Blockage of Autophagy for Cancer Therapy: A Comprehensive Review
Abstract
:1. Introduction
2. The General Biology of Autophagy
Molecular Mechanisms and Phases of Autophagy
3. The Regulation of Autophagy
3.1. Mammalian Target of Rapamycin (mTOR)
3.2. AMP-Activated Protein Kinase (AMPK)
4. Bipolar Nature of Autophagy in Cancer
4.1. Tumor-Suppressive Role of Autophagy
4.2. Tumor-Promoting Role of Autophagy
5. The Rationale for Targeting Autophagy in Cancer Therapy
6. The Classes of Pharmacological Inhibitors Targeting Key Components of Autophagy
6.1. Class III PI3K Inhibitors
6.1.1. Wortmannin
6.1.2. Viridiol
6.1.3. 3-Methyladenine (3-MA)
6.1.4. LY294002
6.1.5. SAR405
6.2. Lysosomotropic Agents (Repressors of Lysosomal Acidification)
6.2.1. Toosendanin (TSN)
6.2.2. Chloroquine (CQ) and Hydroxychloroquine (HCQ)
6.2.3. ROC-325
6.3. Inhibitors of Autophagosome–Lysosome Fusion
6.3.1. Pulsatilla Saponin D (PSD)
6.3.2. Liensinine
6.3.3. Bafilomycin A1(Baf A1)
6.3.4. Specific and Potent Autophagy Inhibitor Spautin-1
7. Gene Therapy Targeting Autophagy
8. Clinical Trials Targeting Autophagy for Cancer Therapy
8.1. CQ Monotherapy
8.2. HCQ Monotherapy
8.3. HCQ with Ulixertinib
8.4. HCQ with Sirolimus/Vorinostat
8.5. HCQ with Atezolizumab/Cobimetinib
8.6. HCQ with Paricalcitol
8.7. HCQ with Abemaciclib
8.8. HCQ with Carfilzomib
8.9. HCQ with LY3214996
9. Conclusions and Perspectives
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Conflicts of Interest
Abbreviations
References
- Bray, F.; Ferlay, J.; Soerjomataram, I.; Siegel, R.L.; Torre, L.A.; Jemal, A. Global Cancer Statistics 2018: GLOBOCAN Estimates of Incidence and Mortality Worldwide for 36 Cancers in 185 Countries. CA Cancer J. Clin. 2018, 68, 394–424. [Google Scholar] [CrossRef]
- Wang, J.; Yu, F.; Shang, Y.; Ping, Z.; Liu, L. Thyroid Cancer: Incidence and Mortality Trends in China, 2005–2015. Endocrine 2020, 68, 163–173. [Google Scholar] [CrossRef]
- Sung, H.; Ferlay, J.; Siegel, R.L.; Laversanne, M.; Soerjomataram, I.; Jemal, A.; Bray, F. Global Cancer Statistics 2020: GLOBOCAN Estimates of Incidence and Mortality Worldwide for 36 Cancers in 185 Countries. CA Cancer J. Clin. 2021, 71, 209–249. [Google Scholar] [CrossRef]
- Su, Z.; Xu, T.; Wang, Y.; Guo, X.; Tu, J.; Zhang, D.; Kong, X.; Sheng, Y.; Sun, W. Low-intensity Pulsed Ultrasound Promotes Apoptosis and Inhibits Angiogenesis via P38 Signaling-mediated Endoplasmic Reticulum Stress in Human Endothelial Cells. Mol. Med. Rep. 2019, 19, 4645–4654. [Google Scholar] [CrossRef]
- Gotwals, P.; Cameron, S.; Cipolletta, D.; Cremasco, V.; Crystal, A.; Hewes, B.; Mueller, B.; Quaratino, S.; Sabatos-Peyton, C.; Petruzzelli, L.; et al. Prospects for Combining Targeted and Conventional Cancer Therapy with Immunotherapy. Nat. Rev. Cancer 2017, 17, 286–301. [Google Scholar] [CrossRef]
- Wang, P.; Leung, A.W.; Xu, C. Low-Intensity Ultrasound-Induced Cellular Destruction and Autophagy of Nasopharyngeal Carcinoma Cells. Exp. Ther. Med. 2011, 2, 849–852. [Google Scholar] [CrossRef]
