Ex Vivo Biodistribution of [89Zr]-DFO-VCAM-MPIO
2.4.2. Lung Autoradiography of [89Zr]-DFO-VCAM-MPIO Accumulation in Lungs
3. Discussion
4. Materials and Methods
4.1. Pulmonary Metastasis Mouse Model
4.2. Non-Radiolabelled VCAM-, IgG- or BSA-MPIO Conjugates
4.2.1. Synthesis of Conjugates
4.2.2. Assessment of Antibody Loading
4.2.3. Ex Vivo Assessment of VCAM-MPIO Binding in Pulmonary Metastasis Model
4.3. Radiolabelled VCAM-, IgG- or BSA-MPIO Conjugates
4.3.1. [89Zr]-DFO-VCAM-MPIO and [89Zr]-DFO-IgG-MPIO Synthesis
4.3.2. In Vitro Assessment of [89Zr]-DFO-VCAM-MPIO Binding to VCAM-1
4.4. In Vivo Imaging
4.4.1. In Vivo Assessment of [89Zr]-DFO-VCAM-MPIO Binding in Pulmonary Metastasis Model
4.4.2. Post Mortem Assessment of [89Zr]-DFO-VCAM-MPIO Binding in Pulmonary Metastasis Model
4.5. Ex Vivo Analysis
4.5.1. Ex Vivo Assessment of MPIO Biodistribution
4.5.2. Ex Vivo Autoradiography of MPIO Accumulation in Lungs
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Valastyan, S.; Weinberg, R.A. Tumor Metastasis: Molecular Insights and Evolving Paradigms. Cell 2011, 147, 275–292. [Google Scholar] [CrossRef] [PubMed]
- Weigelt, B.; Peterse, J.L.; van’t Veer, L.J. Breast Cancer Metastasis: Markers and Models. Nat. Rev. Cancer 2005, 5, 591–602. [Google Scholar] [CrossRef] [PubMed]
- Zhao, X.; Wen, X.; Wei, W.; Chen, Y.; Zhu, J.; Wang, C. Clinical Characteristics and Prognoses of Patients Treated Surgically for Metastatic Lung Tumors. Oncotarget 2017, 8, 46491–46497. [Google Scholar] [CrossRef] [PubMed]
- Stella, G.M.; Kolling, S.; Benvenuti, S.; Bortolotto, C. Lung-Seeking Metastases. Cancers 2019, 11, 1010. [Google Scholar] [CrossRef] [PubMed]
- Dishop, M.K.; Kuruvilla, S. Primary and Metastatic Lung Tumors in the Pediatric Population: A Review and 25-Year Experience at a Large Children’s Hospital. Arch. Pathol. Lab. Med. 2008, 132, 1079–1103. [Google Scholar] [CrossRef] [PubMed]
- Chiesa, A.M.; Spinnato, P.; Miceli, M.; Facchini, G. Radiologic Assessment of Osteosarcoma Lung Metastases: State of the Art and Recent Advances. Cells 2021, 10, 553. [Google Scholar] [CrossRef] [PubMed]
- Yu, B.; Zhu, X.; Liang, Z.; Sun, Y.; Zhao, W.; Chen, K. Clinical Usefulness of 18F-FDG PET/CT for the Detection of Distant Metastases in Patients with Non-Small Cell Lung Cancer at Initial Staging: A Meta-Analysis. Cancer Manag. Res. 2018, 10, 1859–1864. [Google Scholar] [CrossRef] [PubMed]
- Akin, O.; Brennan, S.B.; Dershaw, D.D.; Ginsberg, M.S.; Gollub, M.J.; Schöder, H.; Panicek, D.M.; Hricak, H. Advances in Oncologic Imaging. CA A Cancer J. Clin. 2012, 62, 364–393. [Google Scholar] [CrossRef] [PubMed]
- Shen, K.; Liu, B.; Zhou, X.; Ji, Y.; Chen, L.; Wang, Q.; Xue, W. The Evolving Role of 18F-FDG PET/CT in Diagnosis and Prognosis Prediction in Progressive Prostate Cancer. Front. Oncol. 2021, 11, 683793. [Google Scholar] [CrossRef]
