Alterations in the Structure, Composition, and Organization of Galactosaminoglycan-Containing Proteoglycans and Collagen Correspond to the Progressive Stages of Dupuytren’s Disease
Abstract
:1. Introduction
2. Results
2.1. Distribution of Glycosaminoglycans in DD’s Palmar Fascia
2.2. Structural Characteristics of Sulfated Galactosaminoglycans in DD’s Palmar Fascia
2.3. Proteoglycans and Colagens in DD’s Palmar Fascia
2.4. Urinary Glycosaminoglycans from DD Patients
3. Discussion
4. Material and Methods
4.1. Surgical Specimens
4.2. Surgical Procedure
4.3. Glycosaminoglycan Analysis in Palmar Aponeurosis Samples
4.4. Glycosaminoglycan Analysis in Urine Samples
4.5. Enzymatic Degradation with Chondroitinases AC and ABC
4.6. RNA Extraction, Real-Time Reverse Transcription PCR and qPCR Analysis
4.7. Immunofluorescence, Confocal Microscopy, and Immunohistochemistry
4.8. Coherent Anti-Stokes Raman Scattering (CARS) Microscopy
4.9. Statistical Analysis
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Layton, T.B.; Williams, L.; Nanchahal, J. Dupuytren’s disease: A localised and accessible human fibrotic disorder. Trends Mol. Med. 2023, 29, 218–227. [Google Scholar] [CrossRef] [PubMed]
- Salari, N.; Heydari, M.; Hassanabadi, M.; Kazeminia, M.; Farshchian, N.; Niaparast, M.; Solaymaninasab, Y.; Mohammadi, M.; Shohaimi, S.; Daneshkhah, A. The worldwide prevalence of the Dupuytren disease: A comprehensive systematic review and meta-analysis. J. Orthop. Surg. Res. 2020, 15, 495. [Google Scholar] [CrossRef] [PubMed]
- Kang, Y.M.; Choi, Y.R.; Yun, C.O.; Park, J.O.; Suk, K.S.; Kim, H.S.; Park, M.S.; Lee, B.H.; Lee, H.M.; Moon, S.H. Down-regulation of collagen synthesis and matrix metalloproteinase expression in myofibroblasts from Dupuytren nodule using adenovirus-mediated relaxin gene therapy. J. Orthop. Res. 2014, 32, 515–523. [Google Scholar] [CrossRef] [PubMed]
- Johnston, P.; Chojnowski, A.J.; Davidson, R.K.; Riley, G.P.; Donell, S.T.; Clark, I.M. A complete expression profile of matrix-degrading metalloproteinases in Dupuytren’s disease. J. Hand Surg. Am. 2007, 32, 343–351. [Google Scholar] [CrossRef] [PubMed]
- Oezel, L.; Wohltmann, M.; Gondorf, N.; Wille, J.; Güven, I.; Windolf, J.; Thelen, S.; Jaekel, C.; Grotheer, V. Dupuytren’s Disease Is Mediated by Insufficient TGF-β1 Release and Degradation. Int. J. Mol. Sci. 2023, 24, 15097. [Google Scholar] [CrossRef] [PubMed]
- Ratajczak-Wielgomas, K.; Gosk, J.; Rabczynski, J.; Augoff, K.; Podhorska-Okolow, M.; Gamian, A.; Rutowski, R. Expression of MMP-2, TIMP-2, TGF-beta1, and decorin in Dupuytren’s contracture. Connect. Tissue Res. 2012, 53, 469–477. [Google Scholar] [CrossRef] [PubMed]
- Tripoli, M.; Cordova, A.; Moschella, F. Update on the role of molecular factors and fibroblasts in the pathogenesis of Dupuytren’s disease. J. Cell Commun. Signal 2016, 10, 315–330. [Google Scholar] [CrossRef] [PubMed]
