Diagnostic Performances of PET/CT Using Fibroblast Activation Protein Inhibitors in Patients with Primary and Metastatic Liver Tumors: A Comprehensive Literature Review
Abstract
:1. Introduction
2. Results
2.1. Literature Research
2.2. Clinical and Methodological Studies’ Characteristics
2.3. PET Imaging
2.3.1. Physiological Radiolabeled FAPI Liver Uptake
2.3.2. Primary Liver Tumors: FAPI PET Diagnostic Performance and Comparison with [18F]FDG and/or Other Tracers
2.3.3. Liver Metastases: FAPI PET Diagnostic Performance and Comparison with [18F]FDG and/or Other Tracers
2.3.4. FAPI PET False Positive and False Negative Findings
3. Discussion
4. Materials and Methods
4.1. Literature Search and Information Sources
4.2. Inclusion and Exclusion Criteria and Data Analysis
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Conflicts of Interest
References
- Vaz, S.C.; Oliveira, F.; Herrmann, K.; Veit-Haibach, P. Nuclear medicine and molecular imaging advances in the 21st century. Br. J. Radiol. 2020, 93, 20200095. [Google Scholar] [CrossRef] [PubMed]
- Treglia, G.; Sadeghi, R.; Del Sole, A.; Giovanella, L. Diagnostic performance of PET/CT with tracers other than F-18-FDG in oncology: An evidence-based review. Clin. Transl. Oncol. 2014, 16, 770–775. [Google Scholar] [CrossRef] [PubMed]
- Gilardi, L.; Airò Farulla, L.S.; Demirci, E.; Clerici, I.; Omodeo Salè, E.; Ceci, F. Imaging Cancer-Associated Fibroblasts (CAFs) with FAPi PET. Biomedicines 2022, 10, 523. [Google Scholar] [CrossRef] [PubMed]
- Gascard, P.; Tlsty, T.D. Carcinoma-associated fibroblasts: Orchestrating the composition of malignancy. Genes Dev. 2016, 30, 1002–1019. [Google Scholar] [CrossRef] [PubMed]
- Giesel, F.L.; Kratochwil, C.; Lindner, T.; Marschalek, M.M.; Loktev, A.; Lehnert, W.; Debus, J.; Jäger, D.; Flechsig, P.; Altmann, A.; et al. 68Ga-FAPI PET/CT: Biodistribution and Preliminary Dosimetry Estimate of 2 DOTA-Containing FAP-Targeting Agents in Patients with Various Cancers. J. Nucl. Med. 2019, 60, 386–392. [Google Scholar] [CrossRef] [PubMed]
- Lindner, T.; Loktev, A.; Altmann, A.; Giesel, F.; Kratochwil, C.; Debus, J.; Jäger, D.; Mier, W.; Haberkorn, U. Development of Quinoline-Based Theranostic Ligands for the Targeting of Fibroblast Activation Protein. J. Nucl. Med. 2018, 59, 1415–1422. [Google Scholar] [CrossRef] [PubMed]
- Loktev, A.; Lindner, T.; Mier, W.; Debus, J.; Altmann, A.; Jäger, D.; Giesel, F.; Kratochwil, C.; Barthe, P.; Roumestand, C.; et al. A Tumor-Imaging Method Targeting Cancer-Associated Fibroblasts. J. Nucl. Med. 2018, 59, 1423–1429. [Google Scholar] [CrossRef]
- Kratochwil, C.; Flechsig, P.; Lindner, T.; Abderrahim, L.; Altmann, A.; Mier, W.; Adeberg, S.; Rathke, H.; Röhrich, M.; Winter, H.; et al. 68Ga-FAPI PET/CT: Tracer Uptake in 28 Different Kinds of Cancer. J. Nucl. Med. 2019, 60, 801–805. [Google Scholar] [CrossRef] [PubMed]
- Loktev, A.; Lindner, T.; Burger, E.M.; Altmann, A.; Giesel, F.; Kratochwil, C.; Debus, J.; Marmé, F.; Jäger, D.; Mier, W.; et al. Development of Fibroblast Activation Protein-Targeted Radiotracers with Improved Tumor Retention. J. Nucl. Med. 2019, 60, 1421–1429. [Google Scholar] [CrossRef]
- Ballal, S.; Yadav, M.P.; Moon, E.S.; Rösch, F.; ArunRaj, S.T.; Agarwal, S.; Tripathi, M.; Sahoo, R.K.; Bal, C. First-in-Human Experience With 177Lu-DOTAGA.(SA.FAPi)2 Therapy in an Uncommon Case of Aggressive Medullary Thyroid Carcinoma Clinically Mimicking as Anaplastic Thyroid Cancer. Clin. Nucl. Med. 2022, 47, e444–e445. [Google Scholar] [CrossRef]
- Ballal, S.; Yadav, M.P.; Kramer, V.; Moon, E.S.; Roesch, F.; Tripathi, M.; Mallick, S.; ArunRaj, S.T.; Bal, C. A theranostic approach of [68Ga]Ga-DOTA.SA.FAPi PET/CT-guided [177Lu]Lu-DOTA.SA.FAPi radionuclide therapy in an end-stage breast cancer patient: New frontier in targeted radionuclide therapy. Eur. J. Nucl. Med. Mol. Imaging 2021, 48, 942–944. [Google Scholar] [CrossRef] [PubMed]
- Baum, R.P.; Schuchardt, C.; Singh, A.; Chantadisai, M.; Robiller, F.C.; Zhang, J.; Mueller, D.; Eismant, A.; Almaguel, F.; Zboralski, D.; et al. Feasibility, Biodistribution, and Preliminary Dosimetry in Peptide-Targeted Radionuclide Therapy of Diverse Adenocarcinomas Using 177Lu-FAP-2286: First-in-Humans Results. J. Nucl. Med. 2022, 63, 415–423. [Google Scholar] [CrossRef] [PubMed]
- Kratochwil, C.; Giesel, F.L.; Rathke, H.; Fink, R.; Dendl, K.; Debus, J.; Mier, W.; Jäger, D.; Lindner, T.; Haberkorn, U. [153Sm]Samarium-labeled FAPI-46 radioligand therapy in a patient with lung metastases of a sarcoma. Eur. J. Nucl. Med. Mol. Imaging 2021, 48, 3011–3013. [Google Scholar] [CrossRef] [PubMed]
- Dendl, K.; Koerber, S.A.; Finck, R.; Mokoala, K.M.G.; Staudinger, F.; Schillings, L.; Heger, U.; Röhrich, M.; Kratochwil, C.; Sathekge, M.; et al. 68Ga-FAPI-PET/CT in patients with various gynecological malignancies. Eur. J. Nucl. Med. Mol. Imaging 2021, 48, 4089–4100. [Google Scholar] [CrossRef]
- Jokar, N.; Velikyan, I.; Ahmadzadehfar, H.; Rekabpour, S.J.; Jafari, E.; Ting, H.H.; Biersack, H.J.; Assadi, M. Theranostic Approach in Breast Cancer: A Treasured Tailor for Future Oncology. Clin. Nucl. Med. 2021, 46, e410–e420. [Google Scholar] [CrossRef] [PubMed]
- Assadi, M.; Rekabpour, S.J.; Jafari, E.; Divband, G.; Nikkholgh, B.; Amini, H.; Kamali, H.; Ebrahimi, S.; Shakibazad, N.; Jokar, N.; et al. Feasibility and Therapeutic Potential of 177Lu-Fibroblast Activation Protein Inhibitor-46 for Patients with Relapsed or Refractory Cancers: A Preliminary Study. Clin. Nucl. Med. 2021, 46, e523–e530. [Google Scholar] [CrossRef]
- Sukowati, C.H.; Anfuso, B.; Crocé, L.S.; Tiribelli, C. The role of multipotent cancer associated fibroblasts in hepatocarcinogenesis. BMC Cancer 2015, 15, 188. [Google Scholar] [CrossRef] [PubMed]
- Kim, G.J.; Rhee, H.; Yoo, J.E.; Ko, J.E.; Lee, J.S.; Kim, H.; Choi, J.S.; Park, Y.N. Increased expression of CCN2, epithelial membrane antigen, and fibroblast activation protein in hepatocellular carcinoma with fibrous stroma showing aggressive behavior. PLoS ONE 2014, 9, e105094. [Google Scholar] [CrossRef] [PubMed]
- Mazzocca, A.; Dituri, F.; Lupo, L.; Quaranta, M.; Antonaci, S.; Giannelli, G. Tumor-secreted lysophostatidic acid accelerates hepatocellular carcinoma progression by promoting differentiation of peritumoral fibroblasts in myofibroblasts. Hepatology 2011, 54, 920–930. [Google Scholar] [CrossRef]
- Shi, X.; Xing, H.; Yang, X.; Li, F.; Yao, S.; Congwei, J.; Zhao, H.; Hacker, M.; Huo, L.; Li, X. Comparison of PET imaging of activated fibroblasts and 18F-FDG for diagnosis of primary hepatic tumours: A prospective pilot study. Eur. J. Nucl. Med. Mol. Imaging 2021, 48, 1593–1603. [Google Scholar] [CrossRef]