- Ben-Haim, S.; Ell, P. 18F-FDG PET and PET/CT in the Evaluation of Cancer Treatment Response. J. Nucl. Med. 2009, 50, 88–99. [Google Scholar] [CrossRef]
- Rampinelli, C.; Calloni, S.F.; Minotti, M.; Bellomi, M. Spectrum of Early Lung Cancer Presentation in Low-Dose Screening CT: A Pictorial Review. Insights Imaging 2016, 7, 449–459. [Google Scholar] [CrossRef] [PubMed]
- Bunyaviroch, T.; Coleman, R.E. PET Evaluation of Lung Cancer. J. Nucl. Med. 2006, 47, 451–469. [Google Scholar] [PubMed]
- Abouzied, M.M.; Crawford, E.S.; Nabi, H.A. 18F-FDG Imaging: Pitfalls and Artifacts. J. Nucl. Med. Technol. 2005, 33, 145–155. [Google Scholar] [PubMed]
- Serres, S.; Soto, M.S.; Hamilton, A.; McAteer, M.A.; Carbonell, W.S.; Robson, M.D.; Ansorge, O.; Khrapitchev, A.; Bristow, C.; Balathasan, L.; et al. Molecular MRI Enables Early and Sensitive Detection of Brain Metastases. Proc. Natl. Acad. Sci. USA 2012, 109, 6674–6679. [Google Scholar] [CrossRef] [PubMed]
- Cheng, V.W.T.; Soto, M.S.; Khrapitchev, A.A.; Perez-Balderas, F.; Zakaria, R.; Jenkinson, M.D.; Middleton, M.R.; Sibson, N.R. VCAM-1–Targeted MRI Enables Detection of Brain Micrometastases from Different Primary Tumors. Clin. Cancer Res. 2019, 25, 533–543. [Google Scholar] [CrossRef]
- Zarghami, N.; Soto, M.S.; Perez-Balderas, F.; Khrapitchev, A.A.; Karali, C.S.; Johanssen, V.A.; Ansorge, O.; Larkin, J.R.; Sibson, N.R. A Novel Molecular Magnetic Resonance Imaging Agent Targeting Activated Leukocyte Cell Adhesion Molecule as Demonstrated in Mouse Brain Metastasis Models. J. Cereb. Blood Flow Metab. 2021, 41, 1592–1607. [Google Scholar] [CrossRef] [PubMed]
- Ley, K.; Laudanna, C.; Cybulsky, M.I.; Nourshargh, S. Getting to the Site of Inflammation: The Leukocyte Adhesion Cascade Updated. Nat. Rev. Immunol. 2007, 7, 678–689. [Google Scholar] [CrossRef] [PubMed]
- Läubli, H.; Borsig, L. Selectins Promote Tumor Metastasis. Semin. Cancer Biol. 2010, 20, 169–177. [Google Scholar] [CrossRef]
- Soto, M.S.; Serres, S.; Anthony, D.C.; Sibson, N.R. Functional Role of Endothelial Adhesion Molecules in the Early Stages of Brain Metastasis. Neuro-Oncology 2014, 16, 540–551. [Google Scholar] [CrossRef]
- Zhang, D.; Bi, J.; Liang, Q.; Wang, S.; Zhang, L.; Han, F.; Li, S.; Qiu, B.; Fan, X.; Chen, W.; et al. VCAM1 Promotes Tumor Cell Invasion and Metastasis by Inducing EMT and Transendothelial Migration in Colorectal Cancer. Front. Oncol. 2020, 10, 1066. [Google Scholar] [CrossRef]
- Cheng, V.W.T.; de Pennington, N.; Zakaria, R.; Larkin, J.R.; Serres, S.; Sarkar, M.; Kirkman, M.A.; Bristow, C.; Croal, P.; Plaha, P.; et al. VCAM-1–Targeted MRI Improves Detection of the Tumor-Brain Interface. Clin. Cancer Res. 2022, 28, 2385–2396. [Google Scholar] [CrossRef] [PubMed]
- Ferjancic, S.; Gil-Bernabe, A.M.; Hill, S.A.; Allen, P.D.; Richardson, P.; Sparey, T.; Savory, E.; McGuffog, J.; Muschel, R.J. VCAM-1 and VAP-1 Recruit Myeloid Cells That Promote Pulmonary Metastasis in Mice. Blood 2013, 121, 3289–3297. [Google Scholar] [CrossRef] [PubMed]
