Genetic and Epigenetic Association of FOXP3 with Papillary Thyroid Cancer Predisposition
Abstract
:1. Introduction
2. Results
3. Discussion
4. Materials and Methods
4.1. Study Subjects
4.2. Genotype Analysis
4.3. Bioinformatic Prediction of CpG Islands Upstream the Promoter Region of FOXP3 Gene
4.4. Combined Bisulfite Restriction Analysis
4.5. Statistical Analysis
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Chmielik, E.; Rusinek, D.; Oczko-Wojciechowska, M.; Jarzab, M.; Krajewska, J.; Czarniecka, A.; Jarzab, B. Heterogeneity of Thyroid Cancer. Pathobiology 2018, 85, 117–129. [Google Scholar] [CrossRef] [PubMed]
- Seib, C.D.; Sosa, J.A. Evolving Understanding of the Epidemiology of Thyroid Cancer. Endocrinol. Metab. Clin. N. Am. 2019, 48, 23–35. [Google Scholar] [CrossRef] [PubMed]
- Abdullah, M.I.; Junit, S.M.; Ng, K.L.; Jayapalan, J.J.; Karikalan, B.; Hashim, O.H. Papillary Thyroid Cancer: Genetic Alterations and Molecular Biomarker Investigations. Int. J. Med. Sci. 2019, 16, 450–460. [Google Scholar] [CrossRef] [PubMed]
- Rebaï, M.; Rebaï, A. Molecular Genetics of Thyroid Cancer. Genet. Res. 2016, 98, e7. [Google Scholar] [CrossRef] [PubMed]
- Saenko, V.A.; Rogounovitch, T.I. Genetic Polymorphism Predisposing to Differentiated Thyroid Cancer: A Review of Major Findings of the Genome-Wide Association Studies. Endocrinol. Metab. 2018, 33, 164–174. [Google Scholar] [CrossRef] [PubMed]
- Sun, L.; Wang, Z.; Lu, T.; Manolio, T.A.; Paterson, A.D. eXclusionarY: 10 years later, where are the sex chromosomes in GWASs? Am. J. Hum. Genet. 2023, 110, 903–912. [Google Scholar] [CrossRef] [PubMed]
- Leclair, K.; Bell, K.J.L.; Furuya-Kanamori, L.; Doi, S.A.; Francis, D.O.; Davies, L. Evaluation of Gender Inequity in Thyroid Cancer Diagnosis: Differences by Sex in US Thyroid Cancer Incidence Compared with a Meta-Analysis of Subclinical Thyroid Cancer Rates at Autopsy. JAMA Intern. Med. 2021, 181, 1351–1358. [Google Scholar] [CrossRef] [PubMed]
- Rahbari, R.; Zhang, L.; Kebebew, E. Thyroid Cancer Gender Disparity. Future Oncol. 2010, 6, 1771–1779. [Google Scholar] [CrossRef]
- Sun, Z.; Fan, J.; Wang, Y. X-Chromosome Inactivation and Related Diseases. Genet. Res. 2022, 2022, 1–8. [Google Scholar] [CrossRef] [PubMed]
- Spatz, A.; Borg, C.; Feunteun, J. X-Chromosome Genetics and Human Cancer. Nat. Rev. Cancer 2004, 4, 617–629. [Google Scholar] [CrossRef] [PubMed]
- Achilla, C.; Papavramidis, T.; Angelis, L.; Chatzikyriakidou, A. The Implication of X-Linked Genetic Polymorphisms in Susceptibility and Sexual Dimorphism of Cancer. Anticancer Res. 2022, 42, 2261–2276. [Google Scholar] [CrossRef] [PubMed]
- Menon, D.K.; Rosand, J. Finding a Place for Candidate Gene Studies in a Genome-Wide Association Study World. JAMA Netw. Open 2021, 4, e2118594. [Google Scholar] [CrossRef] [PubMed]