- Weiss, F.; Lauffenburger, D.; Friedl, P. Towards Targeting of Shared Mechanisms of Cancer Metastasis and Therapy Resistance. Nat. Rev. Cancer 2022, 22, 157–173. [Google Scholar] [CrossRef]
- Li, Y.-J.; Lei, Y.-H.; Yao, N.; Wang, C.-R.; Hu, N.; Ye, W.-C.; Zhang, D.-M.; Chen, Z.-S. Autophagy and Multidrug Resistance in Cancer. Chin. J. Cancer 2017, 36, 52. [Google Scholar] [CrossRef]
- Yang, M.H.; Ha, I.J.; Lee, S.-G.; Lee, J.; Um, J.-Y.; Sethi, G.; Ahn, K.S. Brassinin Induces Apoptosis, Autophagy, and Paraptosis via MAPK Signaling Pathway Activation in Chronic Myelogenous Leukemia Cells. Biology 2023, 12, 307. [Google Scholar] [CrossRef]
- Kouroumalis, E.; Voumvouraki, A.; Augoustaki, A.; Samonakis, D.N. Autophagy in Liver Diseases. World J. Hepatol. 2021, 13, 6–65. [Google Scholar] [CrossRef]
- Onorati, A.V.; Dyczynski, M.; Ojha, R.; Amaravadi, R.K. Targeting Autophagy in Cancer. Cancer 2018, 124, 3307–3318. [Google Scholar] [CrossRef]
- Zhou, X.-H.; Kang, J.; Zhong, Z.-D.; Cheng, Y. Osthole Induces Apoptosis of the HT-29 Cells via Endoplasmic Reticulum Stress and Autophagy. Oncol. Lett. 2021, 22, 726. [Google Scholar] [CrossRef]
- Yamamoto, H.; Matsui, T. Molecular Mechanisms of Macroautophagy, Microautophagy, and Chaperone-Mediated Autophagy. J. Nippon Med. Sch. 2023, 91, 2–9. [Google Scholar] [CrossRef]
- de Duve, C. The Lysosome. Sci. Am. 1963, 208, 64–73. [Google Scholar] [CrossRef]
- Levine, B.; Kroemer, G. Autophagy in the Pathogenesis of Disease. Cell 2008, 132, 27–42. [Google Scholar] [CrossRef]
- Yang, Z.J.; Chee, C.E.; Huang, S.; Sinicrope, F.A. The Role of Autophagy in Cancer: Therapeutic Implications. Mol. Cancer Ther. 2011, 10, 1533–1541. [Google Scholar] [CrossRef]
- White, E. Deconvoluting the Context-Dependent Role for Autophagy in Cancer. Nat. Rev. Cancer 2012, 12, 401–410. [Google Scholar] [CrossRef]
- Thein, O.S.; Ali, N.A.; Mahida, R.Y.; Dancer, R.C.A.; Ostermann, M.; Amrein, K.; Martucci, G.; Scott, A.; Thickett, D.R.; Parekh, D. Raised FGF23 Correlates to Increased Mortality in Critical Illness, Independent of Vitamin D. Biology 2023, 12, 309. [Google Scholar] [CrossRef]
- Comità, S.; Rubeo, C.; Giordano, M.; Penna, C.; Pagliaro, P. Pathways for Cardioprotection in Perspective: Focus on Remote Conditioning and Extracellular Vesicles. Biology 2023, 12, 308. [Google Scholar] [CrossRef]
- Amaravadi, R.K.; Lippincott-Schwartz, J.; Yin, X.-M.; Weiss, W.A.; Takebe, N.; Timmer, W.; DiPaola, R.S.; Lotze, M.T.; White, E. Principles and Current Strategies for Targeting Autophagy for Cancer Treatment. Clin. Cancer Res. 2011, 17, 654–666. [Google Scholar] [CrossRef]
- Mizushima, N.; Komatsu, M. Autophagy: Renovation of Cells and Tissues. Cell 2011, 147, 728–741. [Google Scholar] [CrossRef]
- Kaushik, S.; Singh, R.; Cuervo, A.M. Autophagic Pathways and Metabolic Stress. Diabetes Obes. Metab. 2010, 12, 4–14. [Google Scholar] [CrossRef]
- Galluzzi, L.; Bravo-San Pedro, J.M.; Levine, B.; Green, D.R.; Kroemer, G. Pharmacological Modulation of Autophagy: Therapeutic Potential and Persisting Obstacles. Nat. Rev. Drug Discov. 2017, 16, 487–511. [Google Scholar] [CrossRef]