- Khatib, A.-M.; Auguste, P.; Fallavollita, L.; Wang, N.; Samani, A.; Kontogiannea, M.; Meterissian, S.; Brodt, P. Characterization of the Host Proinflammatory Response to Tumor Cells during the Initial Stages of Liver Metastasis. Am. J. Pathol. 2005, 167, 749–759. [Google Scholar] [CrossRef] [PubMed]
- Iagaru, A.; Chawla, S.; Menendez, L.; Conti, P.S. 18F-FDG PET and PET/CT for Detection of Pulmonary Metastases from Musculoskeletal Sarcomas. Nucl. Med. Commun. 2006, 27, 795–802. [Google Scholar] [CrossRef] [PubMed]
- Takalkar, A.M.; El-Haddad, G.; Lilien, D.L. FDG-PET and PET/CT—Part II. Indian J. Radiol. Imaging 2008, 18, 17–36. [Google Scholar] [CrossRef]
- Bala, G.; Blykers, A.; Xavier, C.; Descamps, B.; Broisat, A.; Ghezzi, C.; Fagret, D.; Van Camp, G.; Caveliers, V.; Vanhove, C.; et al. Targeting of Vascular Cell Adhesion Molecule-1 by 18F-Labelled Nanobodies for PET/CT Imaging of Inflamed Atherosclerotic Plaques. Eur. Heart J.–Cardiovasc. Imaging 2016, 17, 1001–1008. [Google Scholar] [CrossRef] [PubMed]
- Zhang, X.; Liu, C.; Hu, F.; Zhang, Y.; Wang, J.; Gao, Y.; Jiang, Y.; Zhang, Y.; Lan, X. PET Imaging of VCAM-1 Expression and Monitoring Therapy Response in Tumor with a 68Ga-Labeled Single Chain Variable Fragment. Mol. Pharm. 2018, 15, 609–618. [Google Scholar] [CrossRef] [PubMed]
- Yan, Y.; Liu, Y.; Li, T.; Liang, Q.; Thakur, A.; Zhang, K.; Liu, W.; Xu, Z.; Xu, Y. Functional Roles of Magnetic Nanoparticles for the Identification of Metastatic Lymph Nodes in Cancer Patients. J. Nanobiotechnol. 2023, 21, 337. [Google Scholar] [CrossRef] [PubMed]
- Veit, P.; Ruehm, S.; Kuehl, H.; Stergar, H.; Mueller, S.; Bockisch, A.; Antoch, G. Lymph Node Staging with Dual-Modality PET/CT: Enhancing the Diagnostic Accuracy in Oncology. Eur. J. Radiol. 2006, 58, 383–389. [Google Scholar] [CrossRef]
- Madeddu, G.; Spanu, A. Use of Tomographic Nuclear Medicine Procedures, SPECT and Pinhole SPECT, with Cationic Lipophilic Radiotracers for the Evaluation of Axillary Lymph Node Status in Breast Cancer Patients. Eur. J. Nucl. Med. Mol. Imaging 2004, 31, S23–S34. [Google Scholar] [CrossRef]
- Zhang, F.; Zhu, L.; Huang, X.; Niu, G.; Chen, S. Differentiation of Reactive and Tumor Metastatic Lymph Nodes with Diffusion-Weighted and SPIO Enhanced MRI. Mol. Imaging Biol. 2013, 15, 40–47. [Google Scholar] [CrossRef] [PubMed]
- Anzai, Y. Superparamagnetic Iron Oxide Nanoparticles: Nodal Metastases and Beyond. Top. Magn. Reason. Imaging 2004, 15, 103–111. [Google Scholar] [CrossRef] [PubMed]
- Triantafyllou, M.; Studer, U.E.; Birkhäuser, F.D.; Fleischmann, A.; Bains, L.J.; Petralia, G.; Christe, A.; Froehlich, J.M.; Thoeny, H.C. Ultrasmall Superparamagnetic Particles of Iron Oxide Allow for the Detection of Metastases in Normal Sized Pelvic Lymph Nodes of Patients with Bladder and/or Prostate Cancer. Eur. J. Cancer 2013, 49, 616–624. [Google Scholar] [CrossRef] [PubMed]