- Moore, S.R. Commentary: What is the case for candidate gene approaches in the era of high-throughput genomics? A response to Border and Keller. J. Child Psychol. Psychiatry 2017, 58, 331–334. [Google Scholar] [CrossRef] [PubMed]
- Szylberg, A.; Karbownik, D.; Marszaek, A. The Role of FOXP3 in Human Cancers. Anticancer Res. 2016, 36, 3789–3794. [Google Scholar] [PubMed]
- Chen, Y.; Qi, X.; Bian, C.; Ling, C.; Yi, T.; Mu, X.; Zhao, X. The association of FOXP3 gene polymorphisms with cancer susceptibility: A comprehensive systemic review and meta-analysis. Biosci. Rep. 2019, 39, BSR20181809. [Google Scholar] [CrossRef]
- Cheng, Z.; Guo, Y.; Ming, L. Functional Foxp3 polymorphisms and the susceptibility to cancer: An update meta-analysis. Medicine 2018, 97, e11927. [Google Scholar] [CrossRef] [PubMed]
- Felgueiras, J.; Jerónimo, C.; Fardilha, M. Protein phosphatase 1 in tumorigenesis: Is it worth a closer look? Biochim. Biophys. Acta Rev. Cancer 2020, 1874, 188433. [Google Scholar] [CrossRef] [PubMed]
- Tian, T.; Bi, H.; Zhang, D.; Liu, Y.; Sun, H.; Jia, C.; Zheng, T.; Huang, H.; Fu, J.; Zhu, L.; et al. Methylation of Three Genes Encoded by X Chromosome in Blood Leukocytes and Colorectal Cancer Risk. Cancer Med. 2021, 10, 4964–4976. [Google Scholar] [CrossRef] [PubMed]
- Ferreira, M.A.R.; Mathur, R.; Vonk, J.M.; Szwajda, A.; Brumpton, B.; Granell, R.; Brew, B.K.; Ullemar, V.; Lu, Y.; Jiang, Y.; et al. Genetic Architectures of Childhood- and Adult-Onset Asthma Are Partly Distinct. Am. J. Hum. Genet. 2019, 104, 665–684. [Google Scholar] [CrossRef] [PubMed]
- Bamba, C.; Rohilla, M.; Kumari, A.; Kaur, A.; Srivastava, P. Influence of forkhead box protein 3 gene polymorphisms in recurrent pregnancy loss: A meta-analysis. Placenta 2024, 146, 79–88. [Google Scholar] [CrossRef] [PubMed]
- Mailer, R.K.W. Alternative Splicing of FOXP3-Virtue and Vice. Front. Immunol. 2018, 13, 530. [Google Scholar] [CrossRef] [PubMed]
- Sullivan, G.M.; Feinn, R.S. Do You Have Power? Considering Type II Error in Medical Education. J. Grad. Med. Educ. 2021, 13, 753–756. [Google Scholar] [CrossRef] [PubMed]
- Jiang, W.; Zheng, L.; Xu, L.; Zhang, Y.; Liu, X.; Hu, L.; Wang, X. Association between FOXP3 Gene Polymorphisms and Risk of Differentiated Thyroid Cancer in Chinese Han Population. J. Clin. Lab. Anal. 2017, 31, e22104. [Google Scholar] [CrossRef] [PubMed]
- Flauzino, T.; Alfieri, D.F.; de Carvalho Jennings Pereira, W.L.; Oliveira, S.R.; Kallaur, A.P.; Lozovoy, M.A.B.; Kaimen-Maciel, D.R.; de Oliveira, K.B.; Simão, A.N.C.; Reiche, E.M.V. The Rs3761548 FOXP3 Variant Is Associated with Multiple Sclerosis and Transforming Growth Factor Β1 Levels in Female Patients. Inflamm. Res. 2019, 68, 933–943. [Google Scholar] [CrossRef] [PubMed]