- Baginska, J.; Viry, E.; Berchem, G.; Poli, A.; Noman, M.Z.; van Moer, K.; Medves, S.; Zimmer, J.; Oudin, A.; Niclou, S.P.; et al. Granzyme B Degradation by Autophagy Decreases Tumor Cell Susceptibility to Natural Killer-Mediated Lysis under Hypoxia. Proc. Natl. Acad. Sci. USA 2013, 110, 17450–17455. [Google Scholar] [CrossRef]
- Kaushik, S.; Cuervo, A.M. The Coming of Age of Chaperone-Mediated Autophagy. Nat. Rev. Mol. Cell Biol. 2018, 19, 365–381. [Google Scholar] [CrossRef]
- Mijaljica, D.; Prescott, M.; Devenish, R.J. Microautophagy in Mammalian Cells: Revisiting a 40-Year-Old Conundrum. Autophagy 2011, 7, 673–682. [Google Scholar] [CrossRef]
- Mizushima, N. Autophagy: Process and Function. Genes. Dev. 2007, 21, 2861–2873. [Google Scholar] [CrossRef]
- Russell, R.C.; Tian, Y.; Yuan, H.; Park, H.W.; Chang, Y.-Y.; Kim, J.; Kim, H.; Neufeld, T.P.; Dillin, A.; Guan, K.-L. ULK1 Induces Autophagy by Phosphorylating Beclin-1 and Activating VPS34 Lipid Kinase. Nat. Cell Biol. 2013, 15, 741–750. [Google Scholar] [CrossRef]
- Mercer, C.A.; Kaliappan, A.; Dennis, P.B. A Novel, Human Atg13 Binding Protein, Atg101, Interacts with ULK1 and Is Essential for Macroautophagy. Autophagy 2009, 5, 649–662. [Google Scholar] [CrossRef]
- Matsubara, Y.; Kawasaki, I.; Urushiyama, S.; Yasuda, T.; Shirakata, M.; Iino, Y.; Shibuya, H.; Yamanashi, Y. The Adaptor-like Protein ROG-1 Is Required for Activation of the Ras-MAP Kinase Pathway and Meiotic Cell Cycle Progression in Caenorhabditis Elegans. Genes Cells 2007, 12, 407–420. [Google Scholar] [CrossRef]
- Mizushima, N.; Noda, T.; Yoshimori, T.; Tanaka, Y.; Ishii, T.; George, M.D.; Klionsky, D.J.; Ohsumi, M.; Ohsumi, Y. A Protein Conjugation System Essential for Autophagy. Nature 1998, 395, 395–398. [Google Scholar] [CrossRef]
- Eskelinen, E.-L. Maturation of Autophagic Vacuoles in Mammalian Cells. Autophagy 2005, 1, 1–10. [Google Scholar] [CrossRef]
- Martin, K.R.; Celano, S.L.; Solitro, A.R.; Gunaydin, H.; Scott, M.; O’Hagan, R.C.; Shumway, S.D.; Fuller, P.; MacKeigan, J.P. A Potent and Selective ULK1 Inhibitor Suppresses Autophagy and Sensitizes Cancer Cells to Nutrient Stress. iScience 2018, 8, 74–84. [Google Scholar] [CrossRef]
- Lindmo, K.; Stenmark, H. Regulation of Membrane Traffic by Phosphoinositide 3-Kinases. J. Cell Sci. 2006, 119, 605–614. [Google Scholar] [CrossRef]
- Lan, Y.-T.; Jen-Kou, L.; Lin, C.-H.; Yang, S.-H.; Lin, C.-C.; Wang, H.-S.; Chen, W.-S.; Lin, T.-C.; Jiang, J.-K.; Chang, S.-C. Mutations in the RAS and PI3K Pathways Are Associated with Metastatic Location in Colorectal Cancers. J. Surg. Oncol. 2015, 111, 905–910. [Google Scholar] [CrossRef]
- Liu, P.; Cheng, H.; Roberts, T.M.; Zhao, J.J. Targeting the Phosphoinositide 3-Kinase Pathway in Cancer. Nat. Rev. Drug Discov. 2009, 8, 627–644. [Google Scholar] [CrossRef]
