Investigation of Phosphatidylcholine by MALDI Imaging Mass Spectrometry in Normal and IVF Early-Stage Embryos
Abstract
:1. Introduction
2. Results
2.1. Differences between Normal and IVF Pregnancies in the Distribution of PCs
2.2. Temporal Change of PCs in Normal and IVF Pregnancies
3. Discussion
4. Materials and Methods
4.1. Animals
4.2. Histological Tissue Sections
4.3. MALDI Imaging Mass Spectrometry
4.4. Lipid Identification by HPLC-MS/MS
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Vander Borght, M.; Wyns, C. Fertility and infertility: Definition and epidemiology. Clin. Biochem. 2018, 62, 2–10. [Google Scholar] [CrossRef] [PubMed]
- Adamson, G.D.; de Mouzon, J.; Chambers, G.M.; Zegers-Hochschild, F.; Mansour, R.; Ishihara, O.; Banker, M.; Dyer, S. International committee for monitoring assisted reproductive technology: World report on assisted reproductive technology, 2011. Fertil. Steril. 2018, 110, 1067–1080. [Google Scholar] [CrossRef]
- Meier, S.; Trewhella, M.; Fairclough, R.; Jenkin, G. Changes in uterine endometrial phospholipids and fatty acids throughout the oestrous cycle and early pregnancy in the ewe. Prostaglandins Leukot. Essent. Fat. Acids 1997, 57, 341–349. [Google Scholar] [CrossRef] [PubMed]
- Burnum, K.E.; Cornett, D.S.; Puolitaival, S.M.; Milne, S.B.; Myers, D.S.; Tranguch, S.; Brown, H.A.; Dey, S.K.; Caprioli, R.M. Spatial and temporal alterations of phospholipids determined by mass spectrometry during mouse embryo implantation. J. Lipid Res. 2009, 50, 2290–2298. [Google Scholar] [CrossRef] [PubMed]
- Paria, B.C.; Lim, H.; Das, S.K.; Reese, J.; Dey, S.K. Molecular signaling in uterine receptivity for implantation. Semin. Cell Dev. Biol. 2000, 11, 67–76. [Google Scholar] [CrossRef]
- Hama, K.; Aoki, J.; Inoue, A.; Endo, T.; Amano, T.; Motoki, R.; Kanai, M.; Ye, X.; Chun, J.; Matsuki, N.; et al. Embryo spacing and implantation timing are differentially regulated by lpa3-mediated lysophosphatidic acid signaling in mice. Biol. Reprod. 2007, 77, 954–959. [Google Scholar] [CrossRef] [PubMed]
- Ye, X.; Hama, K.; Contos, J.J.; Anliker, B.; Inoue, A.; Skinner, M.K.; Suzuki, H.; Amano, T.; Kennedy, G.; Arai, H.; et al. Lpa3-mediated lysophosphatidic acid signalling in embryo implantation and spacing. Nature 2005, 435, 104–108. [Google Scholar] [CrossRef]
- Bellver, J.; De Los Santos, M.J.; Alama, P.; Castello, D.; Privitera, L.; Galliano, D.; Labarta, E.; Vidal, C.; Pellicer, A.; Dominguez, F. Day-3 embryo metabolomics in the spent culture media is altered in obese women undergoing in vitro fertilization. Fertil. Steril. 2015, 103, 1407–1415.e1. [Google Scholar] [CrossRef] [PubMed]
- Bertevello, P.S.; Teixeira-Gomes, A.P.; Seyer, A.; Vitorino Carvalho, A.; Labas, V.; Blache, M.C.; Banliat, C.; Cordeiro, L.A.V.; Duranthon, V.; Papillier, P.; et al. Lipid identification and transcriptional analysis of controlling enzymes in bovine ovarian follicle. Int. J. Mol. Sci. 2018, 19, 3261. [Google Scholar] [CrossRef]
