Selective Assembly of TRPC Channels in the Rat Retina during Photoreceptor Degeneration
Abstract
:1. Introduction
2. Results
2.1. Identity of TRPC1 and TRPC5 Channel Assembly in Retinal Cells
2.2. TRPC1, TRPC5, and STIM1 in the Innermost Layers of the Rat Retina
3. Discussion
3.1. TRPC1–TRPC5 Interaction in Response to Retinal Degeneration
3.2. TRPC1, TRPC5, and TRPC1/5 Channels Focused in RGCs and Müller Cells
4. Materials and Methods
4.1. Experimental Animals and Ethical Approval
4.2. Retinal Processing
4.3. Double Immunocytochemistry
4.4. Proximity Ligation Assays (PLAs)
4.5. Western Blots
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- LaVail, M.M.; Nishikawa, S.; Steinberg, R.H.; Naash, M.I.; Duncan, J.L.; Trautmann, N.; Matthes, M.T.; Yasumura, D.; Lau-Villacorta, C.; Chen, J.; et al. Phenotypic Characterization of P23H and S334ter Rhodopsin Transgenic Rat Models of Inherited Retinal Degeneration. Exp. Eye Res. 2018, 167, 56–90. [Google Scholar] [CrossRef] [PubMed]
- LaVail, M.M.; Yasumura, D.; Matthes, M.T.; Drenser, K.A.; Flannery, J.G.; Lewin, A.S.; Hauswirth, W.W. Ribozyme Rescue of Photoreceptor Cells in P23H Transgenic Rats: Long-Term Survival and Late-Stage Therapy. Proc. Natl. Acad. Sci. USA 2000, 97, 11488–11493. [Google Scholar] [CrossRef]
- Lu, B.; Morgans, C.W.; Girman, S.; Lund, R.; Wang, S. Retinal Morphological and Functional Changes in an Animal Model of Retinitis Pigmentosa. Vis. Neurosci. 2013, 30, 77–89. [Google Scholar] [CrossRef] [PubMed]
- Cuenca, N.; Pinilla, I.; Sauvé, Y.; Lu, B.; Wang, S.; Lund, R.D. Regressive and Reactive Changes in the Connectivity Patterns of Rod and Cone Pathways of P23H Transgenic Rat Retina. Neuroscience 2004, 127, 301–317. [Google Scholar] [CrossRef] [PubMed]
- Fernández-Sánchez, L.; Lax, P.; Campello, L.; Pinilla, I.; Cuenca, N. Astrocytes and Müller Cell Alterations During Retinal Degeneration in a Transgenic Rat Model of Retinitis Pigmentosa. Front. Cell. Neurosci. 2015, 9, 484. [Google Scholar] [CrossRef] [PubMed]
- García-Ayuso, D.; Salinas-Navarro, M.; Agudo, M.; Cuenca, N.; Pinilla, I.; Vidal-Sanz, M.; Villegas-Pérez, M.P. Retinal Ganglion Cell Numbers and Delayed Retinal Ganglion Cell Death in the P23H Rat Retina. Exp. Eye Res. 2010, 91, 800–810. [Google Scholar] [CrossRef]
- Luna, G.; Lewis, G.P.; Banna, C.D.; Skalli, O.; Fisher, S.K. Expression Profiles of Nestin and Synemin in Reactive Astrocytes and Müller Cells Following Retinal Injury: A Comparison with Glial Fibrillar Acidic Protein and Vimentin. Mol. Vis. 2010, 16, 2511–2523. [Google Scholar] [PubMed]
- Machida, S.; Kondo, M.; Jamison, J.A.; Khan, N.W.; Kononen, L.T.; Sugawara, T.; Bush, R.A.; Sieving, P.A. P23H Rhodopsin Transgenic Rat: Correlation of Retinal Function with Histopathology. Investig. Ophthalmol. Vis. Sci. 2000, 41, 3200–3209. [Google Scholar]