- Verjee, L.S.; Verhoekx, J.S.; Chan, J.K.; Krausgruber, T.; Nicolaidou, V.; Izadi, D.; Davidson, D.; Feldmann, M.; Midwood, K.S.; Nanchahal, J. Unraveling the signaling pathways promoting fibrosis in Dupuytren’s disease reveals TNF as a therapeutic target. Proc. Natl. Acad. Sci. USA 2013, 110, E928–E937. [Google Scholar] [CrossRef]
- Nascimento, P.C.; Kobayashi, E.Y.; Lenzi, L.G.; Dos Santos, J.B.; Nader, H.B.; Faloppa, F. Glycosaminoglycans and Proteoglycans in Palmar Fascia of Patients with Dupuytren. Acta Ortop. Bras. 2016, 24, 98–101. [Google Scholar] [CrossRef]
- van Beuge, M.M.; Ten Dam, E.J.; Werker, P.M.; Bank, R.A. Matrix and cell phenotype differences in Dupuytren’s disease. Fibrogenesis Tissue Repair. 2016, 9, 9. [Google Scholar] [CrossRef]
- Sampaio, L.O.; Nader, H.B. Emergence and structural characteristics of chondroitin sulfates in the animal kingdom. Adv. Pharmacol. 2006, 53, 233–251. [Google Scholar] [PubMed]
- Dreyfuss, J.L.; Regatieri, C.V.; Jarrouge, T.R.; Cavalheiro, R.P.; Sampaio, L.O.; Nader, H.B. Heparan sulfate proteoglycans: Structure, protein interactions and cell signaling. An. Acad. Bras. Cienc. 2009, 81, 409–429. [Google Scholar] [CrossRef] [PubMed]
- Merry, C.L.R.; Lindahl, U.; Couchman, J.; Esko, J.D. Proteoglycans and Sulfated Glycosaminoglycans. In Essentials of Glycobiology, 4th ed.; Varki, A., Cummings, R.D., Esko, J.D., Stanley, P., Hart, G.W., Aebi, M., Mohnen, D., Kinoshita, T., Packer, N.H., Prestegard, J.H., Schnaar, R.L., Seeberger, P.H., Eds.; Cold Spring Harbor Laboratory Press: Cold Spring Harbor, NY, USA, 2022; pp. 217–232. [Google Scholar]
- Varki, A.; Cummings, R.D.; Esko, J.D.; Stanley, P.; Hart, G.W.; Aebi, M.; Mohnen, D.; Kinoshita, T.; Packer, N.H.; Prestegard, J.H.; et al. (Eds.) Essentials of Glycobiology, 4th ed.; Cold Spring Harbor Laboratory Press: Cold Spring Harbor, NY, USA, 2022. [Google Scholar]
- La Gatta, A.; Stellavato, A.; Vassallo, V.; Di Meo, C.; Toro, G.; Iolascon, G.; Schiraldi, C. Hyaluronan and Derivatives: An In Vitro Multilevel Assessment of Their Potential in Viscosupplementation. Polymers 2021, 13, 3208. [Google Scholar] [CrossRef] [PubMed]
- Bonnans, C.; Chou, J.; Werb, Z. Remodelling the extracellular matrix in development and disease. Nat. Rev. Mol. Cell Biol. 2014, 15, 786–801. [Google Scholar] [CrossRef] [PubMed]
- Mouw, J.K.; Ou, G.; Weaver, V.M. Extracellular matrix assembly: A multiscale deconstruction. Nat. Rev. Mol. Cell Biol. 2014, 15, 771–785. [Google Scholar] [CrossRef] [PubMed]
- O’Gorman, D.B.; Vi, L.; Gan, B.S. Molecular mechanisms and treatment strategies for Dupuytren’s disease. Ther. Clin. Risk Manag. 2010, 6, 383–390. [Google Scholar] [PubMed]
- Samulenas, G.; Insodaite, R.; Kunceviciene, E.; Poceviciute, R.; Masionyte, L.; Zitkeviciute, U.; Pilipaityte, L.; Smalinskiene, A. The Role of Functional Polymorphisms in the Extracellular Matrix Modulation-Related Genes on Dupuytren’s Contracture. Genes 2022, 13, 743. [Google Scholar] [CrossRef] [PubMed]
- Hentz, V.R.; Watt, A.J.; Desai, S.S.; Curtin, C. Advances in the Management of Dupuytren Disease Collagenase. Hand Clin. 2012, 28, 551–563. [Google Scholar] [CrossRef] [PubMed]