- El-Gowily, A.H.; Loutfy, S.A.; Ali, E.M.M.; Mohamed, T.M.; Mansour, M.A. Tioconazole and Chloroquine Act Synergistically to Combat Doxorubicin-Induced Toxicity via Inactivation of PI3K/AKT/MTOR Signaling Mediated ROS-Dependent Apoptosis and Autophagic Flux Inhibition in MCF-7 Breast Cancer Cells. Pharmaceuticals 2021, 14, 254. [Google Scholar] [CrossRef]
- Zou, Z.; Zhang, J.; Zhang, H.; Liu, H.; Li, Z.; Cheng, D.; Chen, J.; Liu, L.; Ni, M.; Zhang, Y.; et al. 3-Methyladenine Can Depress Drug Efflux Transporters via Blocking the PI3K–AKT–MTOR Pathway Thus Sensitizing MDR Cancer to Chemotherapy. J. Drug Target. 2014, 22, 839–848. [Google Scholar] [CrossRef]
- Agarwal, S.; Hartz, A.M.S.; Elmquist, W.F.; Bauer, B. Breast Cancer Resistance Protein and P-Glycoprotein in Brain Cancer: Two Gatekeepers Team Up. Curr. Pharm. Des. 2011, 17, 2793–2802. [Google Scholar] [CrossRef]
- He, C.; Klionsky, D.J. Regulation Mechanisms and Signaling Pathways of Autophagy. Annu. Rev. Genet. 2009, 43, 67–93. [Google Scholar] [CrossRef]
- Jung, C.H.; Ro, S.-H.; Cao, J.; Otto, N.M.; Kim, D.-H. MTOR Regulation of Autophagy. FEBS Lett. 2010, 584, 1287–1295. [Google Scholar] [CrossRef] [PubMed]
- Kim, J.; Guan, K.-L. MTOR as a Central Hub of Nutrient Signalling and Cell Growth. Nat. Cell Biol. 2019, 21, 63–71. [Google Scholar] [CrossRef] [PubMed]
- Laplante, M.; Sabatini, D.M. MTOR Signaling. Cold Spring Harb. Perspect. Biol. 2012, 4, a011593. [Google Scholar] [CrossRef] [PubMed]
- Kim, J.; Kundu, M.; Viollet, B.; Guan, K.-L. AMPK and MTOR Regulate Autophagy through Direct Phosphorylation of Ulk1. Nat. Cell Biol. 2011, 13, 132–141. [Google Scholar] [CrossRef] [PubMed]
- Herzig, S.; Shaw, R.J. AMPK: Guardian of Metabolism and Mitochondrial Homeostasis. Nat. Rev. Mol. Cell Biol. 2018, 19, 121–135. [Google Scholar] [CrossRef] [PubMed]
- Hardie, D.G.; Schaffer, B.E.; Brunet, A. AMPK: An Energy-Sensing Pathway with Multiple Inputs and Outputs. Trends Cell Biol. 2016, 26, 190–201. [Google Scholar] [CrossRef] [PubMed]
- Wang, S.; Li, H.; Yuan, M.; Fan, H.; Cai, Z. Role of AMPK in Autophagy. Front. Physiol. 2022, 13, 1015500. [Google Scholar] [CrossRef]
- Zhang, D.; Wang, W.; Sun, X.; Xu, D.; Wang, C.; Zhang, Q.; Wang, H.; Luo, W.; Chen, Y.; Chen, H.; et al. AMPK Regulates Autophagy by Phosphorylating BECN1 at Threonine 388. Autophagy 2016, 12, 1447–1459. [Google Scholar] [CrossRef]
- Chan, E.Y.W.; Longatti, A.; McKnight, N.C.; Tooze, S.A. Kinase-Inactivated ULK Proteins Inhibit Autophagy via Their Conserved C-Terminal Domains Using an Atg13-Independent Mechanism. Mol. Cell Biol. 2009, 29, 157–171. [Google Scholar] [CrossRef]
- Egan, D.F.; Shackelford, D.B.; Mihaylova, M.M.; Gelino, S.; Kohnz, R.A.; Mair, W.; Vasquez, D.S.; Joshi, A.; Gwinn, D.M.; Taylor, R.; et al. Phosphorylation of ULK1 (HATG1) by AMP-Activated Protein Kinase Connects Energy Sensing to Mitophagy. Science 2011, 331, 456–461. [Google Scholar] [CrossRef]
- Eisenberg-Lerner, A.; Kimchi, A. The Paradox of Autophagy and Its Implication in Cancer Etiology and Therapy. Apoptosis 2009, 14, 376–391. [Google Scholar] [CrossRef] [PubMed]
