High-Resolution Magic Angle Spinning Nuclear Magnetic Resonance Spectroscopy of Paired Clinical Liver Tissue Samples from Hepatocellular Cancer and Surrounding Region
Abstract
:1. Introduction
2. Results
2.1. Metabolites Are Heterogeneous in HCC Tumour and Surrounding Tissue
2.2. Differences in Lipids Based on Aetiology
2.3. Type 2 Diabetes Mellitus
2.4. Formate
2.5. Ethanol
3. Discussion
4. Materials and Methods
4.1. NMR Spectral Processing and NMR Data Analyses
4.2. Histology
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
References
- Yang, J.D.; Hainaut, P.; Gores, G.J.; Amadou, A.; Plymoth, A.; Roberts, L.R. A global view of hepatocellular carcinoma: Trends, risk, prevention and management. Nat. Rev. Gastroenterol. Hepatol. 2019, 16, 589–604. [Google Scholar] [CrossRef]
- Forner, A.; Reig, M.; Bruix, J. Hepatocellular carcinoma. Lancet 2018, 391, 1301–1314. [Google Scholar] [CrossRef] [PubMed]
- Calderon-Martinez, E.; Landazuri-Navas, S.; Vilchez, E.; Cantu-Hernandez, R.; Mosquera-Moscoso, J.; Encalada, S.; Al Lami, Z.; Zevallos-Delgado, C.; Cinicola, J. Prognostic Scores and Survival Rates by Etiology of Hepatocellular Carcinoma: A Review. J. Clin. Med. Res. 2023, 15, 200–207. [Google Scholar] [CrossRef]
- Younossi, Z.M.; Wong, G.; Anstee, Q.M.; Henry, L. The Global Burden of Liver Disease. Clin. Gastroenterol. Hepatol. 2023, 21, 1978–1991. [Google Scholar] [CrossRef] [PubMed]
- Rumgay, H.; Arnold, M.; Ferlay, J.; Lesi, O.; Cabasag, C.J.; Vignat, J.; Laversanne, M.; McGlynn, K.A.; Soerjomataram, I. Global burden of primary liver cancer in 2020 and predictions to 2040. J. Hepatol. 2022, 77, 1598–1606. [Google Scholar] [CrossRef] [PubMed]
- Burton, A.; Balachandrakumar, V.K.; Driver, R.J.; Tataru, D.; Paley, L.; Marshall, A.; Alexander, G.; Rowe, I.A.; Palmer, D.H.; Cross, T.J.S.; et al. Regional variations in hepatocellular carcinoma incidence, routes to diagnosis, treatment and survival in England. Br. J. Cancer 2022, 126, 804–814. [Google Scholar] [CrossRef]
- Kaffe, E.; Tisi, A.; Magkrioti, C.; Aidinis, V.; Mehal, W.Z.; Flavell, R.A.; Maccarrone, M. Bioactive signalling lipids as drivers of chronic liver diseases. J. Hepatol. 2023, 80, 140–154. [Google Scholar] [CrossRef] [PubMed]
- Tilg, H.; Adolph, T.E.; Dudek, M.; Knolle, P. Non-alcoholic fatty liver disease: The interplay between metabolism, microbes and immunity. Nat. Metab. 2021, 3, 1596–1607. [Google Scholar] [CrossRef]
- Cheng, X.; Wang, W.; Zhang, Z.; Zhang, H.; Zhu, P.; He, R.; Wu, M.; Zhou, T.; Jiang, Y.; Jiang, L.; et al. Distinctly altered lipid components in hepatocellular carcinoma relate to impaired T cell-dependent antitumor immunity. Hepatol. Int. 2023, 18, 582–594. [Google Scholar] [CrossRef]
- Riva, A.; Gray, E.H.; Azarian, S.; Zamalloa, A.; McPhail, M.J.W.; Vincent, R.P.; Williams, R.; Chokshi, S.; Patel, V.C.; Edwards, L.A. Faecal cytokine profiling as a marker of intestinal inflammation in acutely decompensated cirrhosis. JHEP Rep. 2020, 2, 100151. [Google Scholar] [CrossRef]
- Sharma, L.; Riva, A. Intestinal Barrier Function in Health and Disease—Any Role of SARS-CoV-2? Microorganisms 2020, 8, 1744. [Google Scholar] [CrossRef] [PubMed]