- Kamal, A.; Hosny, M.; Abd Elwahab, A.; Shawki Kamal, Y.; Shehata, H.S.; Hassan, A. FOXP3 Rs3761548 Gene Variant and Interleukin-35 Serum Levels as Biomarkers in Patients with Multiple Sclerosis. Rev. Neurol. 2021, 177, 647–654. [Google Scholar] [CrossRef] [PubMed]
- Zheng, L.; Wang, X.; Xu, L.; Wang, N.; Cai, P.; Liang, T.; Hu, L. FOXP3 Gene Polymorphisms and Haplotypes Associate with Susceptibility of Graves’ Disease in Chinese Han Population. Int. Immunopharmacol. 2015, 25, 425–431. [Google Scholar] [CrossRef] [PubMed]
- Jahan, P.; Ramachander, V.R.V.; Maruthi, G.; Nalini, S.; Latha, K.P.; Murthy, T.S.R. FOXP3 Promoter Polymorphism (Rs3761548) in Breast Cancer Progression: A Study from India. Tumor Biol. 2014, 35, 3785–3791. [Google Scholar] [CrossRef] [PubMed]
- Chen, L.; Yu, Q.; Liu, B.; Zhu, L. Association of FOXP3 Rs3761548 Polymorphism with Susceptibility to Colorectal Cancer in the Chinese Population. Med. Oncol. 2014, 31, 374. [Google Scholar] [CrossRef] [PubMed]
- Ezzeddini, R.; Somi, M.H.; Taghikhani, M.; Moaddab, S.Y.; Masnadi Shirazi, K.; Shirmohammadi, M.; Eftekharsadat, A.T.; Sadighi Moghaddam, B.; Salek Farrokhi, A. Association of FOXP3 Rs3761548 Polymorphism with Cytokines Concentration in Gastric Adenocarcinoma Patients. Cytokine 2021, 138, 155351. [Google Scholar] [CrossRef] [PubMed]
- Jiang, L.L.; Ruan, L.W. Association between FOXP3 Promoter Polymorphisms and Cancer Risk: A Meta-analysis. Oncol. Lett. 2014, 8, 2795–2799. [Google Scholar] [CrossRef]
- Chen, P.J.; Lin, C.W.; Lu, H.J.; Chuang, C.Y.; Yang, S.F.; Chou, Y.E. The Impact of FOXP3 Polymorphisms on Oral Cancer Progression and Clinicopathological Characteristics. J. Cancer 2023, 14, 1195–1201. [Google Scholar] [CrossRef] [PubMed]
- You, D.; Wang, Y.; Zhang, Y.; Li, Q.; Yu, X.; Yuan, M.; Lan, Z.; Zeng, X.; Zhou, B.; Song, Y.; et al. Association of FOXP3 Promoter Polymorphisms with Susceptibility to Endometrial Cancer in the Chinese Han Women. Medicine 2018, 97, e0582. [Google Scholar] [CrossRef] [PubMed]
- Abdo, M.; Eyad, E. What Is the Relevance of FOXP3 in the Tumor Microenvironment and Cancer Outcomes? Expert. Rev. Clin. Immunol. 2024, 5, 1–7. [Google Scholar] [CrossRef]
- Moarii, M.; Boeva, V.; Vert, J.P.; Reyal, F. Changes in correlation between promoter methylation and gene expression in cancer. BMC Genom. 2015, 28, 873. [Google Scholar] [CrossRef] [PubMed]
- Lakshminarasimhan, R.; Liang, G. The Role of DNA Methylation in Cancer. Adv. Exp. Med. Biol. 2016, 945, 151–172. [Google Scholar] [CrossRef] [PubMed]
- Lee, J.-Y.; Davis, I.; Youth, E.H.H.; Kim, J.; Churchill, G.; Godwin, J.; Korstanje, R.; Beck, S. Misexpression of Genes Lacking CpG Islands Drives Degenerative Changes during Aging. Sci. Adv. 2021, 7, 9111. [Google Scholar] [CrossRef] [PubMed]
- Lal, G.; Zhang, N.; van der Touw, W.; Ding, Y.; Ju, W.; Bottinger, E.P.; Patrick Reid, S.; Levy, D.E.; Bromberg, J.S. Epigenetic Regulation of FOXP3 Expression in Regulatory T Cells by DNA Methylation. J. Immunol. 2009, 182, 259–273. [Google Scholar] [CrossRef] [PubMed]