- Jones, B.W.; Pfeiffer, R.L.; Ferrell, W.D.; Watt, C.B.; Marmor, M.; Marc, R.E. Retinal Remodeling in Human Retinitis Pigmentosa. Exp. Eye Res. 2016, 150, 149–165. [Google Scholar] [CrossRef] [PubMed]
- Cehajic-Kapetanovic, J.; Xue, K.; de la Camara, C.M.-F.; Nanda, A.; Davies, A.; Wood, L.J.; Salvetti, A.P.; Fischer, M.D.; Aylward, J.W.; Barnard, A.R.; et al. Retinal Gene Therapy in X-Linked Retinitis Pigmentosa Caused by Mutations in RPGR: Results at 6 Months in a First in Human Clinical Trial. Nat. Med. 2020, 26, 354–359. [Google Scholar] [CrossRef]
- Gaub, B.M.; Berry, M.H.; Holt, A.E.; Reiner, A.; Kienzler, M.A.; Dolgova, N.; Nikonov, S.; Aguirre, G.D.; Beltran, W.A.; Flannery, J.G.; et al. Restoration of Visual Function by Expression of a Light-Gated Mammalian Ion Channel in Retinal Ganglion Cells or ON-Bipolar Cells. Proc. Natl. Acad. Sci. USA 2014, 111, E5574–E5583. [Google Scholar] [CrossRef] [PubMed]
- Kralik, J.; van Wyk, M.; Stocker, N.; Kleinlogel, S. Bipolar Cell Targeted Optogenetic Gene Therapy Restores Parallel Retinal Signaling and High-Level Vision in the Degenerated Retina. Commun. Biol. 2022, 5, 1116. [Google Scholar] [CrossRef] [PubMed]
- Sahel, J.-A.; Boulanger-Scemama, E.; Pagot, C.; Arleo, A.; Galluppi, F.; Martel, J.N.; Esposti, S.D.; Delaux, A.; de Saint Aubert, J.-B.; de Montleau, C.; et al. Partial Recovery of Visual Function in a Blind Patient after Optogenetic Therapy. Nat. Med. 2021, 27, 1223–1229. [Google Scholar] [CrossRef] [PubMed]
- Suh, S.; Choi, E.H.; Raguram, A.; Liu, D.R.; Palczewski, K. Precision Genome Editing in the Eye. Proc. Natl. Acad. Sci. USA 2022, 119, e2210104119. [Google Scholar] [CrossRef] [PubMed]
- Caminos, E.; Vaquero, C.F.; Martinez-Galan, J.R. Relationship between Rat Retinal Degeneration and Potassium Channel KCNQ5 Expression. Exp. Eye Res. 2015, 131, 1–11. [Google Scholar] [CrossRef]
- Shinde, V.; Kotla, P.; Strang, C.; Gorbatyuk, M. Unfolded Protein Response-Induced Dysregulation of Calcium Homeostasis Promotes Retinal Degeneration in Rat Models of Autosomal Dominant Retinitis Pigmentosa. Cell Death Dis. 2016, 7, e2085. [Google Scholar] [CrossRef]
- Križaj, D.; Cordeiro, S.; Strauß, O. Retinal TRP Channels: Cell-Type-Specific Regulators of Retinal Homeostasis and Multimodal Integration. Prog. Retin. Eye Res. 2023, 92, 101114. [Google Scholar] [CrossRef]
- Thébault, S. Minireview: Insights into the Role of TRP Channels in the Retinal Circulation and Function. Neurosci. Lett. 2021, 765, 136285. [Google Scholar] [CrossRef] [PubMed]
- Clapham, D.E.; Runnels, L.W.; Strübing, C. The TRP Ion Channel Family. Nat. Rev. Neurosci. 2001, 2, 387–396. [Google Scholar] [CrossRef]