- Shi, X.; Xing, H.; Yang, X.; Li, F.; Yao, S.; Zhang, H.; Zhao, H.; Hacker, M.; Huo, L.; Li, X. Fibroblast imaging of hepatic carcinoma with 68Ga-FAPI-04 PET/CT: A pilot study in patients with suspected hepatic nodules. Eur. J. Nucl. Med. Mol. Imaging 2021, 48, 196–203. [Google Scholar] [CrossRef]
- Guo, W.; Pang, Y.; Yao, L.; Zhao, L.; Fan, C.; Ke, J.; Guo, P.; Hao, B.; Fu, H.; Xie, C.; et al. Imaging fibroblast activation protein in liver cancer: A single-center post hoc retrospective analysis to compare [68Ga]Ga-FAPI-04 PET/CT versus MRI and [18F]-FDG PET/CT. Eur. J. Nucl. Med. Mol. Imaging 2021, 48, 1604–1617. [Google Scholar] [CrossRef]
- Şahin, E.; Elboğa, U.; Çelen, Y.Z.; Sever, Ö.N.; Çayırlı, Y.B.; Çimen, U. Comparison of 68Ga-DOTA-FAPI and 18FDG PET/CT imaging modalities in the detection of liver metastases in patients with gastrointestinal system cancer. Eur. J. Radiol. 2021, 142, 109867. [Google Scholar] [CrossRef]
- Kreppel, B.; Gonzalez-Carmona, M.A.; Feldmann, G.; Küppers, J.; Moon, E.S.; Marinova, M.; Bundschuh, R.A.; Kristiansen, G.; Essler, M.; Roesch, F.; et al. Fibroblast activation protein inhibitor (FAPi) positive tumour fraction on PET/CT correlates with Ki-67 in liver metastases of neuroendocrine tumours. Nuklearmedizin 2021, 60, 344–354. [Google Scholar] [CrossRef]
- Wu, J.; Deng, H.; Zhong, H.; Wang, T.; Rao, Z.; Wang, Y.; Chen, Y.; Zhang, C. Comparison of 68Ga-FAPI and 18F-FDG PET/CT in the Evaluation of Patients With Newly Diagnosed Non-Small Cell Lung Cancer. Front. Oncol. 2022, 12, 924223. [Google Scholar] [CrossRef]
- Elboga, U.; Sahin, E.; Kus, T.; Cayirli, Y.B.; Aktas, G.; Okuyan, M.; Cinkir, H.Y.; Teker, F.; Sever, O.N.; Aytekin, A.; et al. Comparison of 68Ga-FAPI PET/CT and 18FDG PET/CT Modalities in Gastrointestinal System Malignancies with Peritoneal Involvement. Mol. Imaging Biol. 2022, 24, 789–797. [Google Scholar] [CrossRef]
- Zhang, Z.; Jia, G.; Pan, G.; Cao, K.; Yang, Q.; Meng, H.; Yang, J.; Zhang, L.; Wang, T.; Cheng, C.; et al. Comparison of the diagnostic efficacy of 68 Ga-FAPI-04 PET/MR and 18F-FDG PET/CT in patients with pancreatic cancer. Eur. J. Nucl. Med. Mol. Imaging 2022, 49, 2877–2888. [Google Scholar] [CrossRef]
- Barashki, S.; Divband, G.; Askari, E.; Amini, H.; Aryana, K. Fibroblast Activation Protein Inhibitor Imaging and Therapy in a Patient With Multiple Endocrine Neoplasia Type 2A Syndrome. Clin. Nucl. Med. 2022, 47, e284–e286. [Google Scholar] [CrossRef]
- Wang, L.; Tang, G.; Hu, K.; Liu, X.; Zhou, W.; Li, H.; Huang, S.; Han, Y.; Chen, L.; Zhong, J.; et al. Comparison of 68Ga-FAPI and 18F-FDG PET/CT in the Evaluation of Advanced Lung Cancer. Radiology 2022, 303, 191–199. [Google Scholar] [CrossRef]
- Kou, Y.; Yao, Z.; Cheng, Z. Hepatic Lesion of Mucosa-Associated Lymphoid Tissue Lymphoma Revealed by Al18F-NOTA-FAPI-04 PET/CT. Clin. Nucl. Med. 2022, 47, e49–e51. [Google Scholar] [CrossRef]
- Dendl, K.; Finck, R.; Giesel, F.L.; Kratochwil, C.; Lindner, T.; Mier, W.; Cardinale, J.; Kesch, C.; Röhrich, M.; Rathke, H.; et al. FAP imaging in rare cancer entities-first clinical experience in a broad spectrum of malignancies. Eur. J. Nucl. Med. Mol. Imaging 2022, 49, 721–731. [Google Scholar] [CrossRef]
- Erol Fenercioğlu, Ö.; Beyhan, E.; Ergül, N.; Arslan, E.; Çermik, T.F. 18F-FDG PET/CT and 68Ga-FAPI-4 PET/CT Findings of Bilateral Knee Osteoarthritis in a Patient With Uveal Malignant Melanoma. Clin. Nucl. Med. 2022, 47, e144–e146. [Google Scholar] [CrossRef]
- Kuyumcu, S.; Işık, E.G.; Sanli, Y. Liver metastases from medullary thyroid carcinoma detected on 68Ga-FAPI-04 PET/CT. Endocrine 2021, 74, 727–728. [Google Scholar] [CrossRef]
- Giesel, F.L.; Kratochwil, C.; Schlittenhardt, J.; Dendl, K.; Eiber, M.; Staudinger, F.; Kessler, L.; Fendler, W.P.; Lindner, T.; Koerber, S.A.; et al. Head-to-head intra-individual comparison of biodistribution and tumor uptake of 68Ga-FAPI and 18F-FDG PET/CT in cancer patients. Eur. J. Nucl. Med. Mol. Imaging 2021, 48, 4377–4385. [Google Scholar] [CrossRef]
- Cheng, Z.; Zou, S.; Cheng, S.; Song, S.; Zhu, X. Comparison of 18F-FDG, 68Ga-FAPI, and 68Ga-DOTATATE PET/CT in a Patient With Pancreatic Neuroendocrine Tumor. Clin. Nucl. Med. 2021, 46, 764–765. [Google Scholar] [CrossRef]
- Kömek, H.; Can, C.; Güzel, Y.; Oruç, Z.; Gündoğan, C.; Yildirim, Ö.A.; Kaplan, İ.; Erdur, E.; Yıldırım, M.S.; Çakabay, B. 68Ga-FAPI-04 PET/CT, a new step in breast cancer imaging: A comparative pilot study with the 18F-FDG PET/CT. Ann. Nucl. Med. 2021, 35, 744–752. [Google Scholar] [CrossRef]
- Qin, C.; Shao, F.; Gai, Y.; Liu, Q.; Ruan, W.; Liu, F.; Hu, F.; Lan, X. 68Ga-DOTA-FAPI-04 PET/MR in the Evaluation of Gastric Carcinomas: Comparison with 18F-FDG PET/CT. J. Nucl. Med. 2022, 63, 81–88. [Google Scholar] [CrossRef]
- Deng, M.; Chen, Y.; Cai, L. Comparison of 68Ga-FAPI and 18F-FDG PET/CT in the Imaging of Pancreatic Cancer With Liver Metastases. Clin. Nucl. Med. 2021, 46, 589–591. [Google Scholar] [CrossRef]
- Wang, H.; Du, Z.; Huang, Q.; Ren, S.; Guan, Y.; Xie, F.; Lu, L.; Zhu, W. The superiority of [68Ga]Ga-FAPI-04 over [18F]-FDG in a case of neuroendocrine tumour with hepatic metastasis. Eur. J. Nucl. Med. Mol. Imaging 2021, 48, 3005–3006. [Google Scholar] [CrossRef]
- Kömek, H.; Gündoğan, C.; Can, C. 68Ga-FAPI PET/CT Versus 68Ga-DOTATATE PET/CT in the Evaluation of a Patient With Neuroendocrine Tumor. Clin. Nucl. Med. 2021, 46, e290–e292. [Google Scholar] [CrossRef]
- Pang, Y.; Zhao, L.; Luo, Z.; Hao, B.; Wu, H.; Lin, Q.; Sun, L.; Chen, H. Comparison of 68Ga-FAPI and 18F-FDG Uptake in Gastric, Duodenal, and Colorectal Cancers. Radiology 2021, 298, 393–402. [Google Scholar] [CrossRef]
- Koerber, S.A.; Staudinger, F.; Kratochwil, C.; Adeberg, S.; Haefner, M.F.; Ungerechts, G.; Rathke, H.; Winter, E.; Lindner, T.; Syed, M.; et al. The Role of 68Ga-FAPI PET/CT for Patients with Malignancies of the Lower Gastrointestinal Tract: First Clinical Experience. J. Nucl. Med. 2020, 61, 1331–1336. [Google Scholar] [CrossRef]
- Lin, X.; Li, Y.; Wang, S.; Zhang, Y.; Chen, X.; Wei, M.; Zhu, H.; Wu, A.; Yang, Z.; Wang, X. Diagnostic value of [68Ga]Ga-FAPI-04 in patients with colorectal cancer in comparison with [18F]F-FDG PET/CT. Front. Oncol. 2023, 12, 1087792. [Google Scholar] [CrossRef]
- Zhang, Z.; Jiang, H.; Zhang, L.; Cheng, C.; Zuo, C. 68Ga-FAPI-04 PET/CT Versus 18F-FDG PET/CT in the Detection of Malignant Gastrointestinal Stromal Tumor. Clin. Nucl. Med. 2023, 48, 61–63. [Google Scholar] [CrossRef]
- Li, C.; Tian, Y.; Chen, J.; Jiang, Y.; Xue, Z.; Xing, D.; Wen, B.; He, Y. Usefulness of [68Ga]FAPI-04 and [18F]FDG PET/CT for the detection of primary tumour and metastatic lesions in gastrointestinal carcinoma: A comparative study. Eur. Radiol. 2023, 33, 2779–2791. [Google Scholar] [CrossRef]
- Xie, F.; Fu, L.; Zhou, W. Superiority of 68Ga-FAPI-04 in Delineation of Soft Tissue and Liver Metastases in Chromophobe Renal Cell Carcinoma for Restaging. Clin. Nucl. Med. 2022, 47, e758–e759. [Google Scholar] [CrossRef]