- Degreef, I.; De Smet, L. Dupuytren disease: On our way to a cure ? Acta Orthop. Belg. 2013, 79, 243–249. [Google Scholar] [PubMed]
- Soreide, E.; Murad, M.H.; Denbeigh, J.M.; Lewallen, E.A.; Dudakovic, A.; Nordsletten, L.; van Wijnen, A.J.; Kakar, S. Treatment of Dupuytren’s contracture: A systematic review. Bone Joint J. 2018, 100-B, 1138–1145. [Google Scholar] [CrossRef]
- Wong, K.; Trudel, G.; Laneuville, O. Intra-articular collagenase injection increases range of motion in a rat knee flexion contracture model. Drug Des. Dev. Ther. 2018, 12, 15–24. [Google Scholar] [CrossRef]
- Grazina, R.; Teixeira, S.; Ramos, R.; Sousa, H.; Ferreira, A.; Lemos, R. Dupuytren’s disease: Where do we stand? Efort Open Rev. 2019, 4, 63–69. [Google Scholar] [CrossRef]
- Nordenskjold, J.; Lauritzson, A.; Walden, M.; Kopylov, P.; Atroshi, I. Surgical fasciectomy versus collagenase injection in treating recurrent Dupuytren disease: Study protocol of a randomised controlled trial. BMJ Open 2019, 9, e024424. [Google Scholar] [CrossRef] [PubMed]
- Ruettermann, M.; Hermann, R.M.; Khatib-Chahidi, K.; Werker, P.M.N. Dupuytren’s Disease-Etiology and Treatment. Dtsch. Arztebl. Int. 2021, 118, 781–788. [Google Scholar] [CrossRef]
- Stevens, C.S.; Pavano, C.; Rodner, C.M. Collagenase Treatment for Dupuytren Contracture of the Metacarpophalangeal Joint After Arthrodesis of the Proximal Interphalangeal Joint. J. Hand Surg. Glob. Online 2023, 5, 843–844. [Google Scholar] [CrossRef]
- De Ketele, A.; Degreef, I. Full-thickness skin grafting in preventing recurrence of Dupuytren’s disease: A systematic review. Hand Surg. Rehabil. 2023, 42, 273–283. [Google Scholar] [CrossRef]
- Satish, L.; LaFramboise, W.A.; Johnson, S.; Vi, L.; Njarlangattil, A.; Raykha, C.; Krill-Burger, J.M.; Gallo, P.H.; O’Gorman, D.B.; Gan, B.S.; et al. Fibroblasts from phenotypically normal palmar fascia exhibit molecular profiles highly similar to fibroblasts from active disease in Dupuytren’s Contracture. BMC Med. Genom. 2012, 5, 15. [Google Scholar] [CrossRef] [PubMed]
- Ushiki, T. Collagen fibers, reticular fibers and elastic fibers. A comprehensive understanding from a morphological viewpoint. Arch. Histol. Cytol. 2002, 65, 109–126. [Google Scholar] [CrossRef] [PubMed]
- Pozzi, A.; Yurchenco, P.D.; Iozzo, R.V. The nature and biology of basement membranes. Matrix Biol. 2017, 57–58, 1–11. [Google Scholar] [CrossRef]
- Alfonso-Rodríguez, C.A.; Garzón, I.; Garrido-Gómez, J.; Oliveira, A.C.X.; Martín-Piedra, M.A.; Scionti, G.; Carriel, V.; Hernandez-Cortes, P.; Campos, A.; Alaminos, M. Identification of Histological Patterns in Clinically Affected and Unaffected Palm Regions in Dupuytren’s Disease. PLoS ONE 2014, 9, e112457. [Google Scholar]
- Scott, J.E. Proteodermatan and proteokeratan sulfate (decorin, lumican/fibromodulin) proteins are horseshoe shaped. Implications for their interactions with collagen. Biochemistry 1996, 35, 8795–8799. [Google Scholar] [CrossRef] [PubMed]