- Wang, H.; Cheng, X.; Tian, J.; Xiao, Y.; Tian, T.; Xu, F.; Hong, X.; Zhu, M.X. TRPC Channels: Structure, Function, Regulation and Recent Advances in Small Molecular Probes. Pharmacol. Ther. 2020, 209, 107497. [Google Scholar] [CrossRef]
- Liou, J.; Kim, M.L.; Heo, W.D.; Jones, J.T.; Myers, J.W.; Ferrell, J.E.; Meyer, T. STIM Is a Ca2+ Sensor Essential for Ca2+-Store-Depletion-Triggered Ca2+ Influx. Curr. Biol. CB 2005, 15, 1235–1241. [Google Scholar] [CrossRef] [PubMed]
- Prakriya, M.; Feske, S.; Gwack, Y.; Srikanth, S.; Rao, A.; Hogan, P.G. Orai1 Is an Essential Pore Subunit of the CRAC Channel. Nature 2006, 443, 230–233. [Google Scholar] [CrossRef]
- Salido, G.M.; Sage, S.O.; Rosado, J.A. TRPC Channels and Store-Operated Ca(2+) Entry. Biochim. Biophys. Acta 2009, 1793, 223–230. [Google Scholar] [CrossRef] [PubMed]
- Caminos, E.; Murillo-Martínez, M.; García-Belando, M.; Cabanes-Sanchís, J.J.; Martinez-Galan, J.R. Robust Expression of the TRPC1 Channel Associated with Photoreceptor Loss in the Rat Retina. Exp. Eye Res. 2023, 236, 109655. [Google Scholar] [CrossRef]
- Da Silva, N.; Herron, C.E.; Stevens, K.; Jollimore, C.A.B.; Barnes, S.; Kelly, M.E.M. Metabotropic Receptor-Activated Calcium Increases and Store-Operated Calcium Influx in Mouse Müller Cells. Investig. Ophthalmol. Vis. Sci. 2008, 49, 3065–3073. [Google Scholar] [CrossRef] [PubMed]
- Jo, A.O.; Lakk, M.; Rudzitis, C.N.; Križaj, D. TRPV4 and TRPC1 Channels Mediate the Response to Tensile Strain in Mouse Müller Cells. Cell Calcium 2022, 104, 102588. [Google Scholar] [CrossRef] [PubMed]
- Keirstead, S.A.; Miller, R.F. Calcium Waves in Dissociated Retinal Glial (Müller) Cells Are Evoked by Release of Calcium from Intracellular Stores. Glia 1995, 14, 14–22. [Google Scholar] [CrossRef] [PubMed]
- Lipp, S.; Wurm, A.; Pannicke, T.; Wiedemann, P.; Reichenbach, A.; Chen, J.; Bringmann, A. Calcium Responses Mediated by Type 2 IP3-Receptors Are Required for Osmotic Volume Regulation of Retinal Glial Cells in Mice. Neurosci. Lett. 2009, 457, 85–88. [Google Scholar] [CrossRef] [PubMed]
- Molnár, T.; Yarishkin, O.; Iuso, A.; Barabas, P.; Jones, B.; Marc, R.E.; Phuong, T.T.T.; Križaj, D. Store-Operated Calcium Entry in Müller Glia Is Controlled by Synergistic Activation of TRPC and Orai Channels. J. Neurosci. Off. J. Soc. Neurosci. 2016, 36, 3184–3198. [Google Scholar] [CrossRef]
- Ruan, Y.; Patzak, A.; Pfeiffer, N.; Gericke, A. Muscarinic Acetylcholine Receptors in the Retina-Therapeutic Implications. Int. J. Mol. Sci. 2021, 22, 4989. [Google Scholar] [CrossRef]
- Shoshan-Barmatz, V.; Orr, I.; Martin, C.; Vardi, N. Novel Ryanodine-Binding Properties in Mammalian Retina. Int. J. Biochem. Cell Biol. 2005, 37, 1681–1695. [Google Scholar] [CrossRef] [PubMed]