- Wu, C.; Zhang, X.; Zeng, Y.; Wu, R.; Ding, L.; Xia, Y.; Chen, Z.; Zhang, X.; Wang, X. [18F]FAPI-42 PET/CT versus [18F]FDG PET/CT for imaging of recurrent or metastatic gastrointestinal stromal tumors. Eur. J. Nucl. Med. Mol. Imaging 2022, 50, 194–204. [Google Scholar] [CrossRef]
- Can, C.; Kepenek, F.; Kömek, H.; Gündoğan, C.; Kaplan, İ.; Taşdemir, B.; Güzel, Y.; Agüloğlu, N.; Karaoğlan, H. Comparison of 18 F-FDG PET/CT and 68 Ga-FAPI-04 PET/CT in patients with non-small cell lung cancer. Nucl. Med. Commun. 2022, 43, 1084–1091. [Google Scholar] [CrossRef]
- Tatar, G.; Beyhan, E.; Erol Fenercioğlu, Ö.; Arslan, E.; Çermik, T.F. Comparison of 18F-FDG and 68Ga-FAPI PET/CT in Gastric Kaposi Sarcoma. Clin. Nucl. Med. 2022, 47, e596–e599. [Google Scholar] [CrossRef]
- Tian, X.; Cui, Z.; Han, Y.; Liu, J. Detection of liver metastasis by 18F-FAPI PET/CT in the background of fatty liver. Jpn. J. Clin. Oncol. 2023, 53, 365–366. [Google Scholar] [CrossRef]
- Dong, A.; Yang, B.; Bai, Y.; Zuo, C. 68 Ga-FAPI-04 PET/CT in a Small Sarcomatoid Renal Cell Carcinoma With Widespread Metastases. Clin. Nucl. Med. 2023, 48, 457–459. [Google Scholar] [CrossRef] [PubMed]
- Tatar, G.; Alçın, G.; Erol Fenercioğlu, Ö.; Şahin, R.; Çermik, T.F. Findings of I-131 SPECT/CT, 18F-FDG, and 68Ga-FAPI-04 PET/CT Imaging in a Patient Treated with Radioiodine Therapy for Metastatic Papillary Thyroid Carcinoma. Mol. Imaging Radionucl. Ther. 2023, 32, 57–61. [Google Scholar] [CrossRef] [PubMed]
- Zhang, A.; Meng, X.; Yao, Y.; Zhou, X.; Zhang, Y.; Li, N. Head-to-head comparison of 68Ga-DOTA-FAPI-04 vs. 18F-FDG PET/CT in the evaluation of primary extrapulmonary tumors in the chest. Eur. Radiol. 2024, 34, 1960–1970. [Google Scholar] [CrossRef] [PubMed]
- Ren, J.Y.; Zhang, Q.; Wang, P.; Jiang, L.; Liu, E.T. Increased 18 F-FAPI-04 Uptake in Vertebral Hemangioma. Clin. Nucl. Med. 2023, 48, e588–e590. [Google Scholar] [CrossRef]
- Hoppner, J.; van Genabith, L.; Hielscher, T.; Heger, U.; Sperling, L.; Colbatzky, T.; Gutjahr, E.; Lang, M.; Pausch, T.; Spektor, A.M.; et al. Comparison of early and late 68Ga-FAPI-46-PET in 33 patients with possible recurrence of pancreatic ductal adenocarcinomas. Sci. Rep. 2023, 13, 17848. [Google Scholar] [CrossRef] [PubMed]
- Has Simsek, D.; Guzel, Y.; Denizmen, D.; Sanli, Y.; Buyukkaya, F.; Kovan, B.; Komek, H.; Isik, E.G.; Ozkan, Z.G.; Kuyumcu, S. The inferior performance of [68Ga]Ga-FAPI-04 PET/CT as a diagnostic and theranostic biomarker in [177Lu]Lu-DOTATATE refractory well-differentiated neuroendocrine tumors. Eur. J. Nucl. Med. Mol. Imaging 2024, 51, 828–840. [Google Scholar] [CrossRef] [PubMed]
- Chen, X.; Wang, S.; Lai, Y.; Wang, G.; Wei, M.; Jin, X.; Ding, J.; Zhang, Y.; Shi, Y.; Wang, F.; et al. Fibroblast Activation Protein and Glycolysis in Lymphoma Diagnosis: Comparison of 68Ga-FAPI PET/CT and 18F-FDG PET/CT. J. Nucl. Med. 2023, 64, 1399–1405. [Google Scholar] [CrossRef] [PubMed]
- Ballal, S.; Yadav, M.P.; Roesch, F.; Satapathy, S.; Moon, E.S.; Martin, M.; Wakade, N.; Sheokand, P.; Tripathi, M.; Chandekar, K.R.; et al. Head-to-head comparison of [68Ga]Ga-DOTA.SA.FAPi with [18F]F-FDG PET/CT in radioiodine-resistant follicular-cell derived thyroid cancers. Eur. J. Nucl. Med. Mol. Imaging 2023, 51, 233–244. [Google Scholar] [CrossRef] [PubMed]
- Dong, Y.; Sun, P.; Wu, H.; Zhong, J.; Cao, M.; Tang, G.; Zhou, W. PET/CT imaging fibroblast activation protein in initial colorectal cancer: Compared to 18 F-FDG PET/CT. Nucl. Med. Commun. 2023, 44, 1011–1019. [Google Scholar] [CrossRef]
- Liu, Q.; Shi, S.; Liu, S.; Xu, X.; Hu, S.; Zhang, J.; Wang, C.; Yu, X.; Song, S. The added value of [68Ga]Ga-DOTA-FAPI-04 PET/CT in pancreatic cancer: A comparison to [18F]F-FDG. Eur. Radiol. 2023, 33, 5007–5016. [Google Scholar] [CrossRef]
- Ballal, S.; Yadav, M.P.; Roesch, F.; Wakade, N.; Raju, S.; Sheokand, P.; Mishra, P.; Moon, E.S.; Tripathi, M.; Martin, M.; et al. Head-to-Head Comparison between [68Ga]Ga-DOTA.SA.FAPi and [18F]F-FDG PET/CT Imaging in Patients with Breast Cancer. Pharmaceuticals 2023, 16, 521. [Google Scholar] [CrossRef] [PubMed]
- Siripongsatian, D.; Promteangtrong, C.; Kunawudhi, A.; Kiatkittikul, P.; Boonkawin, N.; Chinnanthachai, C.; Jantarato, A.; Chotipanich, C. Comparisons of Quantitative Parameters of Ga-68-Labelled Fibroblast Activating Protein Inhibitor (FAPI) PET/CT and [18F]F-FDG PET/CT in Patients with Liver Malignancies. Mol. Imaging Biol. 2022, 24, 818–829. [Google Scholar] [CrossRef] [PubMed]
- Siripongsatian, D.; Promteangtrong, C.; Kunawudhi, A.; Kiatkittikul, P.; Chotipanich, C. 68Ga-FAPI-46 PET/MR Detects Recurrent Cholangiocarcinoma and Intraductal Papillary Mucinous Neoplasm in a Patient Showing Increasing CEA with Negative 18F-FDG PET/CT and Conventional CT. Nucl. Med. Mol. Imaging 2021, 55, 257–260. [Google Scholar] [CrossRef] [PubMed]
- Pang, Y.; Zhao, L.; Shang, Q.; Meng, T.; Chen, H. 18F-FDG Versus 68Ga-FAPI PET/CT in Visualizing Primary Hepatic Extranodal Marginal Zone Lymphoma of Mucosa-Associated Lymphoid Tissue. Clin. Nucl. Med. 2022, 47, 375–377. [Google Scholar] [CrossRef]
- Zheng, S.; Lin, R.; Chen, S.; Zheng, J.; Lin, Z.; Zhang, Y.; Xue, Q.; Chen, Y.; Zhang, J.; Lin, K.; et al. Characterization of the benign lesions with increased 68Ga-FAPI-04 uptake in PET/CT. Ann. Nucl. Med. 2021, 35, 1312–1320. [Google Scholar] [CrossRef] [PubMed]
- Ergül, N.; Yılmaz, B.; Cin, M.; Çermik, T.F. 68Ga-DOTA-FAPI-04 PET/CT in Neuroendocrine Carcinoma of the Liver With Elevated AFP Level: Comparison With 18F-FDG PET/CT. Clin. Nucl. Med. 2022, 47, e29–e31. [Google Scholar] [CrossRef] [PubMed]
- Wang, H.; Zhu, W.; Ren, S.; Kong, Y.; Huang, Q.; Zhao, J.; Guan, Y.; Jia, H.; Chen, J.; Lu, L.; et al. 68Ga-FAPI-04 Versus 18F-FDG PET/CT in the Detection of Hepatocellular Carcinoma. Front. Oncol. 2021, 11, 693640. [Google Scholar] [CrossRef]
- Yao, X.; Liu, W.; Ou, X. 68 Ga-FAPI PET/MRI and 18 F-FDG PET/CT in a Case With Extensive Portal Vein Tumor Thrombus. Clin. Nucl. Med. 2023, 48, 373–375. [Google Scholar] [CrossRef]
- Pan, B.; Cunwang, S.; Zhu, X.X. Al18F-NOTA-FAPI-04 outperforms 18F-FDG PET/CT in imaging for intrahepatic metastasis of hepatocellular carcinoma. Hell. J. Nucl. Med. 2022, 25, 326–327. [Google Scholar]
- Zhou, Y.; Wang, Y.; Song, Y.; Ou, L.; Huang, Y.; Deng, H.; Chen, X. [68 Ga]Ga-DOTA-FAPI-04 PET/CT imaging of cirrhosis with hepatocellular carcinoma. Eur. J. Nucl. Med. Mol. Imaging 2023, 50, 1536–1537. [Google Scholar] [CrossRef]
- Chen, D.; Chang, C.; Zhang, Y.; Yang, S.; Wang, G.; Lin, L.; Zhao, X.; Zhao, K.; Su, X. Different Features of 18F-FAPI, 18F-FDG PET/CT and MRI in the Evaluation of Extrahepatic Metastases and Local Recurrent Hepatocellular Carcinoma (HCC): A Case Report and Review of the Literature. Cancer Manag. Res. 2022, 14, 2649–2655. [Google Scholar] [CrossRef] [PubMed]