- Li, M.; van Esch, B.C.A.M.; Wagenaar, G.T.M.; Garssen, J.; Folkerts, G.; Henricks, P.A.J. Pro- and anti-inflammatory effects of short chain fatty acids on immune and endothelial cells. Eur. J. Pharmacol. 2018, 831, 52–59. [Google Scholar] [CrossRef] [PubMed]
- King, R.J.; Singh, P.K.; Mehla, K. The cholesterol pathway: Impact on immunity and cancer. Trends Immunol. 2022, 43, 78–92. [Google Scholar] [CrossRef] [PubMed]
- Zhao, J.; Lee, K.; Toh, H.C.; Lam, K.P.; Neo, S.Y. Unravelling the role of obesity and lipids during tumor progression. Front. Pharmacol. 2023, 14, 1163160. [Google Scholar] [CrossRef] [PubMed]
- Montironi, C.; Castet, F.; Haber, P.K.; Pinyol, R.; Torres-Martin, M.; Torrens, L.; Mesropian, A.; Wang, H.; Puigvehi, M.; Maeda, M.; et al. Inflamed and non-inflamed classes of HCC: A revised immunogenomic classification. Gut 2023, 72, 129–140. [Google Scholar] [CrossRef] [PubMed]
- Llovet, J.M.; Castet, F.; Heikenwalder, M.; Maini, M.K.; Mazzaferro, V.; Pinato, D.J.; Pikarsky, E.; Zhu, A.X.; Finn, R.S. Immunotherapies for hepatocellular carcinoma. Nat. Rev. Clin. Oncol. 2022, 19, 151–172. [Google Scholar] [CrossRef]
- Ohtani, N.; Kamiya, T.; Kawada, N. Recent updates on the role of the gut-liver axis in the pathogenesis of NAFLD/NASH, HCC, and beyond. Hepatol. Commun. 2023, 7, e0241. [Google Scholar] [CrossRef] [PubMed]
- Routy, B.; Le Chatelier, E.; DeRosa, L.; Duong, C.P.M.; Alou, M.T.; Daillère, R.; Fluckiger, A.; Messaoudene, M.; Rauber, C.; Roberti, M.P.; et al. Gut microbiome influences efficacy of PD-1–based immunotherapy against epithelial tumors. Science 2018, 359, 91–97. [Google Scholar] [CrossRef]
- Matson, V.; Fessler, J.; Bao, R.; Chongsuwat, T.; Zha, Y.; Alegre, M.-L.; Luke, J.J.; Gajewski, T.F. The commensal microbiome is associated with anti–PD-1 efficacy in metastatic melanoma patients. Science 2018, 359, 104–108. [Google Scholar] [CrossRef]
- Gopalakrishnan, V.; Spencer, C.N.; Nezi, L.; Reuben, A.; Andrews, M.C.; Karpinets, T.V.; Prieto, P.A.; Vicente, D.; Hoffman, K.; Wei, S.C.; et al. Gut microbiome modulates response to anti–PD-1 immunotherapy in melanoma patients. Science 2018, 359, 97–103. [Google Scholar] [CrossRef]
- Komiyama, S.; Yamada, T.; Takemura, N.; Kokudo, N.; Hase, K.; Kawamura, Y.I. Profiling of tumour-associated microbiota in human hepatocellular carcinoma. Sci. Rep. 2021, 11, 10589. [Google Scholar] [CrossRef]
- Beckonert, O.; Coen, M.; Keun, H.C.; Wang, Y.; Ebbels, T.M.D.; Holmes, E.; Lindon, J.C.; Nicholson, J.K. High-resolution magic-angle-spinning NMR spectroscopy for metabolic profiling of intact tissues. Nat. Protoc. 2010, 5, 1019–1032. [Google Scholar] [CrossRef]
- Cheng, L.L. High-resolution magic angle spinning NMR for intact biological specimen analysis: Initial discovery, recent developments, and future directions. NMR Biomed. 2023, 36, e4684. [Google Scholar] [CrossRef] [PubMed]
- Schenetti, L.; Mucci, A.; Parenti, F.; Cagnoli, R.; Righi, V.; Tosi, M.R.; Tugnoli, V. HR-MAS NMR spectroscopy in the characterization of human tissues: Application to healthy gastric mucosa. Concepts Magn. Reson. Part A 2006, 28A, 430–443. [Google Scholar] [CrossRef]