- Tehrani, A.; Wheeler-Schilling, T.H.; Guenther, E. Coexpression Patterns of mGLuR mRNAs in Rat Retinal Ganglion Cells: A Single-Cell RT-PCR Study. Investig. Ophthalmol. Vis. Sci. 2000, 41, 314–319. [Google Scholar]
- Gomis, A.; Soriano, S.; Belmonte, C.; Viana, F. Hypoosmotic- and Pressure-Induced Membrane Stretch Activate TRPC5 Channels. J. Physiol. 2008, 586, 5633–5649. [Google Scholar] [CrossRef] [PubMed]
- Kanki, H.; Kinoshita, M.; Akaike, A.; Satoh, M.; Mori, Y.; Kaneko, S. Activation of Inositol 1,4,5-Trisphosphate Receptor Is Essential for the Opening of Mouse TRP5 Channels. Mol. Pharmacol. 2001, 60, 989–998. [Google Scholar] [CrossRef] [PubMed]
- Oda, M.; Yamamoto, H.; Matsumoto, H.; Ishizaki, Y.; Shibasaki, K. TRPC5 Regulates Axonal Outgrowth in Developing Retinal Ganglion Cells. Lab. Investig. J. Tech. Methods Pathol. 2020, 100, 297–310. [Google Scholar] [CrossRef] [PubMed]
- Schaefer, M.; Plant, T.D.; Obukhov, A.G.; Hofmann, T.; Gudermann, T.; Schultz, G. Receptor-Mediated Regulation of the Nonselective Cation Channels TRPC4 and TRPC5. J. Biol. Chem. 2000, 275, 17517–17526. [Google Scholar] [CrossRef] [PubMed]
- Selvaraj, S.; Sun, Y.; Watt, J.A.; Wang, S.; Lei, S.; Birnbaumer, L.; Singh, B.B. Neurotoxin-Induced ER Stress in Mouse Dopaminergic Neurons Involves Downregulation of TRPC1 and Inhibition of AKT/mTOR Signaling. J. Clin. Investig. 2012, 122, 1354–1367. [Google Scholar] [CrossRef] [PubMed]
- Sun, Y.; Sukumaran, P.; Singh, B.B. Sigma1 Receptor Inhibits TRPC1-Mediated Ca2+ Entry That Promotes Dopaminergic Cell Death. Cell. Mol. Neurobiol. 2021, 41, 1245–1255. [Google Scholar] [CrossRef] [PubMed]
- Sun, Y.; Zhang, H.; Selvaraj, S.; Sukumaran, P.; Lei, S.; Birnbaumer, L.; Singh, B.B. Inhibition of L-Type Ca2+ Channels by TRPC1-STIM1 Complex Is Essential for the Protection of Dopaminergic Neurons. J. Neurosci. Off. J. Soc. Neurosci. 2017, 37, 3364–3377. [Google Scholar] [CrossRef]
- Greka, A.; Navarro, B.; Oancea, E.; Duggan, A.; Clapham, D.E. TRPC5 Is a Regulator of Hippocampal Neurite Length and Growth Cone Morphology. Nat. Neurosci. 2003, 6, 837–845. [Google Scholar] [CrossRef]
- Hui, H.; McHugh, D.; Hannan, M.; Zeng, F.; Xu, S.-Z.; Khan, S.-U.-H.; Levenson, R.; Beech, D.J.; Weiss, J.L. Calcium-Sensing Mechanism in TRPC5 Channels Contributing to Retardation of Neurite Outgrowth. J. Physiol. 2006, 572, 165–172. [Google Scholar] [CrossRef]
- Goel, M.; Sinkins, W.G.; Schilling, W.P. Selective Association of TRPC Channel Subunits in Rat Brain Synaptosomes. J. Biol. Chem. 2002, 277, 48303–48310. [Google Scholar] [CrossRef] [PubMed]
- Heo, D.K.; Chung, W.Y.; Park, H.W.; Yuan, J.P.; Lee, M.G.; Kim, J.Y. Opposite Regulatory Effects of TRPC1 and TRPC5 on Neurite Outgrowth in PC12 Cells. Cell. Signal. 2012, 24, 899–906. [Google Scholar] [CrossRef]