- Suthar, R.R.; Purandare, N.; Shah, S.; Agrawal, A.; Puranik, A.; Rangarajan, V. FAPI PET Positivity in Fibrolamellar Hepatocellular Carcinoma. Clin. Nucl. Med. 2023, 48, e332–e333. [Google Scholar] [CrossRef] [PubMed]
- Ou, L.; Zhou, Y.; Sun, R.; Zhang, C.; Chen, X. Increased 68 Ga-FAPI Activity in Hepatic Inflammatory Myofibroblastoma. Clin. Nucl. Med. 2023, 48, 522–524. [Google Scholar] [CrossRef] [PubMed]
- Liu, M.; Liu, H.; Chen, X.; Zhang, S.; Cai, L. Pulmonary Cryptococcosis: Intense Uptake on Both 18 F-FDG and 68 Ga-FAPI PET/CT. Clin. Nucl. Med. 2023, 48, 980–981. [Google Scholar] [CrossRef] [PubMed]
- Al-Ibraheem, A.; Abdlkadir, A.S.; Alalawi, H.; Badarneh, M. 68 Ga-FAPI PET/CT Imaging: Unveiling the Hidden Pitfalls. Clin. Nucl. Med. 2023, 48, 965–966. [Google Scholar] [CrossRef] [PubMed]
- Li, Z.; Su, D.; Zhou, S.; Wang, Y.; Chen, Y. Comparison of 18 F-FDG and 68 Ga-FAPI PET/CT in a Patient With Hepatic Perivascular Epithelioid Cell Neoplasm. Clin. Nucl. Med. 2023, 48, 1124–1126. [Google Scholar] [CrossRef] [PubMed]
- Li, T.; Liu, Z.; Zhang, Z.; Zhang, J.; Zhao, X. Multiple Intrahepatic Inflammatory Myofibroblastic Tumor on 68 Ga-FAPI and 18 F-FDG PET/CT. Clin. Nucl. Med. 2023, 48, e614–e616. [Google Scholar] [CrossRef] [PubMed]
- Zhang, J.; Jiang, S.; Li, M.; Xue, H.; Zhong, X.; Li, S.; Peng, H.; Liang, J.; Liu, Z.; Rao, S.; et al. Head-to-head comparison of 18F-FAPI and 18F-FDG PET/CT in staging and therapeutic management of hepatocellular carcinoma. Cancer Imaging 2023, 23, 106. [Google Scholar] [CrossRef] [PubMed]
- Pabst, K.M.; Trajkovic-Arsic, M.; Cheung, P.F.Y.; Ballke, S.; Steiger, K.; Bartel, T.; Schaarschmidt, B.M.; Milosevic, A.; Seifert, R.; Nader, M.; et al. Superior Tumor Detection for 68Ga-FAPI-46 Versus 18F-FDG PET/CT and Conventional CT in Patients with Cholangiocarcinoma. J. Nucl. Med. 2023, 64, 1049–1055. [Google Scholar] [CrossRef]
- Jinghua, L.; Kui, X.; Deliang, G.; Bo, L.; Qian, Z.; Haitao, W.; Yaqun, J.; Dongde, W.; Xigang, X.; Ping, J.; et al. Clinical prospective study of Gallium 68 (68Ga)-labeled fibroblast-activation protein inhibitor PET/CT in the diagnosis of biliary tract carcinoma. Eur. J. Nucl. Med. Mol. Imaging 2023, 50, 2152–2166. [Google Scholar] [CrossRef]
- Rajaraman, V.; Meenakshi, L.A.; Selvaraj, A.J.; Pottakkat, B.; Halanaik, D. Role of 68 Ga-FAPI PET/CT in Assessing Hepatobiliary Malignancies: A Prospective Pilot Study. Clin. Nucl. Med. 2023, 48, e281–e288. [Google Scholar] [CrossRef] [PubMed]
- Wu, M.; Wang, Y.; Yang, Q.; Wang, X.; Yang, X.; Xing, H.; Sang, X.; Li, X.; Zhao, H.; Huo, L. Comparison of Baseline 68Ga-FAPI and 18F-FDG PET/CT for Prediction of Response and Clinical Outcome in Patients with Unresectable Hepatocellular Carcinoma Treated with PD-1 Inhibitor and Lenvatinib. J. Nucl. Med. 2023, 64, 1532–1539. [Google Scholar] [CrossRef] [PubMed]
- Çermik, T.F.; Ergül, N.; Yılmaz, B.; Mercanoğlu, G. Tumor Imaging With 68Ga-DOTA-FAPI-04 PET/CT: Comparison With 18F-FDG PET/CT in 22 Different Cancer Types. Clin. Nucl. Med. 2022, 47, e333–e339. [Google Scholar] [CrossRef] [PubMed]
- Hu, K.; Wang, L.; Wu, H.; Huang, S.; Tian, Y.; Wang, Q.; Xiao, C.; Han, Y.; Tang, G. [18F]FAPI-42 PET imaging in cancer patients: Optimal acquisition time, biodistribution, and comparison with [68Ga]Ga-FAPI. Eur. J. Nucl. Med. Mol. Imaging 2022, 49, 2833–2843. [Google Scholar] [CrossRef] [PubMed]
- Geist, B.K.; Xing, H.; Wang, J.; Shi, X.; Zhao, H.; Hacker, M.; Sang, X.; Huo, L.; Li, X. A methodological investigation of healthy tissue, hepatocellular carcinoma, and other lesions with dynamic 68Ga-FAPI-04 PET/CT imaging. EJNMMI Phys. 2021, 8, 8. [Google Scholar] [CrossRef] [PubMed]
- Ballal, S.; Yadav, M.P.; Moon, E.S.; Kramer, V.S.; Roesch, F.; Kumari, S.; Tripathi, M.; ArunRaj, S.T.; Sarswat, S.; Bal, C. Biodistribution, pharmacokinetics, dosimetry of [68Ga]Ga-DOTA.SA.FAPi, and the head-to-head comparison with [18F]F-FDG PET/CT in patients with various cancers. Eur. J. Nucl. Med. Mol. Imaging 2021, 48, 1915–1931. [Google Scholar] [CrossRef] [PubMed]
- Chen, H.; Pang, Y.; Wu, J.; Zhao, L.; Hao, B.; Wu, J.; Wei, J.; Wu, S.; Zhao, L.; Luo, Z.; et al. Comparison of [68Ga]Ga-DOTA-FAPI-04 and [18F] FDG PET/CT for the diagnosis of primary and metastatic lesions in patients with various types of cancer. Eur. J. Nucl. Med. Mol. Imaging 2020, 47, 1820–1832. [Google Scholar] [CrossRef] [PubMed]
- Xing, H.; Hu, G.; Zhu, W.; Dong, C.; Shi, X.; Li, F.; Huo, L. Dynamic PET/CT scan of 68Ga-FAPI-04 for the optimal acquisition time in suspected malignant hepatic cancer patients. Abdom. Radiol. (N.Y.) 2023, 48, 895–901. [Google Scholar] [CrossRef]
- Kosmala, A.; Serfling, S.E.; Schlötelburg, W.; Lindner, T.; Michalski, K.; Schirbel, A.; Higuchi, T.; Hartrampf, P.E.; Buck, A.K.; Weich, A.; et al. Impact of 68 Ga-FAPI-04 PET/CT on Staging and Therapeutic Management in Patients With Digestive System Tumors. Clin. Nucl. Med. 2023, 48, 35–42. [Google Scholar] [CrossRef]
- Zhang, J.; He, Q.; Jiang, S.; Li, M.; Xue, H.; Zhang, D.; Li, S.; Peng, H.; Liang, J.; Liu, Z. [18F]FAPI PET/CT in the evaluation of focal liver lesions with [18F]FDG non-avidity. Eur. J. Nucl. Med. Mol. Imaging 2023, 50, 937–950. [Google Scholar] [CrossRef]
- Pang, Y.; Zhao, L.; Meng, T.; Xu, W.; Lin, Q.; Wu, H.; Zhang, J.; Chen, X.; Sun, L.; Chen, H. PET Imaging of Fibroblast Activation Protein in Various Types of Cancer Using 68Ga-FAP-2286: Comparison with 18F-FDG and 68Ga-FAPI-46 in a Single-Center, Prospective Study. J. Nucl. Med. 2023, 64, 386–394. [Google Scholar] [CrossRef] [PubMed]
- Zang, J.; Lin, R.; Wen, X.; Wang, C.; Zhao, T.; Jakobsson, V.; Yang, Y.; Wu, X.; Guo, Z.; Chen, X.; et al. A Head-to-Head Comparison of 68Ga-LNC1007 and 2-18F-FDG/68Ga-FAPI-02 PET/CT in Patients with Various Cancers. Clin. Nucl. Med. 2023, 48, 861–868. [Google Scholar] [CrossRef]
- Xu, W.; Cai, J.; Peng, T.; Meng, T.; Pang, Y.; Sun, L.; Wu, H.; Zhang, J.; Chen, X.; Chen, H. Fibroblast Activation Protein-Targeted PET/CT with 18F-Fibroblast Activation Protein Inhibitor-74 for Evaluation of Gastrointestinal Cancer: Comparison with 18F-FDG PET/CT. J. Nucl. Med. 2024, 65, 40–51. [Google Scholar] [CrossRef] [PubMed]
- Yang, L.; Xu, S.; Cheng, L.; Gao, C.; Cao, S.; Chang, Z.; Wang, K. [18F] AlF-NOTA-FAPI-04 PET/CT as a promising tool for imaging fibroblast activation protein in gastrointestinal system cancers: A prospective investigation of comparative analysis with 18F-FDG. Eur. J. Nucl. Med. Mol. Imaging 2023, 50, 4051–4063. [Google Scholar] [CrossRef]
- Peng, D.; Cao, J.; Guo, C.; He, J.; Yang, L.; Zhang, J.; Yang, J.; Feng, Y.; Xu, T.; Chen, Y. Influence of Cirrhosis on 68Ga-FAPI PET/CT in Intrahepatic Tumors. Radiology 2023, 307, e222448. [Google Scholar] [CrossRef]