- Motomura, K.; Izumi, T.; Tateishi, S.; Sumino, H.; Noguchi, A.; Horinouchi, T.; Nakanishi, K. Correlation between the Area of High-Signal Intensity on SPIO-Enhanced MR Imaging and the Pathologic Size of Sentinel Node Metastases in Breast Cancer Patients with Positive Sentinel Nodes. BMC Med. Imaging 2013, 13, 32. [Google Scholar] [CrossRef] [PubMed]
- Pouw, J.J.; Grootendorst, M.R.; Klaase, J.M.; van Baarlen, J.; Ten Haken, B. Ex Vivo Sentinel Lymph Node Mapping in Colorectal Cancer Using a Magnetic Nanoparticle Tracer to Improve Staging Accuracy: A Pilot Study. Color. Dis. 2016, 18, 1147–1153. [Google Scholar] [CrossRef] [PubMed]
- Motoyama, S.; Ishiyama, K.; Maruyama, K.; Narita, K.; Minamiya, Y.; Ogawa, J.-I. Estimating the Need for Neck Lymphadenectomy in Submucosal Esophageal Cancer Using Superparamagnetic Iron Oxide-Enhanced Magnetic Resonance Imaging: Clinical Validation Study. World J. Surg. 2012, 36, 83–89. [Google Scholar] [CrossRef] [PubMed]
- McAteer, M.A.; Sibson, N.R.; von Zur Muhlen, C.; Schneider, J.E.; Lowe, A.S.; Warrick, N.; Channon, K.M.; Anthony, D.C.; Choudhury, R.P. In Vivo Magnetic Resonance Imaging of Acute Brain Inflammation Using Microparticles of Iron Oxide. Nat. Med. 2007, 13, 1253–1258. [Google Scholar] [CrossRef] [PubMed]
- McAteer, M.A.; Schneider, J.E.; Ali, Z.A.; Warrick, N.; Bursill, C.A.; von Zur Muhlen, C.; Greaves, D.R.; Neubauer, S.; Channon, K.M.; Choudhury, R.P. Magnetic Resonance Imaging of Endothelial Adhesion Molecules in Mouse Atherosclerosis Using Dual-Targeted Microparticles of Iron Oxide. Arterioscler. Thromb. Vasc. Biol. 2008, 28, 77–83. [Google Scholar] [CrossRef] [PubMed]
- Serres, S.; Mardiguian, S.; Campbell, S.J.; McAteer, M.A.; Akhtar, A.; Krapitchev, A.; Choudhury, R.P.; Anthony, D.C.; Sibson, N.R. VCAM-1-Targeted Magnetic Resonance Imaging Reveals Subclinical Disease in a Mouse Model of Multiple Sclerosis. FASEB J. Off. Publ. Fed. Am. Soc. Exp. Biol. 2011, 25, 4415–4422. [Google Scholar] [CrossRef]
- Duffy, B.A.; Choy, M.; Riegler, J.; Wells, J.A.; Anthony, D.C.; Scott, R.C.; Lythgoe, M.F. Imaging Seizure-Induced Inflammation Using an Antibody Targeted Iron Oxide Contrast Agent. NeuroImage 2012, 60, 1149–1155. [Google Scholar] [CrossRef]
- Patel, N.; Duffy, B.A.; Badar, A.; Lythgoe, M.F.; Årstad, E. Bimodal Imaging of Inflammation with SPECT/CT and MRI Using Iodine-125 Labeled VCAM-1 Targeting Microparticle Conjugates. Bioconjugate Chem. 2015, 26, 1542–1549. [Google Scholar] [CrossRef] [PubMed]
- Melemenidis, S.; Jefferson, A.; Ruparelia, N.; Akhtar, A.M.; Xie, J.; Allen, D.; Hamilton, A.; Larkin, J.R.; Perez-Balderas, F.; Smart, S.C.; et al. Molecular Magnetic Resonance Imaging of Angiogenesis In Vivo Using Polyvalent Cyclic RGD-Iron Oxide Microparticle Conjugates. Theranostics 2015, 5, 515–529. [Google Scholar] [CrossRef] [PubMed]