- Ferreira, C.R.; Saraiva, S.A.; Catharino, R.R.; Garcia, J.S.; Gozzo, F.C.; Sanvido, G.B.; Santos, L.F.; Lo Turco, E.G.; Pontes, J.H.; Basso, A.C.; et al. Single embryo and oocyte lipid fingerprinting by mass spectrometry. J. Lipid Res. 2010, 51, 1218–1227. [Google Scholar] [CrossRef]
- Fraher, D.; Sanigorski, A.; Mellett, N.A.; Meikle, P.J.; Sinclair, A.J.; Gibert, Y. Zebrafish embryonic lipidomic analysis reveals that the yolk cell is metabolically active in processing lipid. Cell Rep. 2016, 14, 1317–1329. [Google Scholar] [CrossRef] [PubMed]
- Haggarty, P.; Wood, M.; Ferguson, E.; Hoad, G.; Srikantharajah, A.; Milne, E.; Hamilton, M.; Bhattacharya, S. Fatty acid metabolism in human preimplantation embryos. Hum. Reprod. 2006, 21, 766–773. [Google Scholar] [CrossRef] [PubMed]
- Sun, T.; Lee, B.; Kinchen, J.; Wang, E.T.; Gonzalez, T.L.; Chan, J.L.; Rotter, J.I.; Chen, Y.I.; Taylor, K.; Goodarzi, M.O.; et al. Differences in first-trimester maternal metabolomic profiles in pregnancies conceived from fertility treatments. J. Clin. Endocrinol. Metab. 2019, 104, 1005–1019. [Google Scholar] [CrossRef] [PubMed]
- Chen, S.; Wang, J.; Wang, M.; Lu, J.; Cai, Y.; Li, B. In vitro fertilization alters phospholipid profiles in mouse placenta. J. Assist. Reprod. Genet. 2019, 36, 557–567. [Google Scholar] [CrossRef] [PubMed]
- Li, J.; Gao, Y.; Guan, L.; Zhang, H.; Chen, P.; Gong, X.; Li, D.; Liang, X.; Huang, M.; Bi, H. Lipid profiling of peri-implantation endometrium in patients with premature progesterone rise in the late follicular phase. J. Clin. Endocrinol. Metab. 2019, 104, 5555–5565. [Google Scholar] [CrossRef] [PubMed]
- Matorras, R.; Martinez-Arranz, I.; Arretxe, E.; Iruarrizaga-Lejarreta, M.; Corral, B.; Ibanez-Perez, J.; Exposito, A.; Prieto, B.; Elortza, F.; Alonso, C. The lipidome of endometrial fluid differs between implantative and non-implantative ivf cycles. J. Assist. Reprod. Genet. 2019, 37, 385–394. [Google Scholar] [CrossRef] [PubMed]
- Luti, S.; Fiaschi, T.; Magherini, F.; Modesti, P.A.; Piomboni, P.; Governini, L.; Luddi, A.; Amoresano, A.; Illiano, A.; Pinto, G.; et al. Relationship between the metabolic and lipid profile in follicular fluid of women undergoing in vitro fertilization. Mol. Reprod. Dev. 2020, 87, 986–997. [Google Scholar] [CrossRef]
- Batushansky, A.; Zacharia, A.; Shehadeh, A.; Bruck-Haimson, R.; Saidemberg, D.; Kogan, N.M.; Thomas Mannully, C.; Herzberg, S.; Ben-Meir, A.; Moussaieff, A. A shift in glycerolipid metabolism defines the follicular fluid of ivf patients with unexplained infertility. Biomolecules 2020, 10, 1135. [Google Scholar] [CrossRef] [PubMed]
- Shehadeh, A.; Bruck-Haimson, R.; Saidemberg, D.; Zacharia, A.; Herzberg, S.; Ben-Meir, A.; Moussaieff, A. A shift in follicular fluid from triacylglycerols to membrane lipids is associated with positive pregnancy outcome. FASEB J. Off. Publ. Fed. Am. Soc. Exp. Biol. 2019, 33, 10291–10299. [Google Scholar] [CrossRef]