- Strübing, C.; Krapivinsky, G.; Krapivinsky, L.; Clapham, D.E. TRPC1 and TRPC5 Form a Novel Cation Channel in Mammalian Brain. Neuron 2001, 29, 645–655. [Google Scholar] [CrossRef] [PubMed]
- Kim, J.; Ko, J.; Myeong, J.; Kwak, M.; Hong, C.; So, I. TRPC1 as a Negative Regulator for TRPC4 and TRPC5 Channels. Pflugers Arch. 2019, 471, 1045–1053. [Google Scholar] [CrossRef]
- Molnar, T.; Barabas, P.; Birnbaumer, L.; Punzo, C.; Kefalov, V.; Križaj, D. Store-Operated Channels Regulate Intracellular Calcium in Mammalian Rods. J. Physiol. 2012, 590, 3465–3481. [Google Scholar] [CrossRef]
- Eisenfeld, A.J.; Bunt-Milam, A.H.; Sarthy, P.V. Müller Cell Expression of Glial Fibrillary Acidic Protein after Genetic and Experimental Photoreceptor Degeneration in the Rat Retina. Investig. Ophthalmol. Vis. Sci. 1984, 25, 1321–1328. [Google Scholar]
- Hong, C.; Seo, H.; Kwak, M.; Jeon, J.; Jang, J.; Jeong, E.M.; Myeong, J.; Hwang, Y.J.; Ha, K.; Kang, M.J.; et al. Increased TRPC5 Glutathionylation Contributes to Striatal Neuron Loss in Huntington’s Disease. Brain 2015, 138, 3030–3047. [Google Scholar] [CrossRef]
- Kumar, S.; Chakraborty, S.; Barbosa, C.; Brustovetsky, T.; Brustovetsky, N.; Obukhov, A.G. Mechanisms Controlling Neurite Outgrowth in a Pheochromocytoma Cell Line: The Role of TRPC Channels. J. Cell. Physiol. 2012, 227, 1408–1419. [Google Scholar] [CrossRef]
- Bocchero, U.; Falleroni, F.; Mortal, S.; Li, Y.; Cojoc, D.; Lamb, T.; Torre, V. Mechanosensitivity Is an Essential Component of Phototransduction in Vertebrate Rods. PLoS Biol. 2020, 18, e3000750. [Google Scholar] [CrossRef]
- Krizaj, D.; Copenhagen, D.R. Calcium Regulation in Photoreceptors. Front. Biosci. J. Virtual Libr. 2002, 7, d2023–d2044. [Google Scholar] [CrossRef]
- Krizaj, D. Serca Isoform Expression in the Mammalian Retina. Exp. Eye Res. 2005, 81, 690–699. [Google Scholar] [CrossRef]
- Szikra, T.; Cusato, K.; Thoreson, W.B.; Barabas, P.; Bartoletti, T.M.; Krizaj, D. Depletion of Calcium Stores Regulates Calcium Influx and Signal Transmission in Rod Photoreceptors. J. Physiol. 2008, 586, 4859–4875. [Google Scholar] [CrossRef]
- Beech, D.J.; Xu, S.Z.; McHugh, D.; Flemming, R. TRPC1 Store-Operated Cationic Channel Subunit. Cell Calcium 2003, 33, 433–440. [Google Scholar] [CrossRef]
- Koo, B.; Weiland, J.D. Progressive Retinal Degeneration Increases Cortical Response Latency of Light Stimulation but Not of Electric Stimulation. Transl. Vis. Sci. Technol. 2022, 11, 19. [Google Scholar] [CrossRef] [PubMed]
- Martinez-Galan, J.R.; Garcia-Belando, M.; Cabanes-Sanchis, J.J.; Caminos, E. Pre- and Postsynaptic Alterations in the Visual Cortex of the P23H-1 Retinal Degeneration Rat Model. Front. Neuroanat. 2022, 16, 1000085. [Google Scholar] [CrossRef] [PubMed]