- Kim, H.P.; Leonard, W.J. CREB/ATF-Dependent T Cell Receptor-Induced FOXP3 Gene Expression: A Role for DNA Methylation. J. Exp. Med. 2007, 204, 1543–1551. [Google Scholar] [CrossRef] [PubMed]
- Alexander, T.A.; Machiela, M.J. LDpop: An interactive online tool to calculate and visualize geographic LD patterns. BMC Bioinform. 2020, 21, 14. [Google Scholar] [CrossRef] [PubMed]
- Oda, J.M.; Hirata, B.K.; Guembarovski, R.L.; Watanabe, M.A. Genetic polymorphism in FOXP3 gene: Imbalance in regulatory T-cell role and development of human diseases. J. Genet. 2013, 92, 163–171. [Google Scholar] [CrossRef] [PubMed]
- Song, P.; Wang, X.W.; Li, H.X.; Li, K.; Liu, L.; Wei, C.; Jian, Z.; Yi, X.L.; Li, Q.; Wang, G.; et al. Association between FOXP3 polymorphisms and vitiligo in a Han Chinese population. Br. J. Dermatol. 2013, 169, 571–578. [Google Scholar] [CrossRef] [PubMed]
- Yu, M.; Tan, X.; Huang, Y. Foxp-3 Variants Are Associated with Susceptibility to Graves’ Disease in Chinese Population. Eur. J. Inflamm. 2017, 15, 113–119. [Google Scholar] [CrossRef]
- Tan, G.; Wang, X.; Zheng, G.; Du, J.; Zhou, F.; Liang, Z.; Wei, W.; Yu, H. Meta-Analysis Reveals Significant Association between FOXP3 Polymorphisms and Susceptibility to Graves’ Disease. J. Int. Med. Res. 2021, 49, 03000605211004199. [Google Scholar] [CrossRef] [PubMed]
- Li, L.; Choi, J.Y.; Lee, K.M.; Sung, H.; Park, S.K.; Oze, I.; Pan, K.F.; You, W.C.; Chen, Y.X.; Fang, J.Y.; et al. DNA Methylation in Peripheral Blood: A Potential Biomarker for Cancer Molecular Epidemiology. J. Epidemiol. 2012, 22, 384–394. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Fan, Z.; Meng, Y.; Liu, S.; Zhan, H. Blood-Based DNA Methylation Signatures in Cancer: A Systematic Review. Biochim. Biophys. Acta Mol. Basis Dis. 2023, 1869, 166583. [Google Scholar] [CrossRef] [PubMed]
- Tang, Q.; Cheng, J.; Cao, X.; Surowy, H.; Burwinkel, B. Blood-Based DNA Methylation as Biomarker for Breast Cancer: A Systematic Review. Clin. Epigenetics 2016, 8, 115. [Google Scholar] [CrossRef] [PubMed]
- Ai, S.; Shen, L.; Guo, J.; Feng, X.; Tang, B. DNA Methylation as a Biomarker for Neuropsychiatric Diseases. Int. J. Neurosci. 2012, 122, 165–176. [Google Scholar] [CrossRef] [PubMed]
- Danstrup, C.S.; Marcussen, M.; Pedersen, I.S.; Jacobsen, H.; Dybkær, K.; Gaihede, M. DNA Methylation Biomarkers in Peripheral Blood of Patients with Head and Neck Squamous Cell Carcinomas. A Systematic Review. PLoS ONE 2020, 15, e0244101. [Google Scholar] [CrossRef]
- Zhao, X.; Zhu, L.; Yin, Q.; Xu, Z.; Jia, Q.; Yang, R.; He, K. F2RL3 Methylation in the Peripheral Blood as a Potential Marker for the Detection of Coronary Heart Disease: A Case-Control Study. Front. Genet. 2022, 13, 833923. [Google Scholar] [CrossRef] [PubMed]