- Jamro, E.L.; Bloom, M.S.; Browne, R.W.; Kim, K.; Greenwood, E.A.; Fujimoto, V.Y. Preconception serum lipids and lipophilic micronutrient levels are associated with live birth rates after ivf. Reprod. Biomed. Online 2019, 39, 665–673. [Google Scholar] [CrossRef] [PubMed]
- Li, B.; Xiao, X.; Chen, S.; Huang, J.; Ma, Y.; Tang, N.; Sun, H.; Wang, X. Changes of phospholipids in fetal liver of mice conceived by in vitro fertilization. Biol. Reprod. 2016, 94, 105. [Google Scholar] [CrossRef] [PubMed]
- Gitta, S.; Mark, L.; Szentpeteri, J.L.; Szabo, E. Lipid changes in the peri-implantation period with mass spectrometry imaging: A systematic review. Life 2023, 13, 169. [Google Scholar] [CrossRef] [PubMed]
- Ferreira, C.R.; Pirro, V.; Eberlin, L.S.; Hallett, J.E.; Cooks, R.G. Developmental phases of individual mouse preimplantation embryos characterized by lipid signatures using desorption electrospray ionization mass spectrometry. Anal. Bioanal. Chem. 2012, 404, 2915–2926. [Google Scholar] [CrossRef] [PubMed]
- Aizawa, R.; Ibayashi, M.; Tatsumi, T.; Yamamoto, A.; Kokubo, T.; Miyasaka, N.; Sato, K.; Ikeda, S.; Minami, N.; Tsukamoto, S. Synthesis and maintenance of lipid droplets are essential for mouse preimplantation embryonic development. Development 2019, 146, dev181925. [Google Scholar] [CrossRef]
- Lipinska, P.; Pawlak, P.; Warzych, E. Species and embryo genome origin affect lipid droplets in preimplantation embryos. Front. Cell Dev. Biol. 2023, 11, 1187832. [Google Scholar] [CrossRef] [PubMed]
- Sudano, M.J.; Rascado, T.D.; Tata, A.; Belaz, K.R.; Santos, V.G.; Valente, R.S.; Mesquita, F.S.; Ferreira, C.R.; Araujo, J.P.; Eberlin, M.N.; et al. Lipidome signatures in early bovine embryo development. Theriogenology 2016, 86, 472–484.e1. [Google Scholar] [CrossRef] [PubMed]
- Gonzalez-Serrano, A.F.; Pirro, V.; Ferreira, C.R.; Oliveri, P.; Eberlin, L.S.; Heinzmann, J.; Lucas-Hahn, A.; Niemann, H.; Cooks, R.G. Desorption electrospray ionization mass spectrometry reveals lipid metabolism of individual oocytes and embryos. PLoS ONE 2013, 8, e74981. [Google Scholar] [CrossRef]
- Igonina, T.N.; Rakhmanova, T.A.; Rozhkova, I.N.; Brusentsev, E.Y.; Amstislavsky, S.Y. Intracellular lipids during in vivo and in vitro preimplantation embryo development in mice. Russ. J. Dev. Biol. 2023, 53, 451–455. [Google Scholar] [CrossRef]
- Hamori, M.; Stuckensen, J.A.; Rumpf, D.; Kniewald, T.; Kniewald, A.; Marquez, M. Early pregnancy wastage following late implantation of embryos after in-vitro fertilization and embryo transfer. Hum. Reprod. 1989, 4, 714–717. [Google Scholar] [CrossRef]
- Shibahara, H.; Ishiguro, A.; Inoue, Y.; Koumei, S.; Kuwayama, T.; Iwata, H. Mechanism of palmitic acid-induced deterioration of in vitro development of porcine oocytes and granulosa cells. Theriogenology 2020, 141, 54–61. [Google Scholar] [CrossRef]
- Aardema, H.; Vos, P.L.; Lolicato, F.; Roelen, B.A.; Knijn, H.M.; Vaandrager, A.B.; Helms, J.B.; Gadella, B.M. Oleic acid prevents detrimental effects of saturated fatty acids on bovine oocyte developmental competence. Biol. Reprod. 2011, 85, 62–69. [Google Scholar] [CrossRef]