- Eastlake, K.; Luis, J.; Limb, G.A. Potential of Müller Glia for Retina Neuroprotection. Curr. Eye Res. 2020, 45, 339–348. [Google Scholar] [CrossRef] [PubMed]
- Li, Q.; Cui, P.; Miao, Y.; Gao, F.; Li, X.-Y.; Qian, W.-J.; Jiang, S.-X.; Wu, N.; Sun, X.-H.; Wang, Z. Activation of Group I Metabotropic Glutamate Receptors Regulates the Excitability of Rat Retinal Ganglion Cells by Suppressing Kir and I h. Brain Struct. Funct. 2017, 222, 813–830. [Google Scholar] [CrossRef]
- Yu, J.; Daniels, B.A.; Baldridge, W.H. Slow Excitation of Cultured Rat Retinal Ganglion Cells by Activating Group I Metabotropic Glutamate Receptors. J. Neurophysiol. 2009, 102, 3728–3739. [Google Scholar] [CrossRef]
Antigen | Immunogen | Host/Mono-Polyclonal | Manufacturer | Dilution |
---|---|---|---|---|
GAPDH | Glyceraldehyde-3-phosphate dehydrogenase (whole molecule) | Mouse Monoclonal | ThermoFisher Scientific (Foster City, CA, USA), AM4300, Clon 6C5 | WB 1: 1:8000 |
GFAP | Glial Fibrillary Acidic Protein isolated from cow spinal cord | Rabbit Polyclonal | Dako (Santa Clara, CA, USA), #Z0334 | IC 2: 1:1000 |
GFAP | Glial Fibrillary Acidic Protein isolated from cow spinal cord | Mouse Monoclonal | Sigma (Steinheim, Germany), #G3893, Clone G-A-5 | IC: 1:1000 |
STIM1 | N-terminal of human STIM1 | Rabbit Polyclonal | Proteintech (Manchester, UK), #11565-1-AP | IC: 1:400 |
TRPC1 | Intracellular aa’ of human TRPC1 | Rabbit Polyclonal | Alomone Labs (Jerusalem, Israel, #ACC-010 | IC: 1:500 PLA 3: 1:400 |
TRPC1 | C-terminus of human TRPC1 | Mouse Monoclonal | Santa Cruz Biotech (Heidelberg, Germany), #sc-133076, Clon E-6 | IC: 1:500 |
TRPC5 | Synthetic peptide amino acids 827-845 of human TRPC5 | Mouse Monoclonal | Invitrogen (ThermoFisher, Foster City, CA, USA), #MA5-27657, Clon S67-15 | IC: 1:500 PLA: 1:400 WB: 1:1000 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Caminos, E.; López-López, S.; Martinez-Galan, J.R. Selective Assembly of TRPC Channels in the Rat Retina during Photoreceptor Degeneration. Int. J. Mol. Sci. 2024, 25, 7251. https://doi.org/10.3390/ijms25137251
Caminos E, López-López S, Martinez-Galan JR. Selective Assembly of TRPC Channels in the Rat Retina during Photoreceptor Degeneration. International Journal of Molecular Sciences. 2024; 25(13):7251. https://doi.org/10.3390/ijms25137251
Chicago/Turabian StyleCaminos, Elena, Susana López-López, and Juan R. Martinez-Galan. 2024. "Selective Assembly of TRPC Channels in the Rat Retina during Photoreceptor Degeneration" International Journal of Molecular Sciences 25, no. 13: 7251. https://doi.org/10.3390/ijms25137251
APA StyleCaminos, E., López-López, S., & Martinez-Galan, J. R. (2024). Selective Assembly of TRPC Channels in the Rat Retina during Photoreceptor Degeneration. International Journal of Molecular Sciences, 25(13), 7251. https://doi.org/10.3390/ijms25137251