- Reed, C.C.; Iozzo, R.V. The role of decorin in collagen fibrillogenesis and skin homeostasis. Glycoconj. J. 2002, 19, 249–255. [Google Scholar] [CrossRef] [PubMed]
- Chen, D.N.; Smith, L.R.; Khandekar, G.; Patel, P.; Yu, C.K.; Zhang, K.H.; Chen, C.S.; Han, L.; Wells, R.G. Distinct effects of different matrix proteoglycans on collagen fibrillogenesis and cell-mediated collagen reorganization. Sci. Rep. 2020, 10, 19065. [Google Scholar] [CrossRef] [PubMed]
- Hua, R.; Jiang, J.X. Small leucine-rich proteoglycans in physiological and biomechanical function of bone. Matrix Biol. Plus 2021, 11, 100063. [Google Scholar] [CrossRef] [PubMed]
- Maiti, G.; Ashworth, S.; Choi, T.; Chakravarti, S. Molecular cues for immune cells from small leucine-rich repeat proteoglycans in their extracellular matrix-associated and free forms. Matrix Biol. 2023, 123, 48–58. [Google Scholar] [CrossRef] [PubMed]
- Wu, Y.J.; La Pierre, D.P.; Wu, J.; Yee, A.J.; Yang, B.B. The interaction of versican with its binding partners. Cell Res. 2005, 15, 483–494. [Google Scholar] [CrossRef] [PubMed]
- Hagiwara, Y.; Ando, A.; Onoda, Y.; Takemura, T.; Minowa, T.; Hanagata, N.; Tsuchiya, M.; Watanabe, T.; Chimoto, E.; Suda, H.; et al. Coexistence of fibrotic and chondrogenic process in the capsule of idiopathic frozen shoulders. Osteoarthr. Cartil. 2012, 20, 241–249. [Google Scholar] [CrossRef]
- Tubiana, R.; Fahrer, M.; McCullough, C.J. Recurrence and other complications in surgery of Dupuytren’s contracture. Clin. Plast. Surg. 1981, 8, 45–50. [Google Scholar] [CrossRef]
- Tubiana, R. Evaluation of deformities in Dupuytren’s disease. Ann. Chir. Main. 1986, 5, 5–11. [Google Scholar] [CrossRef]
- Tubiana, R.; Dubert, T. Classification of finger deformities due to muscle-tendon imbalance. Chir. Main. 2000, 19, 7–14. [Google Scholar] [CrossRef]
- Franciozi, C.E.S.; Tarini, V.A.F.; Reginato, R.D.; Goncalves, P.R.S.; Medeiros, V.P.; Ferretti, M.; Dreyfuss, J.L.; Nader, H.B.; Faloppa, F. Gradual strenuous running regimen predisposes to osteoarthritis due to cartilage cell death and altered levels of glycosaminoglycans. Osteoarthr. Cartil. 2013, 21, 965–972. [Google Scholar] [CrossRef] [PubMed]
- Mierzwa, A.G.H.; Campos, J.F.; Jesus, M.F.; Nader, H.B.; Lazaretti-Castro, M.; Reginato, R.D. Different doses of strontium ranelate and mechanical vibration modulate distinct responses in the articular cartilage of ovariectomized rats. Osteoarthr. Cartil. 2017, 25, 1179–1188. [Google Scholar] [CrossRef] [PubMed]
- Martins, J.R.; Passerotti, C.C.; Maciel, R.M.; Sampaio, L.O.; Dietrich, C.P.; Nader, H.B. Practical determination of hyaluronan by a new noncompetitive fluorescence-based assay on serum of normal and cirrhotic patients. Anal. Biochem. 2003, 319, 65–72. [Google Scholar] [CrossRef] [PubMed]