- He, Y.; Na, H.; Li, Y.; Qiu, Z.; Li, W. FOXP3 Rs3761548 Polymorphism Predicts Autoimmune Disease Susceptibility: A Meta-Analysis. Hum. Immunol. 2013, 74, 1665–1671. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Zhang, J.; Liu, H.; He, F.; Chen, A.; Yang, H.; Pi, B.; Ding, J. Meta-Analysis of FOXP3 Gene Rs3761548 and Rs2232365 Polymorphism and Multiple Sclerosis Susceptibility. Medicine 2019, 98, e17224. [Google Scholar] [CrossRef] [PubMed]
- Heydarinezhad, P.; Gholijani, N.; Habibagahi, Z.; Malekmakan, M.R.; Amirghofran, Z. FOXP3 Gene Variants in Systemic Lupus Erythematosus Patients: Association with Disease Susceptibility in Men and Relationship with Abortion in Women. Iran. J. Immunol. 2022, 19, 172–183. [Google Scholar] [CrossRef]
- Wing, J.B.; Tanaka, A.; Sakaguchi, S. Human FOXP3+ Regulatory T Cell Heterogeneity and Function in Autoimmunity and Cancer. Immunity 2019, 50, 302–316. [Google Scholar] [CrossRef] [PubMed]
- Fiyouzi, T.; Pelaez-Prestel, H.F.; Reyes-Manzanas, R.; Lafuente, E.M.; Reche, P.A. Enhancing Regulatory T Cells to Treat Inflammatory and Autoimmune Diseases. Int. J. Mol. Sci. 2023, 24, 7797. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Zheng, S.G. The Secret of FOXP3 Downregulation in the Inflammation Condition. Int. J. Clin. Exp. Pathol. 2012, 5, 624–625. [Google Scholar] [PubMed]
- Liotti, F.; Visciano, C.; Melillo, R.M. Inflammation in Thyroid Oncogenesis. Am. J. Cancer Res. 2012, 2, 286–297. [Google Scholar] [PubMed]
- Febrero, B.; Ruiz-Manzanera, J.J.; Ros-Madrid, I.; Hernández, A.M.; Orenes-Piñero, E.; Rodríguez, J.M. Tumor Microenvironment in Thyroid Cancer: Immune Cells, Patterns, and Novel Treatments. Head Neck 2024, 46, 1486–1499. [Google Scholar] [CrossRef]
- Giri, P.S.; Patel, S.; Begum, R.; Dwivedi, M. Association of FOXP3 and GAGE10 Promoter Polymorphisms and Decreased FOXP3 Expression in Regulatory T Cells with Susceptibility to Generalized Vitiligo in Gujarat Population. Gene 2021, 768, 145295. [Google Scholar] [CrossRef]
- Giri, P.S.; Dwivedi, M.; Laddha, N.C.; Begum, R.; Bharti, A.H. Altered Expression of Nuclear Factor of Activated T Cells, Forkhead Box P3, and Immune-Suppressive Genes in Regulatory T Cells of Generalized Vitiligo Patients. Pigment Cell Melanoma Res. 2020, 33, 566–578. [Google Scholar] [CrossRef] [PubMed]
- Chu, R.; Liu, S.Y.; Vlantis, A.C.; van Hasselt, C.A.; Ng, E.K.; Fan, M.D.; Chen, G.G. Inhibition of FOXP3 in Cancer Cells Induces Apoptosis of Thyroid Cancer Cells. Mol. Cell. Endocrinol. 2015, 399, 228–234. [Google Scholar] [CrossRef] [PubMed]
- Wang, S.; Wu, J.; Ren, J.; Vlantis, A.C.; Li, M.; Liu, S.Y.W.; Ng, E.K.W.; Chan, A.B.W.; Luo, D.C.; Liu, Z.; et al. MicroRNA-125b Interacts with FOXP3 to Induce Autophagy in Thyroid Cancer. Mol. Ther. 2018, 26, 2295–2303. [Google Scholar] [CrossRef]