- Pang, Y.; Wang, P.; Xu, W.; Zhao, L.; Chen, H. Identification of isolated hepatic sarcoidosis with [18F]FDG and [68 Ga]Ga-FAPI PET/CT. Eur. J. Nucl. Med. Mol. Imaging 2023, 50, 2918–2919. [Google Scholar] [CrossRef]
- Zhang, J.; Jiang, S.; Zhang, R.; Zhang, L. Increased 18F-FAPI Uptake in Radiation-Induced Liver Injury. Clin. Nucl. Med. 2023, 48, e474–e476. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Z.; Ni, X.; Guo, S.; Zuo, C.; Cheng, C. 68 Ga-FAPI-04 Detected Hepatic Arteriovenous Malformation in a Patient with IgA Nephropathy. Clin. Nucl. Med. 2023, 48, 1096–1098. [Google Scholar] [CrossRef]
- Xie, Y.; Tang, W.; Ma, J.; Wang, Y.; Chen, Y. Elevated 68 Ga-FAPI Activity in Klebsiella pneumoniae Invasion Syndrome. Clin. Nucl. Med. 2024, 49, 89–90. [Google Scholar] [CrossRef]
- Darby, I.A.; Laverdet, B.; Bonté, F.; Desmoulière, A. Fibroblasts and myofibroblasts in wound healing. Clin. Cosmet. Investig. Dermatol. 2014, 7, 301–311. [Google Scholar]
- Yang, A.T.; Kim, Y.O.; Yan, X.Z.; Abe, H.; Aslam, M.; Park, K.S.; Zhao, X.Y.; Jia, J.D.; Klein, T.; You, H.; et al. Fibroblast Activation Protein Activates Macrophages and Promotes Parenchymal Liver Inflammation and Fibrosis. Cell Mol. Gastroenterol. Hepatol. 2023, 15, 841–867. [Google Scholar] [CrossRef] [PubMed]
- Dendl, K.; Koerber, S.A.; Kratochwil, C.; Cardinale, J.; Finck, R.; Dabir, M.; Novruzov, E.; Watabe, T.; Kramer, V.; Choyke, P.L.; et al. FAP and FAPI-PET/CT in Malignant and Non-Malignant Diseases: A Perfect Symbiosis? Cancers 2021, 13, 4946. [Google Scholar] [CrossRef] [PubMed]
- Dvorak, H.F. Tumors: Wounds that do not heal. Similarities between tumor stroma generation and wound healing. N. Engl. J. Med. 1986, 315, 1650–1659. [Google Scholar] [PubMed]
- Barrett, R.L.; Puré, E. Cancer-associated fibroblasts and their influence on tumor immunity and immunotherapy. Elife 2020, 9, e57243. [Google Scholar] [CrossRef] [PubMed]
- Zhao, L.; Gu, J.; Fu, K.; Lin, Q.; Chen, H. 68Ga-FAPI PET/CT in Assessment of Liver Nodules in a Cirrhotic Patient. Clin. Nucl. Med. 2020, 45, e430–e432. [Google Scholar] [CrossRef]
- Tatar, G.; Beyhan, E.; Erol Fenercioğlu, Ö.; Sevindir, İ.; Ergül, N.; Çermik, T.F. 68Ga-FAPI-04 PET/CT Findings in Patients with Liver Cirrhosis. Mol. Imaging Radionucl. Ther. 2023, 32, 146–149. [Google Scholar] [CrossRef]
First Author | Year | Journal | Country | Study Design | Histology | Clinical Indication for FAPI Imaging | Patients with Malignant Liver Lesions (n) | FAPI PET Modality | FAPI Tracer | FAPI Activity | Post-inj. Delay (min) | FOV | Other Tracer(s) |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Li T [77] | 2023 | Clin Nucl Med | China | P (trial) | inflammatory myofibroblastoma | staging | 1 | PET/CT | [68Ga]Ga-FAPI (nos.) | n.r. | n.r. | vertex to upper thigh | [18F]FDG |
Zhang J [78] | 2023 | Cancer Imaging | China | P | HCC | staging, restaging | 67 | PET/CT | [18F]FAPI (nos.) | n.r. | n.r. | vertex to upper thigh | [18F]FDG |
Li Z [76] | 2023 | Clin Nucl Med | China | P (trial) | PEComa | lesion characterization | 1 | PET/CT | [68Ga]Ga-FAPI (nos.) | n.r. | n.r. | vertex to upper thigh | [18F]FDG |
Al-Ibraheem A [75] | 2023 | Clin Nucl Med | Jordan | n.r. | ICC | staging | 1 | PET/CT | [68Ga]Ga-FAPI (nos.) | n.r. | n.r. | vertex to toes | NO |
Liu M [74] | 2023 | Clin Nucl Med | China | P (trial) | hepatic adenocarcinoma | lesion characterization | 1 | PET/CT | [68Ga]Ga-FAPI (nos.) | n.r. | n.r. | vertex to upper thigh | [18F]FDG |
Suthar RR [72] | 2023 | Clin Nucl Med | India | n.r. | fibrolamellar HCC | lesion characterization | 1 | PET/CT | [68Ga]Ga-FAPI (nos.) | n.r. | n.r. | vertex to upper thigh | [18F]FDG |
Ou L [73] | 2023 | Clin Nucl Med | China | n.r. | inflammatory myofibroblastoma | lesion characterization | 1 | PET/CT | [68Ga]Ga-FAPI (nos.) | n.r. | n.r. | n.r. | NO |
Wu M [82] | 2023 | J Nucl Med | China | P | HCC | survival prediction | 22 | PET/CT | [68Ga]Ga-FAPI-04 | 2.22–2.96 MBq/kg | 42–90 | vertex to middle thigh | [18F]FDG |
Rajaraman V [81] | 2023 | Clin Nucl Med | India | P | HCC CC | staging | 24 | PET/CT | [68Ga]Ga-FAPI-04 | 185–370 MBq | 60 | vertex to upper thigh | [18F]FDG |
Jinghua L [80] | 2023 | Eur J Nucl Med Mol Imaging | China | P (trial) | CC | lesion characterization, staging, restaging | 38 (including 22 ICC)) | PET/CT | [68Ga]Ga-DOTA-FAPI | 2.04 ± 0.22 MBq/kg | 40–60 | vertex to upper thigh | [18F]FDG |
Pabst KM [79] | 2023 | J Nucl Med | Germany | P (trial) | CC | staging, restaging | 10 (including 6 ICC) | PET/CT | [68Ga]Ga-FAPI-46 | 89 MBq (IQR 79–128) | 15 (IQR 10–38) | vertex to upper thigh | [18F]FDG |
Yao X [68] | 2023 | Clin Nucl Med | China | P (trial) | n.r. | staging | 1 | PET/MRI | [68Ga]Ga-FAPI (nos.) | n.r. | n.r. | vertex to upper thigh | [18F]FDG |
Zhou Y [70] | 2023 | Eur J Nucl Med Mol Imaging | China | P (trial) | HCC | staging | 1 | PET/CT | [68Ga]Ga-FAPI-04 | n.r. | n.r. | vertex to upper thigh | NO |
Pan B [69] | 2022 | Hell J Nucl Med | China | P (trial) | HCC | lesion characterization | 1 | PET/CT | Al18F-NOTA-FAPI-04 | n.r. | n.r. | vertex to upper thigh | [18F]FDG |
Chen D [71] | 2022 | Cancer Manag Res | China | n.r. | HCC | restaging | 1 | PET/CT | [18F]-FAPI (nos.) | n.r. | n.r. | skull base to mid-thigh | [18F]FDG |
Siripongsatian D [62] | 2022 | Mol Imaging Biol | Thailand | R | HCC ICC | staging, restaging | 27 | PET/CT + liver PET/MRI | [68Ga]Ga-FAPI-46 | 2.59 MBq/kg | 60 | vertex to mid-thigh | [18F]FDG |
Pang Y [64] | 2022 | Clin Nucl Med | China | P (trial) | primary hepatic extranodal marginal zone lymphoma of MALT | staging | 1 | PET/CT | [68Ga]Ga-FAPI (nos.) | n.r. | n.r. | vertex to upper thigh | [18F]FDG |
Ergül N [66] | 2022 | Clin Nucl Med | Turkey | P (trial) | low-differentiated NEC | lesion characterization | 1 | PET/CT | [68Ga]Ga-DOTA-FAPI-04 | n.r. | n.r. | vertex to upper thigh | [18F]FDG |
Siripongsatian D [63] | 2021 | Nucl Med Mol Imaging | Thailand | n.r. | ICC | restaging | 1 | PET/CT + upper abdomen PET/MRI | [68Ga]Ga-FAPI-46 | n.r. | 60 | n.r. | [18F]FDG |
Zheng S [65] | 2021 | Ann Nucl Med | China | R | HCC ICC | lesion characterization | 6 | PET/CT | [68Ga]Ga-FAPI-04 | 3.7 MBq/kg | 30–60 | vertex to upper thigh | NO |
Wang H [67] | 2021 | Front Oncol | China | R | HCC | staging, restaging | 25 | PET/CT | [68Ga]Ga-FAPI-04 | ~185 MBq | 60 | skull base to upper thigh | [18F]FDG |
Guo W [22] | 2020 | Eur J Nucl Med Mol Imaging | China | R | HCC ICC | lesion characterization, staging, restaging | 32 | PET/CT | [68Ga]Ga-FAPI-04 | 148–259 MBq | 60 | vertex to upper thigh | [18F]FDG |
Shi X [20] | 2020 | Eur J Nucl Med Mol Imaging | China | P | HCC ICC | lesion characterization | 17 | PET/CT | [68Ga]Ga-FAPI-04 | 3.59 MBq/kg | 40–50 | vertex to upper thigh | [18F]FDG |