- Kang, H.G.; Tashima, H.; Wakizaka, H.; Nishikido, F.; Higuchi, M.; Takahashi, M.; Yamaya, T. Submillimeter-Resolution PET for High-Sensitivity Mouse Brain Imaging. J. Nucl. Med. 2023, 64, 978–985. [Google Scholar] [CrossRef] [PubMed]
- Workman, P.; Aboagye, E.O.; Balkwill, F.; Balmain, A.; Bruder, G.; Chaplin, D.J.; Double, J.A.; Everitt, J.; Farningham, D.A.H.; Glennie, M.J.; et al. Guidelines for the Welfare and Use of Animals in Cancer Research. Br. J. Cancer 2010, 102, 1555–1577. [Google Scholar] [CrossRef] [PubMed]
- Perez-Balderas, F.; van Kasteren, S.I.; Aljabali, A.A.A.; Wals, K.; Serres, S.; Jefferson, A.; Soto, M.S.; Khrapitchev, A.A.; Larkin, J.R.; Bristow, C.; et al. Covalent Assembly of Nanoparticles as a Peptidase-Degradable Platform for Molecular MRI. Nat. Commun. 2017, 8, 14254. [Google Scholar] [CrossRef] [PubMed]
- Knight, J.C.; Paisey, S.J.; Dabkowski, A.M.; Marculescu, C.; Williams, A.S.; Marshall, C.; Cornelissen, B. Scaling-down Antibody Radiolabeling Reactions with Zirconium-89. Dalton Trans. 2016, 45, 6343–6347. [Google Scholar] [CrossRef]
- Jefferson, A.; Wijesurendra, R.S.; McAteer, M.A.; Digby, J.E.; Douglas, G.; Bannister, T.; Perez-Balderas, F.; Bagi, Z.; Lindsay, A.C.; Choudhury, R.P. Molecular Imaging with Optical Coherence Tomography Using Ligand-Conjugated Microparticles That Detect Activated Endothelial Cells: Rational Design through Target Quantification. Atherosclerosis 2011, 219, 579–587. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Melemenidis, S.; Knight, J.C.; Kersemans, V.; Perez-Balderas, F.; Zarghami, N.; Soto, M.S.; Cornelissen, B.; Muschel, R.J.; Sibson, N.R. In Vivo PET Detection of Lung Micrometastasis in Mice by Targeting Endothelial VCAM-1 Using a Dual-Contrast PET/MRI Probe. Int. J. Mol. Sci. 2024, 25, 7160. https://doi.org/10.3390/ijms25137160
Melemenidis S, Knight JC, Kersemans V, Perez-Balderas F, Zarghami N, Soto MS, Cornelissen B, Muschel RJ, Sibson NR. In Vivo PET Detection of Lung Micrometastasis in Mice by Targeting Endothelial VCAM-1 Using a Dual-Contrast PET/MRI Probe. International Journal of Molecular Sciences. 2024; 25(13):7160. https://doi.org/10.3390/ijms25137160
Chicago/Turabian StyleMelemenidis, Stavros, James C. Knight, Veerle Kersemans, Francisco Perez-Balderas, Niloufar Zarghami, Manuel Sarmiento Soto, Bart Cornelissen, Ruth J. Muschel, and Nicola R. Sibson. 2024. "In Vivo PET Detection of Lung Micrometastasis in Mice by Targeting Endothelial VCAM-1 Using a Dual-Contrast PET/MRI Probe" International Journal of Molecular Sciences 25, no. 13: 7160. https://doi.org/10.3390/ijms25137160
APA StyleMelemenidis, S., Knight, J. C., Kersemans, V., Perez-Balderas, F., Zarghami, N., Soto, M. S., Cornelissen, B., Muschel, R. J., & Sibson, N. R. (2024). In Vivo PET Detection of Lung Micrometastasis in Mice by Targeting Endothelial VCAM-1 Using a Dual-Contrast PET/MRI Probe. International Journal of Molecular Sciences, 25(13), 7160. https://doi.org/10.3390/ijms25137160