- Xin, J.; Fu, H.; Zhang, J.; Zou, H.; Li, Q.; Yang, W.; Sun, H. Expression of FOXP3 and TLR4 in Human Papillary Thyroid Carcinoma and Its Clinical Significance. Histol. Histopathol. 2023, 38, 339–347. [Google Scholar] [CrossRef] [PubMed]
- Gong, Z.; Jia, H.; Xue, L.; Li, D.; Zeng, X.; Wei, M.; Liu, Z.; Tong, M.C.F.; Chen, G.G. The Emerging Role of Transcription Factor FOXP3 in Thyroid Cancer. Rev. Endocr. Metab. Disord. 2022, 23, 421–429. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Zhang, C.; Jiang, A.; Lin, A.; Liu, Z.; Cheng, X.; Wang, W.; Cheng, Q.; Zhang, J.; Wei, T.; et al. Potential Anti-Tumor Effects of Regulatory T Cells in the Tumor Microenvironment: A Review. J. Transl. Med. 2024, 22, 293. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.; Gong, R.; Zhao, C.; Lei, K.; Sun, X.; Ren, H. Human FOXP3 and Tumour Microenvironment. Immunology 2023, 168, 248–255. [Google Scholar] [CrossRef] [PubMed]
- Magg, T.; Mannert, J.; Ellwart, J.W.; Schmid, I.; Albert, M.H. Subcellular Localization of FOXP3 in Human Regulatory and Nonregulatory T Cells. Eur. J. Immunol. 2012, 42, 1627–1638. [Google Scholar] [CrossRef] [PubMed]
- Nishikawa, H.; Koyama, S. Mechanisms of Regulatory T Cell Infiltration in Tumors: Implications for Innovative Immune Precision Therapies. J. Immunother. Cancer 2021, 9, e002591. [Google Scholar] [CrossRef] [PubMed]
- Kyle, C. A Handbook for the Interpretation of Laboratory Tests, 4th ed.; Diagnostic Medlab: Auckland, New Zealand, 2008. [Google Scholar]
- Ceccarini, G.; Santini, F.; Vitti, P. Tests of Thyroid Function. In Thyroid Diseases; Vitti, P., Hegedus, L., Eds.; Springer: Cham, Switzerland, 2017; pp. 1–23. [Google Scholar]
- Cekin, N.; Pinarbasi, E.; Bildirici, A.E.; Donmez, G.; Oztemur, Z.; Bulut, O.; Arslan, S. FOXP3 Rs3761548 Polymorphism Is Associated with Knee Osteoarthritis in a Turkish Population. Int. J. Rheum. Dis. 2018, 21, 1779–1786. [Google Scholar] [CrossRef] [PubMed]
- Rice, P. EMBOSS: The European Molecular Open Software Suite. Eur. Mol. Biol. Open Softw. Suite 2000, 16, 276–277. [Google Scholar] [CrossRef] [PubMed]
- Li, L.C.; Dahiya, R. MethPrimer: Designing Primers for Methylation PCRs. Bioinformatics 2002, 18, 1427–1431. [Google Scholar] [CrossRef] [PubMed]
- Tsai, P.C.; Bell, J.T. Power and sample size estimation for epigenome-wide association scans to detect differential DNA methylation. Int. J. Epidemiol. 2015, 44, 1429–1441. [Google Scholar] [CrossRef] [PubMed]
- Purcell, S.; Neale, B.; Todd-Brown, K.; Thomas, L.; Ferreira, M.A.; Bender, D.; Maller, J.; Sklar, P.; de Bakker, P.I.; Daly, M.J.; et al. PLINK: A tool set for whole-genome association and population-based linkage analyses. Am. J. Hum. Genet. 2007, 81, 559–575. [Google Scholar] [CrossRef]
- Sample Size Calculators. Available online: https://www.sample-size.net/ (accessed on 20 June 2024).