First Author | Year | Journal | Country | Study Design | Site of Primary Tumor | Clinical Indication for FAPI Imaging | Patients with Malignant Liver Lesions (n) | FAPI PET Modality | FAPI Tracer | FAPI Activity | Post-inj. Delay (min) | FOV | Other Tracer(s) |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Koerber SA [42] | 2020 | J Nucl Med | Germany | R | Lower gastrointestinal | lesion characterization, staging | 14 | PET/CT | [68Ga]Ga-FAPI-04; [68Ga]Ga-FAPI-46 | 111–298 MBq | 60 | vertex to upper thigh | [18F]FDG |
Cheng Z [35] | 2021 | Clin Nucl Med | China | P (trial) | Pancreatic NET | lesion characterization and search for primary tumor | 1 | PET/CT | [68Ga]Ga-FAPI (nos.) | n.r. | n.r. | vertex to upper thigh | [18F]FDG, [68Ga]Ga-DOTATATE |
Deng M [38] | 2021 | Clin Nucl Med | China | P (trial) | Pancreatic carcinoma | staging | 1 | PET/CT | [68Ga]Ga-FAPI (nos.) | n.r. | n.r. | vertex to upper thigh | [18F]FDG |
Dendl K [31] | 2021 | Eur J Nucl Med Mol Imaging | Germany | R | Mixed | staging, therapy evaluation, biodistribution | n.r. | PET/CT | [68Ga]Ga-FAPI-04 (n = 22); [68Ga]Ga-FAPI-46 (n = 20); [68Ga]Ga-FAPI-74 (n = 13) | 252 MBq (range 118–340) | 60 | vertex to upper thigh | NO |
Giesel FL [34] | 2021 | Eur J Nucl Med Mol Imaging | Germany, USA, South Africa | R | Mixed | staging, biodistribution | n.r. | PET/CT | [68Ga]Ga-FAPI-02 (n = 6); [68Ga]Ga-FAPI-04 (n = 32); [68Ga]Ga-FAPI-46 (n = 32); [68Ga]Ga-FAPI-74 (n = 1) | median 185 MBq (range 52–325) | 60 | vertex to upper thigh | [18F]FDG |
Kömek H [36] | 2021 | Ann Nucl Med | Japan | P | Breast cancer | staging, restaging | 3 | PET/CT | [68Ga]Ga-FAPI-04 | 2 MBq/kg | 60 | vertex to upper thigh | [18F]FDG |
Kömek H [40] | 2021 | Clin Nucl Med | Turkey | P (trial) | Pancreatic NET | staging, evaluation before targeted therapy | 1 | PET/CT | [68Ga]Ga-FAPI (nos.) | n.r. | n.r. | vertex to upper thigh | [68Ga]Ga-DOTATATE |
Kreppel B [24] | 2021 | Nuklearmedizin | Germany | R | NET (pancreas = 8; small bowel = 2; appendix = 1; primary site unknown = 2) | lesion characterization, prognosis stratification | 13 | PET/CT | [68Ga]Ga- DATA5m.SA.FAPi | 184 ± 22 MBq | 79 ± 34 | vertex to upper thigh | [18F]FDG and [68Ga]Ga-DOTA-TOC |
Kuyumcu S [33] | 2021 | Endocrine | Turkey | n.r. | Medullary thyroid carcinoma | restaging | 1 | PET/CT | [68Ga]Ga-FAPI-05 | n.r. | n.r. | vertex to upper thigh | [68Ga]GaDOTATATE |
Pang Y [41] | 2021 | Radiology | China | R | Gastric and colorectal cancers | staging, restaging | 10 | PET/CT | [68Ga]Ga-FAPI (nos.) | 1.8–2.2 MBq/kg | 60 | vertex to upper thigh | [18F]FDG |
Sahin E [23] | 2021 | Eur J Radiol | Turkey | R | Colorectal = 15; pancreas = 9; gastric = 4; other = 3 | staging, restaging | 29 | PET/CT | [68Ga]Ga-FAPI-04 | 2–3 MBq/kg | 45 | vertex to upper thigh | [18F]FDG |
Wang H [39] | 2021 | Eur J Nucl Med Mol Imaging | China | R | Pancreatic NET | lesion characterization | 1 | PET/CT | [68Ga]Ga-FAPI-04 | n.r. | n.r. | skull base to upper thigh | [18F]FDG and [11C]acetate |
Barashki S [28] | 2022 | Clin Nucl Med | Iran | P (trial) | MEN 2A | staging and targeted therapy eligibility | 1 | PET/CT | [68Ga]Ga-FAPI-46 | n.r. | n.r. | vertex to upper thigh | [68Ga]Ga-DOTATATE and [131I]mIBG |
Can C [48] | 2022 | Nucl Med Commun | Turkey | R | Lung cancer (NSCLC) | staging | 7 | PET/CT | [68Ga]Ga-FAPI-04 | 2 Mbq/kg | 55–65 | vertex to mid-thigh | [18F]FDG |
Elboga U [26] | 2022 | Mol Imaging Biol | Turkey | R | CCR, gastric cancer, pancreaticobiliary cancer | staging (with known peritoneal involvement) | n.r. | PET/CT | [68Ga]Ga-FAPI-04 | 2 MBq/kg | 60 | vertex to mid-thigh | [18F]FDG |
Erol Fenercioğlu OE [32] | 2022 | Clin Nucl Med | Turkey | P (trial) | Uveal melanoma | restaging | 1 | PET/CT | [68Ga]Ga-FAPI-4 | 278 MBq | n.r. | vertex to upper thigh | [18F]FDG |
Kou Y [30] | 2022 | Clin Nucl Med | China | P (trial) | MALT lymphoma of sub-mandibular gland | staging | 1 | PET/CT | Al18F-NOTA-FAPI-04 | n.r. | n.r. | vertex to upper thigh | [18F]FDG |
Qin C [37] | 2022 | J Nucl Med | China | P | Gastric cancer | staging, restaging | 3 | PET/MRI | [68Ga]Ga-FAPI-04 | 1.85–3.7 MBq/kg | 30–60 | vertex to upper thigh | [18F]FDG |
Tatar G [49] | 2022 | Clin Nucl Med | Turkey | P (trial) | Gastric Kaposi sarcoma | staging | 1 | PET/CT | [68Ga]Ga-FAPI-4 | n.r. | 60 | vertex to mid-thigh | [18F]FDG |
Wang L [29] | 2022 | Radiology | China | P | Lung cancer | staging, restaging | n.r. | PET/CT | [68Ga]Ga-FAPI-47 | n.r. | n.r. | vertex to upper thigh | [18F]FDG |
Wu C [47] | 2022 | Eur J Nucl Med Mol Imaging | China | R | GIST | restaging | n.r. | PET/CT | [18F]FAPI-42 | 259 ± 26 MBq | 60 | vertex to mid-thigh | [18F]FDG |
Wu J [25] | 2022 | Front Oncol | China | P | Lung cancer (NSCLC) | staging | 2 | PET/CT | [68Ga]Ga-FAPI (nos.) | 1.85–2.59 MBq/kg | 60 + M2:M22 | vertex to the upper portion of the mid-thigh | [18F]FDG |
Xie F [46] | 2022 | Clin Nucl Med | China | n.r. | Renal cell carcinoma | restaging | 1 | PET/CT | [68Ga]Ga-FAPI-04 | n.r. | n.r. | vertex to upper thigh | [18F]FDG |
Zhang Z [27] | 2022 | Eur J Nucl Med Mol Imaging | China | P | Pancreatic carcinoma | lesion characterization, staging | 5 | PET/MRI | [68Ga]Ga-FAPI-04 | 1.85–3.70 MBq/kg | n.r. | vertex to mid-thigh | [18F]FDG |
Li C [45] | 2023 | Eur Radiol | China | R (post hoc of larger P study) | Gastrointestinal carcinoma (gastric = 28; CCR = 21; appendix = 2) | staging, restaging | 10 | PET/CT | [68Ga]Ga-FAPI-04 | 1.85–3.70 MBq/kg | 30–60 | vertex to upper thigh | [18F]FDG |
Lin X [43] | 2023 | Front Oncol | China | P | Colorectal cancer | staging, restaging, post-treatment | 9 | PET/CT | [68Ga]Ga-FAPI-04 | 1.85–2.96 MBq/kg | 60 | vertex to upper thigh | [18F]FDG |
Zhang Z [44] | 2023 | Clin Nucl Med | China | P | GIST | staging | 1 | PET/CT | [68Ga]Ga-FAPI-04 | n.r. | n.r. | vertex to upper thigh | [18F]FDG |
Ballal S [61] | 2023 | Pharmaceuticals | India | R | Breast cancer | staging, restaging | 17 | PET/CT | [68Ga]Ga-DOTA.SA.FAPi | 200 MBq | 60 | vertex to upper thigh | [18F]FDG |
Liu Q [60] | 2023 | Eur Radiol | China | R | Pancreatic cancer | lesion characterization, staging, restaging | n.r. | PET/CT | [68Ga]Ga-DOTA-FAPI-04 | 1.8–2.2 MBq/kg | 60 | skull base to upper thigh | [18F]FDG |
Dong Y [59] | 2023 | Nucl Med Commun | China | R (post hoc of larger P study) | Colorectal cancer | staging | 5 | PET/CT | [68Ga]Ga-FAPI-04, [18F]FAPI-42 | 0.04–0.06 mCi/kg | 60 | vertex to upper thigh | [18F]FDG |
Ballal S [58] | 2023 | Eur J Nucl Med Mol Imaging | India | R | Radioiodine-resistant follicular thyroid cancers | restaging | 30 | PET/CT | [68Ga]Ga-DOTA.SA.FAPi | 180 MBq | n.r. | vertex to upper thigh | [18F]FDG |
Chen X [57] | 2023 | J Nucl Med | China | P | Lymphoma, various subtypes | diagnosis | 7 | PET/CT | [68Ga]Ga-FAPI | 1.8–2.2 MBq/kg | 60 | skull base to upper thigh | [18F]FDG |