- Thorburn, A.; Thamm, D.H.; Gustafson, D.L. Autophagy and Cancer Therapy. Mol. Pharmacol. 2014, 85, 830–838. [Google Scholar] [CrossRef] [PubMed]
- Denton, D.; Kumar, S. Autophagy-Dependent Cell Death. Cell Death Differ. 2019, 26, 605–616. [Google Scholar] [CrossRef] [PubMed]
- Fulda, S.; Kögel, D. Cell Death by Autophagy: Emerging Molecular Mechanisms and Implications for Cancer Therapy. Oncogene 2015, 34, 5105–5113. [Google Scholar] [CrossRef] [PubMed]
- Nagelkerke, A.; Bussink, J.; Geurts-Moespot, A.; Sweep, F.C.G.J.; Span, P.N. Therapeutic Targeting of Autophagy in Cancer. Part II: Pharmacological Modulation of Treatment-Induced Autophagy. Semin. Cancer Biol. 2015, 31, 99–105. [Google Scholar] [CrossRef] [PubMed]
- Ganesher, A.; Chaturvedi, P.; Sahai, R.; Meena, S.; Mitra, K.; Datta, D.; Panda, G. New Spisulosine Derivative Promotes Robust Autophagic Response to Cancer Cells. Eur. J. Med. Chem. 2020, 188, 112011. [Google Scholar] [CrossRef] [PubMed]
- Simonet, S.; Rodriguez-Lafrasse, C.; Beal, D.; Gerbaud, S.; Malesys, C.; Tillement, O.; Lux, F.; Fayyad-Kazan, H.; Rachidi, W.; Ardail, D. Gadolinium-Based Nanoparticles Can Overcome the Radioresistance of Head and Neck Squamous Cell Carcinoma Through the Induction of Autophagy. J. Biomed. Nanotechnol. 2020, 16, 111–124. [Google Scholar] [CrossRef] [PubMed]
- Zhu, Y.-X.; Jia, H.-R.; Gao, G.; Pan, G.-Y.; Jiang, Y.-W.; Li, P.; Zhou, N.; Li, C.; She, C.; Ulrich, N.W.; et al. Mitochondria-Acting Nanomicelles for Destruction of Cancer Cells via Excessive Mitophagy/Autophagy-Driven Lethal Energy Depletion and Phototherapy. Biomaterials 2020, 232, 119668. [Google Scholar] [CrossRef]
- Booth, L.A.; Roberts, J.L.; Dent, P. The Role of Cell Signaling in the Crosstalk between Autophagy and Apoptosis in the Regulation of Tumor Cell Survival in Response to Sorafenib and Neratinib. Semin. Cancer Biol. 2020, 66, 129–139. [Google Scholar] [CrossRef]
- Song, P.; Li, Y.; Dong, Y.; Liang, Y.; Qu, H.; Qi, D.; Lu, Y.; Jin, X.; Guo, Y.; Jia, Y.; et al. Estrogen Receptor β Inhibits Breast Cancer Cells Migration and Invasion through CLDN6-Mediated Autophagy. J. Exp. Clin. Cancer Res. 2019, 38, 354. [Google Scholar] [CrossRef]
- Jiang, H.; Wang, H.; Zou, W.; Hu, Y.; Chen, C.; Wang, C. Sufentanil Impairs Autophagic Degradation and Inhibits Cell Migration in NCI-H460 In vitro. Oncol. Lett. 2019, 18, 6829–6835. [Google Scholar] [CrossRef] [PubMed]
- Wang, D.; Guo, H.; Yang, H.; Wang, D.; Gao, P.; Wei, W. Pterostilbene, An Active Constituent of Blueberries, Suppresses Proliferation Potential of Human Cholangiocarcinoma via Enhancing the Autophagic Flux. Front. Pharmacol. 2019, 10, 1238. [Google Scholar] [CrossRef] [PubMed]
- Lorin, S.; Hamaï, A.; Mehrpour, M.; Codogno, P. Autophagy Regulation and Its Role in Cancer. Semin. Cancer Biol. 2013, 23, 361–379. [Google Scholar] [CrossRef] [PubMed]
- Mathew, R.; Kongara, S.; Beaudoin, B.; Karp, C.M.; Bray, K.; Degenhardt, K.; Chen, G.; Jin, S.; White, E. Autophagy Suppresses Tumor Progression by Limiting Chromosomal Instability. Genes. Dev. 2007, 21, 1367–1381. [Google Scholar] [CrossRef]