- Soler, R.; Bruschini, H.; Martins, J.R.; Dreyfuss, J.L.; Camara, N.O.; Alves, M.T.; Leite, K.R.; Truzzi, J.C.; Nader, H.B.; Srougi, M.; et al. Urinary glycosaminoglycans as biomarker for urothelial injury: Is it possible to discriminate damage from recovery? Urology 2008, 72, 937–942. [Google Scholar] [CrossRef] [PubMed]
- Livak, K.J.; Schmittgen, T.D. Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) Method. Methods 2001, 25, 402–408. [Google Scholar] [CrossRef]
- Cavalheiro, R.P.; Lima, M.A.; Jarrouge-Bouças, T.R.; Viana, G.M.; Lopes, C.C.; Coulson-Thomas, V.J.; Dreyfuss, J.L.; Yates, E.A.; Tersariol, I.L.S.; Nader, H.B. Coupling of vinculin to F-actin demands Syndecan-4 proteoglycan. Matrix Biol. 2017, 63, 23–37. [Google Scholar] [CrossRef]
DD Stages | Chase AC (%) | Chase ABC (%) | ||
---|---|---|---|---|
GlcA-GalNAc6S | GlcA-GalNAc4S | GlcA-GalNAc6S + IdoA-GalNAc6S | GlcA-GalNAc4S + IdoA-GalNAc4S | |
I | 84.9 | 15.1 | 66.1 | 33.9 |
II | 83.6 | 16.4 | 19.3 | 80.8 |
III | 77.2 | 22.8 | 30.7 | 69.3 |
IV | 41.5 | 58.5 | 12.0 | 88.0 |
CS | 51.1 | 48.9 | 47 | 53 |
DS | - | - | 0 | 100 |
Gene | Forward (5′-3′) | Reverse (5′-3′) |
---|---|---|
Decorin | GCTTCTTATTCGGGTGTGAGT | TTCCGAGTTGAATGGCAGAG |
Biglycan | CTCGTCCTGGTGAACAACAA | CAGGTGGTTCTTGGAGATGTAG |
Versican | GTCACTCTAATCCCTGTCGTAATG | CTCGGTATCTTGCTCACAAAGT |
Aggrecan | CCTTACCGTAAAGCCCATCTT | CCAGTCTCATTCTCAACCTCAG |
RPL13a | TTGAGGACCTCTGTGTATTTGTCAA | CCTGGAGGAGAAGAGGAAAGAGA |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lenzi, L.G.S.; Gomes dos Santos, J.B.; Cavalheiro, R.P.; Mendes, A.; Kobayashi, E.Y.; Nader, H.B.; Faloppa, F. Alterations in the Structure, Composition, and Organization of Galactosaminoglycan-Containing Proteoglycans and Collagen Correspond to the Progressive Stages of Dupuytren’s Disease. Int. J. Mol. Sci. 2024, 25, 7192. https://doi.org/10.3390/ijms25137192
Lenzi LGS, Gomes dos Santos JB, Cavalheiro RP, Mendes A, Kobayashi EY, Nader HB, Faloppa F. Alterations in the Structure, Composition, and Organization of Galactosaminoglycan-Containing Proteoglycans and Collagen Correspond to the Progressive Stages of Dupuytren’s Disease. International Journal of Molecular Sciences. 2024; 25(13):7192. https://doi.org/10.3390/ijms25137192
Chicago/Turabian StyleLenzi, Luiz Guilherme S., João Baptista Gomes dos Santos, Renan P. Cavalheiro, Aline Mendes, Elsa Y. Kobayashi, Helena B. Nader, and Flavio Faloppa. 2024. "Alterations in the Structure, Composition, and Organization of Galactosaminoglycan-Containing Proteoglycans and Collagen Correspond to the Progressive Stages of Dupuytren’s Disease" International Journal of Molecular Sciences 25, no. 13: 7192. https://doi.org/10.3390/ijms25137192
APA StyleLenzi, L. G. S., Gomes dos Santos, J. B., Cavalheiro, R. P., Mendes, A., Kobayashi, E. Y., Nader, H. B., & Faloppa, F. (2024). Alterations in the Structure, Composition, and Organization of Galactosaminoglycan-Containing Proteoglycans and Collagen Correspond to the Progressive Stages of Dupuytren’s Disease. International Journal of Molecular Sciences, 25(13), 7192. https://doi.org/10.3390/ijms25137192