- Oseikria, M.; Elis, S.; Maillard, V.; Corbin, E.; Uzbekova, S. N-3 polyunsaturated fatty acid dha during ivm affected oocyte developmental competence in cattle. Theriogenology 2016, 85, 1625–1634.e2. [Google Scholar] [CrossRef]
- Abolghasemi, A.; Dirandeh, E.; Ansari Pirsaraei, Z.; Shohreh, B. Dietary conjugated linoleic acid supplementation alters the expression of genes involved in the endocannabinoid system in the bovine endometrium and increases plasma progesterone concentrations. Theriogenology 2016, 86, 1453–1459. [Google Scholar] [CrossRef]
- Fattahi, A.; Darabi, M.; Farzadi, L.; Salmassi, A.; Latifi, Z.; Mehdizadeh, A.; Shaaker, M.; Ghasemnejad, T.; Roshangar, L.; Nouri, M. Effects of dietary omega-3 and -6 supplementations on phospholipid fatty acid composition in mice uterus during window of pre-implantation. Theriogenology 2018, 108, 97–102. [Google Scholar] [CrossRef]
- Hammiche, F.; Vujkovic, M.; Wijburg, W.; de Vries, J.H.; Macklon, N.S.; Laven, J.S.; Steegers-Theunissen, R.P. Increased preconception omega-3 polyunsaturated fatty acid intake improves embryo morphology. Fertil. Steril. 2011, 95, 1820–1823. [Google Scholar] [CrossRef]
- Chiu, Y.H.; Karmon, A.E.; Gaskins, A.J.; Arvizu, M.; Williams, P.L.; Souter, I.; Rueda, B.R.; Hauser, R.; Chavarro, J.E.; EARTH Study Team. Serum omega-3 fatty acids and treatment outcomes among women undergoing assisted reproduction. Hum. Reprod. 2018, 33, 156–165. [Google Scholar] [CrossRef]
- Bligh, E.G.; Dyer, W.J. A rapid method of total lipid extraction and purification. Can. J. Biochem. Physiol. 1959, 37, 911–917. [Google Scholar] [CrossRef] [PubMed]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gitta, S.; Szabó, É.; Sulc, A.; Czétány, P.; Máté, G.; Balló, A.; Csabai, T.; Szántó, Á.; Márk, L. Investigation of Phosphatidylcholine by MALDI Imaging Mass Spectrometry in Normal and IVF Early-Stage Embryos. Int. J. Mol. Sci. 2024, 25, 7423. https://doi.org/10.3390/ijms25137423
Gitta S, Szabó É, Sulc A, Czétány P, Máté G, Balló A, Csabai T, Szántó Á, Márk L. Investigation of Phosphatidylcholine by MALDI Imaging Mass Spectrometry in Normal and IVF Early-Stage Embryos. International Journal of Molecular Sciences. 2024; 25(13):7423. https://doi.org/10.3390/ijms25137423
Chicago/Turabian StyleGitta, Stefánia, Éva Szabó, Alexandra Sulc, Péter Czétány, Gábor Máté, András Balló, Tímea Csabai, Árpád Szántó, and László Márk. 2024. "Investigation of Phosphatidylcholine by MALDI Imaging Mass Spectrometry in Normal and IVF Early-Stage Embryos" International Journal of Molecular Sciences 25, no. 13: 7423. https://doi.org/10.3390/ijms25137423
APA StyleGitta, S., Szabó, É., Sulc, A., Czétány, P., Máté, G., Balló, A., Csabai, T., Szántó, Á., & Márk, L. (2024). Investigation of Phosphatidylcholine by MALDI Imaging Mass Spectrometry in Normal and IVF Early-Stage Embryos. International Journal of Molecular Sciences, 25(13), 7423. https://doi.org/10.3390/ijms25137423