- Chen, B.; Craiu, R.V.; Strug, L.J.; Sun, L. The X factor: A robust and powerful approach to X-chromosome-inclusive whole-genome association studies. Genet. Epidemiol. 2021, 45, 694–709. [Google Scholar] [CrossRef] [PubMed]
- Zheng, H.; Lai, V.; Lu, J.; Kang, J.K.; Felger, E.A.; Carroll, N.M.; Burman, K.D.; Wartofsky, L.; Rosen, J.E. Comparing the rate and extent of malignancy in surgically excised thyroid nodules across race and ethnicity. Am. J. Surg. 2022, 223, 617–623. [Google Scholar] [CrossRef] [PubMed]
Genotypes | Patients (n = 136) | Controls (n = 136) | Statistical Model | OR (95% CI) 1 | p-Value |
---|---|---|---|---|---|
rs3761548 | |||||
Males (n = 36) | |||||
C | 17 | 19 | Allelic (A vs. C) | 1.25 (0.5–3.15) | 0.63 |
A | 19 | 17 | |||
Females (n = 100) | |||||
CC | 13 | 28 | Additive (CC vs. CA vs. AA) | 0.03 | |
CA | 60 | 53 | |||
AA | 27 | 19 | |||
AA | 27 | 19 | Homozygous (CC vs. AA) | 0.33 (0.14–0.79) | 0.01 |
CC | 13 | 28 | |||
CC | 13 | 28 | Heterozygous (CA vs. CC) | 2.44 (1.15–5.19) | 0.02 |
CA | 60 | 53 | |||
CC | 13 | 28 | Dominant (CA + AA vs. CC) | 2.6 (1.26–5.39) | 0.01 |
CA + AA | 87 | 72 | |||
CC + CA | 73 | 81 | Recessive (AA vs. CC + CA) | 1.58 (0.81–3.07) | 0.18 |
AA | 27 | 19 | |||
C | 86 | 109 | Allelic (A vs. C) | 1.58 (1.07–2.36) | 0.02 |
A | 114 | 91 | |||
All samples (n = 136) | |||||
C | 103 | 128 | Allelic (A vs. C) | 1.53 (1.06–2.2) | 0.02 |
A | 133 | 108 | |||
rs5953283 | |||||
Males (n = 36) | |||||
A | 15 | 12 | Allelic (G vs. A) | 0.7 (0.27–1.83) | 0.47 |
G | 21 | 24 | |||
Females (n = 100) | |||||
AA | 15 | 19 | Additive (AA vs. AG vs. GG) | 0.42 | |
AG | 39 | 44 | |||
GG | 46 | 37 | |||
GG | 46 | 37 | Homozygous (AA vs. GG) | 0.64 (0.28–1.42) | 0.27 |
AA | 15 | 19 | |||
AA | 15 | 19 | Heterozygous (AG vs. AA) | 1.12 (0.5–2.51) | 0.78 |
AG | 39 | 44 | |||
AA | 15 | 19 | Dominant (AG + GG vs. AA) | 1.32 (0.63–2.79) | 0.45 |
AG + GG | 85 | 81 | |||
AA + AG | 54 | 63 | Recessive (AA vs. CC + CA) | 1.45 (0.82–2.55) | 0.2 |
GG | 46 | 37 | |||
A | 69 | 82 | Allelic (G vs. A) | 1.32 (0.88–1.98) | 0.18 |
G | 131 | 118 | |||
All samples (n = 136) | |||||
A | 84 | 94 | Allelic (G vs. A) | 1.2 (0.83–1.74) | 0.34 |
G | 152 | 142 |
FOXP3 rs3761548 Genotypes | ||||||||
---|---|---|---|---|---|---|---|---|
Female | CC | AC | AA | Total | ||||
Methylation status (positiveness found in heterozygosity +/−) | + | − | + | − | + | − | + | − |