Tian X [50] | 2023 | Jpn J Clin Oncol | China | n.r. | Unknown | staging | 1 | PET/CT | [18F]FAPI (nos.) | n.r. | n.r. | vertex to upper thigh | [18F]FDG |
Dong A [51] | 2023 | Clin Nucl Med | China | P (trial) | Sarcomatoid renal cell carcinoma | staging | 1 | PET/CT | [68Ga]Ga-FAPI-04 | n.r. | n.r. | vertex to upper thigh | NO |
Tatar G [52] | 2023 | Mol Imaging Radionucl Ther | Turkey | n.r. | Papillary thyroid carcinoma | staging | 1 | PET/CT | [68Ga]Ga-FAPI-04 | n.r. | n.r. | vertex to upper thigh | [18F]FDG |
Ren JY [54] | 2023 | Clin Nucl Med | China | P (trial) | Colorectal cancer | restaging | 1 | PET/CT | [18F]FAPI-04 | n.r. | n.r. | vertex to toes | [18F]FDG |
Hoppner J [55] | 2023 | Sci Rep | Germany | R | Pancreatic ductal adenocarcinoma | restaging | 7 | PET/CT | [68Ga]Ga-FAPI-46 | 200–295 MBq | 20 and 60 (dual time) | vertex to mid-thigh | NO |
Zhang A [53] | 2024 | Eur Radiol | China | P | Primary extrapulmonary tumors in the chest | diagnosis, staging | n.r. | PET/CT | [68Ga]Ga-FAPI-04 | 2.5–3.5 MBq/kg | 60 ± 10 | skull base to upper femur | [18F]FDG |
Has Simsek D [56] | 2024 | Eur J Nucl Med Mol Imaging | Turkey | P | NETs of various origin + paraganglioma + pheochromocytoma | restaging | 10 | PET/CT | [68Ga]Ga-FAPI-04 | 185–200 MBq | 30–60 | vertex to upper thigh | [68Ga]DOTATATE |
First Author | FAPI Tracer | Other Tracer(s) | SUV FAPI vs. Other Tracer(s) | TBR FAPI vs. Other Tracer(s) | Advantages/Disadvantages |
---|---|---|---|---|---|
Li T [77] | [68Ga]Ga-FAPI (nos.) | [18F]FDG | Higher | Higher | [68Ga]Ga-FAPI reveals additional multiple liver lesions with variable FAPI uptake degree, not seen on [18F]FDG |
Zhang J [78] | [18F]FAPI (nos.) | [18F]FDG | Higher | Higher | [18F]FAPI performed better than [18F]FDG in detecting HCC primary and lymph node lesions; peritoneal metastases better detected by [18F]FAPI |
Li Z [76] | [68Ga]Ga-FAPI (nos.) | [18F]FDG | Higher | Higher | [68Ga]Ga-FAPI shows a remarkable TBR in patients with PEComa, 20 times higher than that of [18F]FDG |
Suthar RR [72] | [68Ga]Ga-FAPI (nos.) | [18F]FDG | Higher | Higher | Superiority of [68Ga]Ga-FAPI over [18F]FDG in identifying fibrolamellar HCC (higher proportion of tumor-associated fibroblasts?) |
Liu M [74] | [68Ga]Ga-FAPI (nos.) | [18F]FDG | Higher | n.r. | [68Ga]Ga-FAPI has potential in detecting hepatic adenocarcinoma; false positive findings in infectious conditions (pulmonary cryptococcosis) |
Wu M [82] | [68Ga]Ga-FAPI-04 | [18F]FDG | Comparable | n.r. | Volumetric indices on baseline [68Ga]Ga]-FAPI-04 were potentially prognostic factors to predict durable clinical benefit, PFS, and OS in unresectable HCC patients treated with combination of PD-1 and lenvatinib |
Rajaraman V [81] | [68Ga]Ga-FAPI-04 | [18F]FDG | Lower for HCC, higher for CC | Lower for HCC, higher for CC | [68Ga]Ga-FAPI-04] PET/CT clearly outperformed [18F]FDG in evaluating CC |
Jinghua L [80] | [68Ga]Ga-DOTA-FAPI | [18F]FDG | Higher | Higher | [68Ga]Ga-DOTA-FAPI demonstrated higher uptake and sensitivity than [18F]FDG |
Pabst KM [79] | [68Ga]Ga-FAPI-46 | [18F]FDG | Higher | Higher (blood, liver) | [68Ga]Ga-FAPI-46 PET/CT displayed superior radiotracer uptake (especially Grade 3 tumors) and improved detection of lesions compared with [18F]FDG |
Yao X [68] | [68Ga]Ga-FAPI (nos.) | [18F]FDG | Lower | n.r. | [68Ga]Ga-FAPI PET/MRI useful to detect invasion of blood vessels |
Pan B [69] | Al18F-NOTA-FAPI-04 | [18F]FDG | Higher | n.r. | Arc-shaped Al18F-NOTA-FAPI-04 uptake in one lesion and two additional lesions missed by [18F]FDG |
Chen D [71] | [18F]-FAPI (nos.) | [18F]FDG | n.r. | n.r. | [18F]-FAPI better than [18F]FDG in detecting peritoneal metastases, even in early HCC; false positives due to post-treatment stromal fibrosis |
Siripongsatian D [62] | [68Ga]Ga-FAPI-46 | [18F]FDG | Higher | Higher | Higher uptake and TBR for [68Ga]Ga-FAPI-46 compared to [18F]FDG (better detection of hepatic lesions) |
Pang Y [64] | [68Ga]Ga-FAPI (nos.) | [18F]FDG | Lower | Higher | [68Ga]Ga-FAPI PET/CT exhibited two times higher TBR than [18F]FDG |
Ergül N [66] | [68Ga]GaDOTA-FAPI-04 | [18F]FDG | Higher | n.r. | [68Ga]GaDOTA-FAPI-04 showed more intense uptake than [18F]FDG in peripheral regions of liver lesions (compared to central necrotic regions) |
Siripongsatian D [63] | [68Ga]Ga-FAPI-46 | [18F]FDG | n.r. | Higher | [68Ga]Ga-FAPI-46 PET/CT ensured change in patient management due to higher TBR in recurrent tumor and nodal metastases; some [68Ga]Ga-FAPI-46 active lesions not detected by [18F]FDG |
Wang H [67] | [68Ga]Ga-FAPI-04 | [18F]FDG | Comparable | Higher | [68Ga]Ga-FAPI-04 PET/CT demonstrated higher sensitivity than [18F]FDG in detecting intrahepatic HCC |
Guo W [22] | [68Ga]Ga-FAPI-04 | [18F]FDG | Higher | Higher | Sensitivity of [68Ga]Ga-FAPI-04 PET/CT in detecting primary hepatic tumors comparable to contrast-enhanced CT and liver MRI, but better than [18F]FDG |
Shi X [21] | [68Ga]Ga-FAPI-04 | [18F]FDG | Higher | Higher | Superiority of [68Ga]Ga-FAPI-04 in identifying primary malignancies compared with [18F]FDG |
First Author | Other Tracer(s) | SUV FAPI vs. Other Tracer(s) | TBR FAPI vs. Other Tracer(s) | Advantages/Disadvantages |
---|---|---|---|---|
Cheng Z [35] | [18F]FDG [68Ga]Ga-DOTATATE | Higher than [18F]FDG Lower than [68Ga]Ga-DOTATATE | n.r. | Outstanding performance of [68Ga]Ga-FAPI in detecting liver metastases from PNET, with remarkably high TBR. Small lymph node and skeletal metastases missed by both [18F]FDG and [68Ga]Ga-FAPI |
Deng M [38] | [18F]FDG | n.r. | n.r. | [68Ga]Ga-FAPI better than [18F]FDG for metastatic liver lesions in gastrointestinal tumors |
Giesel FL [34] | [18F]FDG | Higher | Higher | TBR of hepatic metastases to surrounding liver parenchyma significantly higher using [68Ga]Ga-FAPI than [18F]FDG (5.8 vs. 2.6; p = 0.011) |
Kömek H [36] | [18F]FDG | Higher | Lower | Higher uptake of [68Ga]Ga-FAPI-04 than [18F]FDG in metastatic liver, lymph node, bone, and brain lesions, although < 1 cm sized |
Kömek H [40] | [68Ga]Ga-DOTATATE | Lower | Higher | Better visualization of liver metastases from NET [68Ga]Ga-FAPI due to lower background physiological uptake in hepatic parenchyma, with respect to [68Ga]Ga-DOTATATE |
Kreppel B [24] | [18F]FDG [68Ga]Ga-DOTATOC | Higher | n.r. | High correlation between [68Ga]Ga-DATA5m.SA.FAPi-positive tumor fraction with Ki-67 in liver metastases from NET (marker of aggressiveness and de-differentiation); non-concordant uptake pattern between [18F]FDG and [68Ga]Ga-DATA5m.SA.FAPi: [18F]FDG; uptake higher in the center of the lesion; [68Ga]Ga-DATA5m.SA.FAPi uptake more evident in the periphery |
Kuyumcu S [33] | [68Ga]Ga-DOTATATE | n.r. | n.r. | Much more liver metastases evident on [68Ga]Ga-FAPI-04 PET/CT and missed by [68Ga]Ga-DOTATATE PET/CT |