- Faitot, F.; Besch, C.; Battini, S.; Ruhland, E.; Onea, M.; Addeo, P.; Woehl-Jaeglé, M.-L.; Ellero, B.; Bachellier, P.; Namer, I.-J. Impact of real-time metabolomics in liver transplantation: Graft evaluation and donor-recipient matching. J. Hepatol. 2018, 68, 699–706. [Google Scholar] [CrossRef]
- Duarte, I.F.; Stanley, E.G.; Holmes, E.; Lindon, J.C.; Gil, A.M.; Tang, H.; Ferdinand, R.; McKee, C.G.; Nicholson, J.K.; Vilca-Melendez, H.; et al. Metabolic assessment of human liver transplants from biopsy samples at the donor and recipient stages using high-resolution magic angle spinning 1H NMR spectroscopy. Anal. Chem. 2005, 77, 5570–5578. [Google Scholar] [CrossRef]
- Martínez-Granados, B.; Morales, J.M.; Rodrigo, J.M.; Del Olmo, J.; Serra, M.A.; Ferrández, A.; Celda, B.; Monleón, D. Metabolic profile of chronic liver disease by NMR spectroscopy of human biopsies. Int. J. Mol. Med. 2011, 27, 111–117. [Google Scholar] [CrossRef] [PubMed]
- Yang, Y.; Li, C.; Nie, X.; Feng, X.; Chen, W.; Yue, Y.; Tang, H.; Deng, F. Metabonomic studies of human hepatocellular carcinoma using high-resolution magic-angle spinning 1H NMR spectroscopy in conjunction with multivariate data analysis. J. Proteome Res. 2007, 6, 2605–2614. [Google Scholar] [CrossRef]
- Solinas, A.; Chessa, M.; Culeddu, N.; Porcu, M.C.; Virgilio, G.; Arcadu, F.; Deplano, A.; Cossu, S.; Scanu, D.; Migaleddu, V. High resolution-magic angle spinning (HR-MAS) NMR-based metabolomic fingerprinting of early and recurrent hepatocellular carcinoma. Metabolomics 2014, 10, 616–626. [Google Scholar] [CrossRef]
- Cao, D.; Cai, C.; Ye, M.; Gong, J.; Wang, M.; Li, J.; Gong, J. Differential metabonomic profiles of primary hepatocellular carcinoma tumors from alcoholic liver disease, HBV-infected, and HCV-infected cirrhotic patients. Oncotarget 2017, 8, 53313–53325. [Google Scholar] [CrossRef]
- Cacciatore, S.; Hu, X.; Viertler, C.; Kap, M.; Bernhardt, G.A.; Mischinger, H.-J.; Riegman, P.; Zatloukal, K.; Luchinat, C.; Turano, P. Effects of Intra- and Post-Operative Ischemia on the Metabolic Profile of Clinical Liver Tissue Specimens Monitored by NMR. J. Proteome Res. 2013, 12, 5723–5729. [Google Scholar] [CrossRef] [PubMed]
- Ter Voert, E.E.G.W.; Heijmen, L.; van Asten, J.J.A.; Wright, A.J.; Nagtegaal, I.D.; Punt, C.J.; de Wilt, J.H.; van Laarhoven, H.W.; Heerschap, A. Levels of choline-containing compounds in normal liver and liver metastases of colorectal cancer as recorded by 1H MRS. NMR Biomed. 2019, 32, e4035. [Google Scholar] [CrossRef]
- Imperiale, A.; Poncet, G.; Addeo, P.; Ruhland, E.; Roche, C.; Battini, S.; Cicek, A.E.; Chenard, M.P.; Hervieu, V.; Goichot, B.; et al. Metabolomics of Small Intestine Neuroendocrine Tumors and Related Hepatic Metastases. Metabolites 2019, 9, 300. [Google Scholar] [CrossRef] [PubMed]
- Rivas, M.P.; Aguiar, T.F.M.; Maschietto, M.; Lemes, R.B.; Caires-Júnior, L.C.; Goulart, E.; Telles-Silva, K.A.; Novak, E.; Cristofani, L.M.; Odone, V.; et al. Hepatoblastomas exhibit marked NNMT downregulation driven by promoter DNA hypermethylation. Tumor Biol. 2020, 42, 101042832097712. [Google Scholar] [CrossRef] [PubMed]