Patient (n = 15) | 3 | 2 | 2 | 3 | 0 | 5 | 5 | 10 |
Control (n = 15) | 0 | 5 | 0 | 5 | 0 | 5 | 0 | 15 |
p-Value = 0.02 | ||||||||
Male | C | A | Total | |||||
Methylation status | + | − | + | − | ||||
Patient (n = 10) | 0 | 5 | 0 | 5 | 0 | 10 | ||
Control (n = 10) | 0 | 5 | 0 | 5 | 0 | 10 | ||
p-Value = 1.00 |
Method | Primer Sequence (5′ → 3′) | PCR Conditions |
---|---|---|
PCR of rs3761548 | F: CTTAACCAGACAGCGTAGAAGG R: CATCATCACCACGCTCTGG | 95 °C for 5 min, 30 cycles of: 94 °C for 30 s, 55 °C for 30 s, 72 °C for 30 s 72 °C for 10 min |
PCR of rs5953283 | F: AGTCTCACTCTGTCACCTAGG R: GGTGTGATGATAGTATTGTGGGG | 95 °C for 5 min, 30 cycles of: 94 °C for 45 s, 65 °C for 45 s (decreasing 0.5 °C/cycle), 72 °C for 1 min 72° for 10 min |
For COBRA analysis | F: ATTGGTTAGTTTTATTTTGGTATTATTT R: AATAAAAAAAACAAAAACAAACAACTAA | 94 °C for 5 min, 5 cycles of: 94 °C for 20 s, 60 °C for 20 s, 72 °C for 20 s 5 cycles of: 94 °C for 20 s, 58 °C for 20 s, 72 °C for 20 s 5 cycles of: 94 °C for 20 s, 56 °C for 20 s, 72 °C for 20 s 5 cycles of: 94 °C for 20 s, 54 °C for 20 s, 72 °C for 20 s 5 cycles of: 94 °C for 20 s, 52 °C for 20 s, 72 °C for 20 s 5 cycles of: 94 °C for 20 s, 51 °C for 20 s, 72 °C for 20 s 10 cycles of: 94 °C for 20 s, 50 °C for 20 s, 72 °C for 20 s 72 °C for 2 min |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Achilla, C.; Chorti, A.; Papavramidis, T.; Angelis, L.; Chatzikyriakidou, A. Genetic and Epigenetic Association of FOXP3 with Papillary Thyroid Cancer Predisposition. Int. J. Mol. Sci. 2024, 25, 7161. https://doi.org/10.3390/ijms25137161
Achilla C, Chorti A, Papavramidis T, Angelis L, Chatzikyriakidou A. Genetic and Epigenetic Association of FOXP3 with Papillary Thyroid Cancer Predisposition. International Journal of Molecular Sciences. 2024; 25(13):7161. https://doi.org/10.3390/ijms25137161
Chicago/Turabian StyleAchilla, Charoula, Angeliki Chorti, Theodosios Papavramidis, Lefteris Angelis, and Anthoula Chatzikyriakidou. 2024. "Genetic and Epigenetic Association of FOXP3 with Papillary Thyroid Cancer Predisposition" International Journal of Molecular Sciences 25, no. 13: 7161. https://doi.org/10.3390/ijms25137161
APA StyleAchilla, C., Chorti, A., Papavramidis, T., Angelis, L., & Chatzikyriakidou, A. (2024). Genetic and Epigenetic Association of FOXP3 with Papillary Thyroid Cancer Predisposition. International Journal of Molecular Sciences, 25(13), 7161. https://doi.org/10.3390/ijms25137161