Pang Y [41] | [18F]FDG | Higher | n.r. | [68Ga]Ga-FAPI PET/CT higher than [18F]FDG in the primary lesion and in liver metastases, also with higher sensitivity |
Sahin E [23] | [18F]FDG | n.r. | n.r. | Statistically higher number of liver lesions with [68Ga]Ga-DOTA-FAPI-PET/CT than with [18F]FDG-PET/CT |
Wang L [29] | [18F]FDG | Lower | Higher | [68Ga]Ga-FAPI and [18F]FDG showed comparable performances in detecting liver, lung, and adrenal metastases |
Barashki S [28] | [68Ga]Ga-DOTATATE [131I]mIBG | n.r. | n.r. | [68Ga]Ga-FAPI-46 PET/CT useful in showing progressive disease due to lung, liver, bone, and lymph nodes metastases |
Can C [48] | [18F]FDG | Higher | Higher | [68Ga]Ga-FAPI better than [18F]FDG in correct disease TNM staging (change in patients’ overall disease status and management, although difference was statistically non-significant) |
Elboga U [26] | [18F]FDG | Higher | n.r. | [68Ga]Ga-FAPI PET/CT useful as a complementary imaging modality in patients with inconclusive [18F]FDG for liver metastases; [68Ga]Ga-FAPI superior to [18F]FDG in detecting peritoneal involvement, with very high image quality |
Erol Fenercioğlu O [32] | [18F]FDG | Lower | n.r. | [18F]FDG uptake in liver metastases from uveal melanoma higher than that of [68Ga]Ga-FAPI-4 PET/CT; for comparison, [68Ga]Ga-FAPI-4 uptake in osteoarthritis was higher than in liver metastases (unlike [18F]FDG) |
Kou Y [30] | [18F]FDG | n.r. | n.r. | Liver metastases of MALT lymphoma visible only using FAPI PET/CT |
Qin C [37] | [18F]FDG | Higher | n.r. | PET/MRI using [68Ga]Ga-FAPI showed more metastatic liver lesions, with higher uptake and a higher detection rate than [18F]FDG PET/CT |
Tatar G [49] | [18F]FDG | Lower | n.r. | [18F]FDG better than [68Ga]Ga-FAPI in liver metastases from Kaposi sarcoma; it is, therefore, more suitable in determining disease extent and localizing all distant lesions |
Wang H [39] | [18F]FDG [11C]acetate | n.r. | n.r. | Higher performance of [68Ga]Ga-FAPI-04 in detecting liver metastases of pancreatic NET, due to low background activity (false negative on both [18F]FDG and [11C]acetate); only [68Ga]Ga-FAPI-04 found the primitive tumor |
Wu C [47] | [18F]FDG | n.r. | Higher | Higher detection rate and TBR in liver metastases from GISTs |
Wu J [25] | [18F]FDG | Higher | Higher | [68Ga]Ga-FAPI exhibits significantly better diagnostic performances with respect to [18F]FDG in detecting liver (but also pleural, bone, and nodal) metastases from NSCLC |
Xie F [46] | [18F]FDG | n.r. | n.r. | Single liver lesion detected by [68Ga]Ga-FAPI-04 thanks to the low background (low absolute uptake) compared to false negative [18F]FDG findings in renal cell carcinoma |
Zhang Z [27] | [18F]FDG | Lower | n.r. | More liver metastases from pancreatic cancer detected using [68Ga]Ga-FAPI-04, thanks to the lower background than [18F]FDG (usually ring-shaped [68Ga]Ga-FAPI-04 uptake around the edge); absolute [18F]FDG SUVmax higher than that of [68Ga]Ga-FAPI-04, as per absolute value (unlike primary and lymph node lesions) |
Li C [45] | [18F]FDG | Comparable | Higher | [68Ga]Ga-FAPI-04 superior to [18F]FDG in diagnosing liver metastasis from gastrointestinal cancers, thanks to higher TBR and TLR (lesions displayed more clearly) |
Lin X [43] | [18F]FDG | Lower | Higher | [68Ga]Ga-FAPI-04 PET/CT improved tumor staging by detecting distant and, specifically, liver metastases from colorectal cancer (favorable TBR), especially in signet-ring/mucinous carcinoma, compared with [18F]FDG, thus prompting the optimization or adjustment of treatment decisions |
Zhang Z [44] | [18F]FDG | Higher | n.r. | [68Ga]Ga-FAPI-04 PET/CT more sensitive than [18F]FDG for detecting metastatic liver lesions from GISTs |
Ballal S [61] | [18F]FDG | n.r. | Higher | [8Ga]Ga-DOTA.SA.FAPi uptake was significantly higher in liver metastases than that of [18F]FDG |
Liu Q [60] | [18F]FDG | Comparable | Higher | [68Ga]Ga-DOTA-FAPI-04 PET/CT detected more liver metastases than [18F]FDG, with a significantly higher tumor-to-liver background ratio of hepatic metastases |
Dong Y [59] | [18F]FDG | Higher | Higher | Compared with [18F]FDG PET/CT, FAPI PET/CT showed more true positive liver lesions; they were more clearly delineated in 61.5% cases, equally in 30.8%, and inferiorly in 7.7% |
Ballal S [58] | [18F]FDG | n.r | n.r. | [68Ga]Ga-DOTA.SA.FAPi had a higher detection rate for liver metastases compared to [18F]FDG |
Tian X [50] | [18F]FDG | Higher | Higher | [18F]FAPI PET more useful in differentiating between focal fat-sparing and liver metastases in patients with fatty liver disease |
Tatar G [52] | [18F]FDG | Higher | n.r. | [68Ga]Ga-FAPI-04 may add benefit in the restaging of metastatic DTC |
Ren JY [54] | [18F]FDG | n.r. | n.r. | [18F]FAPI-04 performed similarly to [18F]FDG in detecting liver metastases from colorectal cancer; false positive [18F]FAPI-04 uptake in a vertebral hemangioma |
Zhang A [53] | [18F]FDG | Comparable | Higher | [68Ga]Ga-FAPI has an overwhelming advantage on [18F]FDG in assessing metastases in different sites; tumor-to-liver ratio higher for [68Ga]Ga-FAPI than for [18F]FDG |
Has Simsek D [56] | [68Ga]Ga-DOTATATE | Lower | n.r. | [68Ga]Ga-FAPI detected a lower number of liver metastases from NETs than [68Ga]Ga-DOTATATE (27/54 vs. 38/54), and the SUVmax of [68Ga]Ga-FAPI-positive lesions was much lower (median 5.1) than for [68Ga]Ga-DOTATATE-positive ones (median 16.6) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Manuppella, F.; Pisano, G.; Taralli, S.; Caldarella, C.; Calcagni, M.L. Diagnostic Performances of PET/CT Using Fibroblast Activation Protein Inhibitors in Patients with Primary and Metastatic Liver Tumors: A Comprehensive Literature Review. Int. J. Mol. Sci. 2024, 25, 7197. https://doi.org/10.3390/ijms25137197
Manuppella F, Pisano G, Taralli S, Caldarella C, Calcagni ML. Diagnostic Performances of PET/CT Using Fibroblast Activation Protein Inhibitors in Patients with Primary and Metastatic Liver Tumors: A Comprehensive Literature Review. International Journal of Molecular Sciences. 2024; 25(13):7197. https://doi.org/10.3390/ijms25137197
Chicago/Turabian StyleManuppella, Federica, Giusi Pisano, Silvia Taralli, Carmelo Caldarella, and Maria Lucia Calcagni. 2024. "Diagnostic Performances of PET/CT Using Fibroblast Activation Protein Inhibitors in Patients with Primary and Metastatic Liver Tumors: A Comprehensive Literature Review" International Journal of Molecular Sciences 25, no. 13: 7197. https://doi.org/10.3390/ijms25137197
APA StyleManuppella, F., Pisano, G., Taralli, S., Caldarella, C., & Calcagni, M. L. (2024). Diagnostic Performances of PET/CT Using Fibroblast Activation Protein Inhibitors in Patients with Primary and Metastatic Liver Tumors: A Comprehensive Literature Review. International Journal of Molecular Sciences, 25(13), 7197. https://doi.org/10.3390/ijms25137197