- Tasic, L.; Avramović, N.; Jadranin, M.; Quintero, M.; Stanisic, D.; Martins, L.G.; Costa, T.B.B.C.; Novak, E.; Odone, V.; Rivas, M.; et al. High-Resolution Magic-Angle-Spinning NMR in Revealing Hepatoblastoma Hallmarks. Biomedicines 2022, 10, 3091. [Google Scholar] [CrossRef]
- Cobbold, J.F.L.; Cox, I.J.; Brown, A.S.; Williams, H.R.T.; Goldin, R.D.; Thomas, H.C.; Thursz, M.R.; Taylor-Robinson, S.D. Lipid profiling of pre-treatment liver biopsy tissue predicts sustained virological response in patients with chronic hepatitis C. Hepatol. Res. 2012, 42, 714–720. [Google Scholar] [CrossRef] [PubMed]
- Nachabé, R.; van der Hoorn, J.W.A.; van de Molengraaf, R.; Lamerichs, R.; Pikkemaat, J.; Sio, C.F.; Hendriks, B.H.W.; Sterenborg, H.J.C.M. Validation of interventional fiber optic spectroscopy with MR spectroscopy, MAS-NMR spectroscopy, high-performance thin-layer chromatography, and histopathology for accurate hepatic fat quantification. Investig. Radiol. 2012, 47, 209–216. [Google Scholar] [CrossRef]
- Peeters, F.; Cappuyns, S.; Piqué-Gili, M.; Phillips, G.; Verslype, C.; Lambrechts, D.; Dekervel, J. Applications of single-cell multi-omics in liver cancer. JHEP Rep. 2024, 2024, 101094. [Google Scholar] [CrossRef]
- Jagatia, R.; Doornebal, E.J.; Rastovic, U.; Harris, N.; Feyide, M.; Lyons, A.M.; Miquel, R.; Zen, Y.; Zamalloa, A.; Malik, F.; et al. Patient-derived precision cut tissue slices from primary liver cancer as a potential platform for preclinical drug testing. EBioMedicine 2023, 97, 104826. [Google Scholar] [CrossRef]
- Fernandes, W.; Harris, N.; Adofina, L.; Zamalloa, A.; Heaton, N.; Menon, K.; Srinivasan, P.; Miquel, R.; Zen, Y.; Kelly, G.; et al. WED-542-YI Unravelling bacterial metabolites using high-resolution magic angle spinning nuclear magnetic resonance spectroscopy in intact hepatocellular carcinoma liver tissue. J. Hepatol. 2024, 80, S281. [Google Scholar] [CrossRef]
- Rockey, D.C.; Caldwell, S.H.; Goodman, Z.D.; Nelson, R.C.; Smith, A.D. Liver biopsy. Hepatology 2009, 49, 1017–1044. [Google Scholar] [CrossRef] [PubMed]
- Renault, M.; Shintu, L.; Piotto, M.; Caldarelli, S. Slow-spinning low-sideband HR-MAS NMR spectroscopy: Delicate analysis of biological samples. Sci. Rep. 2013, 3, 3349. [Google Scholar] [CrossRef]
- André, M.; Dumez, J.N.; Rezig, L.; Shintu, L.; Piotto, M.; Caldarelli, S. Complete Protocol for Slow-Spinning High-Resolution Magic-Angle Spinning NMR Analysis of Fragile Tissues. Anal. Chem. 2014, 86, 10749–10754. [Google Scholar] [CrossRef] [PubMed]
- Taylor, J.L.; Wu, C.; Cory, D.; Gonzalez, R.G.; Bielecki, A.; Cheng, L.L. High-resolution magic angle spinning proton NMR analysis of human prostate tissue with slow spinning rates. Magn. Reson. Med. 2003, 50, 627–632. [Google Scholar] [CrossRef]
- Warburg, O. The Metabolism of Carcinoma Cells. J. Cancer Res. 1925, 9, 148–163. [Google Scholar] [CrossRef]
- Parhofer, K.G. Interaction between Glucose and Lipid Metabolism: More than Diabetic Dyslipidemia. Diabetes Metab. J. 2015, 39, 353. [Google Scholar] [CrossRef]
- Weickert, M.O.; Pfeiffer, A.F.H. Signalling mechanisms linking hepatic glucose and lipid metabolism. Diabetologia 2006, 49, 1732–1741. [Google Scholar] [CrossRef]
- Rowe, J.H.; Elia, I.; Shahid, O.; Gaudiano, E.F.; Sifnugel, N.E.; Johnson, S.; Reynolds, A.G.; Fung, M.E.; Joshi, S.; LaFleur, M.W.; et al. Formate Supplementation Enhances Antitumor CD8+ T-cell Fitness and Efficacy of PD-1 Blockade. Cancer Discov. 2023, 13, 2566–2583. [Google Scholar] [CrossRef]
- Liu, Z.; Oyetunde, T.; Hollinshead, W.D.; Hermanns, A.; Tang, Y.J.; Liao, W.; Liu, Y. Exploring eukaryotic formate metabolisms to enhance microbial growth and lipid accumulation. Biotechnol. Biofuels 2017, 10, 22. [Google Scholar] [CrossRef] [PubMed]
- Ternes, D.; Tsenkova, M.; Pozdeev, V.I.; Meyers, M.; Koncina, E.; Atatri, S.; Schmitz, M.; Karta, J.; Schmoetten, M.; Heinken, A.; et al. The gut microbial metabolite formate exacerbates colorectal cancer progression. Nat. Metab. 2022, 4, 458–475. [Google Scholar] [CrossRef]
- Abbott, M.; Ustoyev, Y. Cancer and the Immune System: The History and Background of Immunotherapy. Semin. Oncol. Nurs. 2019, 35, 150923. [Google Scholar] [CrossRef]
- Meiser, J.; Schuster, A.; Pietzke, M.; Voorde, J.V.; Athineos, D.; Oizel, K.; Burgos-Barragan, G.; Wit, N.; Dhayade, S.; Morton, J.P.; et al. Increased formate overflow is a hallmark of oxidative cancer. Nat. Commun. 2018, 9, 1368. [Google Scholar] [CrossRef] [PubMed]
- Pietzke, M.; Meiser, J.; Vazquez, A. Formate metabolism in health and disease. Mol. Metab. 2020, 33, 23–37. [Google Scholar] [CrossRef] [PubMed]
- Zheng, C.; Lu, F.; Chen, B.; Yang, J.; Yu, H.; Wang, D.; Xie, H.; Chen, K.; Xie, Y.; Li, J.; et al. Gut microbiome as a biomarker for predicting early recurrence of HBV-related hepatocellular carcinoma. Cancer Sci. 2023, 114, 4717–4731. [Google Scholar] [CrossRef]
- Yuan, J.; Chen, C.; Cui, J.; Lu, J.; Yan, C.; Wei, X.; Zhao, X.; Li, N.; Li, S.; Xue, G.; et al. Fatty Liver Disease Caused by High-Alcohol-Producing Klebsiella pneumoniae. Cell Metab. 2019, 30, 675–688.e7. [Google Scholar] [CrossRef] [PubMed]
- Mbaye, B.; Wasfy, R.M.; Alou, M.T.; Borentain, P.; Andrieu, C.; Caputo, A.; Raoult, D.; Gerolami, R.; Million, M. Limosilactobacillus fermentum, Lactococcus lactis and Thomasclavelia ramosa are enriched and Methanobrevibacter smithii is depleted in patients with non-alcoholic steatohepatitis. Microb. Pathog. 2023, 180, 106160. [Google Scholar] [CrossRef]
Sample Details | Clinical Details | Tumour Characteristics | Background Liver Tissue to Tumour | |||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
ID | Aetiology from Histology | Age yr | BMI | Ethnicity | Sex M/F | BCLC Stage | Alcohol Units per wk | T2DM | Other Medication | Primary Tumour Size cm | Tumour Multiplicity | Vascular Invasion | Tumour Steatosis % | Tumour Differentiation | Background Liver Tissue Fibrosis | Background Liver Tissue Steatosis % |
039 | Alcohol | 70 | 29.3 | Caucasian | M | A | None | No | N/A | 2.7 | Single | Y | 0 | Moderate | 6 (cirrhosis) | 70 |
141 | SLD + alcohol | 82 | UA | Caucasian | M | N/A | N/A | No | N/A | 8.0 | N/A | Y | 0 | Moderate | 1 | 20 |
116 | SLD | 78 | 37.7 | Caucasian | F | A | None | Yes | N/A | 5.5 | Single | y | <5 | Moderate | 1 | 20 |
134 | SLD | 69 | 35.6 | Caucasian | M | A | 9 | Yes | Atrovastatin, Bendroflumethiazide, Glicazide, Omeprazole, Perindopril, Tamsulosin, Sodium alginate, TDS | 3.6 | Single | N | Mostly necrotic | Mostly necrotic | 6 (cirrhosis) | 20 |
168 | Not discernible (SLD clinically) | 70 | 22.8 | Caucasian | M | A | 6 | Yes | Metformin, Empagliflozin, Tamsulosin, Atoravstatin | 15.5 | Single | Y | 0 | Poor | 1 | <5 |
117 | Not discernible (subsequent SLD a) | 88 | 32.7 | Caucasian | M | N/A | 4 | No | Ramipril, Apixaban, Simvastatin, Amlopidine, Furosemide, Bisoprolol, Tamsulosin | 8.0 | Single | N | 40 | Moderate | 1 | 0 |
107 | Not discernible | 66 | 16.7 | Caucasian | F | N/A | None | No | N/A | 2.0 | Single | N/A | <5 | Poor | 1 | 0 |
235 | Not discernible | 77 | 25.8 | Caucasian | F | B | Social only | Yes | N/A | 1.3 | Multiple | N | 0 | Moderate | 1 | 0 |
268 | Not discernible | 53 | 20.0 | Caucasian | F | N/A | N/A | No | N/A | 4.9 | Multiple | Y | <5 | Moderate | 1 | <5 |
099 | Treated HCV | 61 | 20.8 | Caucasian | F | B | 10 | No | Amitriptyline, Simvastatin, Zopiclone, Sertraline, Salbutamol inhaler, Co-codamol, Spiriva inhaler | 5.4 | Multiple | Y | 0 | Moderate | 3 | 0 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Fernandes, W.M.; Harris, N.; Zamalloa, A.; Adofina, L.; Srinivasan, P.; Menon, K.; Heaton, N.; Miquel, R.; Zen, Y.; Kelly, G.; et al. High-Resolution Magic Angle Spinning Nuclear Magnetic Resonance Spectroscopy of Paired Clinical Liver Tissue Samples from Hepatocellular Cancer and Surrounding Region. Int. J. Mol. Sci. 2024, 25, 8924. https://doi.org/10.3390/ijms25168924
Fernandes WM, Harris N, Zamalloa A, Adofina L, Srinivasan P, Menon K, Heaton N, Miquel R, Zen Y, Kelly G, et al. High-Resolution Magic Angle Spinning Nuclear Magnetic Resonance Spectroscopy of Paired Clinical Liver Tissue Samples from Hepatocellular Cancer and Surrounding Region. International Journal of Molecular Sciences. 2024; 25(16):8924. https://doi.org/10.3390/ijms25168924
Chicago/Turabian StyleFernandes, Wendy M., Nicola Harris, Ane Zamalloa, Lissette Adofina, Parthi Srinivasan, Krishna Menon, Nigel Heaton, Rosa Miquel, Yoh Zen, Geoff Kelly, and et al. 2024. "High-Resolution Magic Angle Spinning Nuclear Magnetic Resonance Spectroscopy of Paired Clinical Liver Tissue Samples from Hepatocellular Cancer and Surrounding Region" International Journal of Molecular Sciences 25, no. 16: 8924. https://doi.org/10.3390/ijms25168924
APA StyleFernandes, W. M., Harris, N., Zamalloa, A., Adofina, L., Srinivasan, P., Menon, K., Heaton, N., Miquel, R., Zen, Y., Kelly, G., Jarvis, J. A., Oregioni, A., Chokshi, S., Riva, A., & Cox, I. J. (2024). High-Resolution Magic Angle Spinning Nuclear Magnetic Resonance Spectroscopy of Paired Clinical Liver Tissue Samples from Hepatocellular Cancer and Surrounding Region. International Journal of Molecular Sciences, 25(16), 8924. https://doi.org/10.3390/ijms25168924