- Burada, F. Autophagy in Colorectal Cancer: An Important Switch from Physiology to Pathology. World J. Gastrointest. Oncol. 2015, 7, 271. [Google Scholar] [CrossRef] [PubMed]
- Salimi-Jeda, A.; Ghabeshi, S.; Gol Mohammad pour, Z.; Jazaeri, E.O.; Araiinejad, M.; Sheikholeslami, F.; Abdoli, M.; Edalat, M.; Abdoli, A. Autophagy Modulation and Cancer Combination Therapy: A Smart Approach in Cancer Therapy. Cancer Treat. Res. Commun. 2022, 30, 100512. [Google Scholar] [CrossRef]
- Liu, T.; Liu, X.; Li, W. Tetrandrine, a Chinese Plant-Derived Alkaloid, Is a Potential Candidate for Cancer Chemotherapy. Oncotarget 2016, 7, 40800–40815. [Google Scholar] [CrossRef] [PubMed]
- Klionsky, D.J.; Emr, S.D. Autophagy as a Regulated Pathway of Cellular Degradation. Science 2000, 290, 1717–1721. [Google Scholar] [CrossRef] [PubMed]
- Mizushima, N.; Levine, B. Autophagy in Mammalian Development and Differentiation. Nat. Cell Biol. 2010, 12, 823–830. [Google Scholar] [CrossRef]
- White, E.; DiPaola, R.S. The Double-Edged Sword of Autophagy Modulation in Cancer. Clin. Cancer Res. 2009, 15, 5308–5316. [Google Scholar] [CrossRef]
- Amaravadi, R.K.; Yu, D.; Lum, J.J.; Bui, T.; Christophorou, M.A.; Evan, G.I.; Thomas-Tikhonenko, A.; Thompson, C.B. Autophagy Inhibition Enhances Therapy-Induced Apoptosis in a Myc-Induced Model of Lymphoma. J. Clin. Investig. 2007, 117, 326–336. [Google Scholar] [CrossRef]
- Liu, T.; Men, Q.; Wu, G.; Yu, C.; Huang, Z.; Liu, X.; Li, W. Tetrandrine Induces Autophagy and Differentiation by Activating ROS and Notch1 Signaling in Leukemia Cells. Oncotarget 2015, 6, 7992–8006. [Google Scholar] [CrossRef] [PubMed]
- Huang, A.-C.; Lien, J.-C.; Lin, M.-W.; Yang, J.-S.; Wu, P.-P.; Chang, S.-J.; Lai, T.-Y. Tetrandrine Induces Cell Death in SAS Human Oral Cancer Cells through Caspase Activation-Dependent Apoptosis and LC3-I and LC3-II Activation-Dependent Autophagy. Int. J. Oncol. 2013, 43, 485–494. [Google Scholar] [CrossRef]
- Li, Y.; Gao, S.; Du, X.; Ji, J.; Xi, Y.; Zhai, G. Advances in Autophagy as a Target in the Treatment of Tumours. J. Drug Target. 2022, 30, 166–187. [Google Scholar] [CrossRef] [PubMed]
- Kumar, A.; Singh, U.K.; Chaudhary, A. Targeting Autophagy to Overcome Drug Resistance in Cancer Therapy. Future Med. Chem. 2015, 7, 1535–1542. [Google Scholar] [CrossRef]
- Singh, S.S.; Vats, S.; Chia, A.Y.-Q.; Tan, T.Z.; Deng, S.; Ong, M.S.; Arfuso, F.; Yap, C.T.; Goh, B.C.; Sethi, G.; et al. Dual Role of Autophagy in Hallmarks of Cancer. Oncogene 2018, 37, 1142–1158. [Google Scholar] [CrossRef]
- Hikita, H.; Sakane, S.; Takehara, T. Mechanisms of the Autophagosome-Lysosome Fusion Step and Its Relation to Non-Alcoholic Fatty Liver Disease. Liver Res. 2018, 2, 120–124. [Google Scholar] [CrossRef]
- Cui, B.; Yu, J.-M. Autophagy: A New Pathway for Traditional Chinese Medicine. J. Asian Nat. Prod. Res. 2018, 20, 14–26. [Google Scholar] [CrossRef] [PubMed]
- Koh, S.-H.; Lo, E.H. The Role of the PI3K Pathway in the Regeneration of the Damaged Brain by Neural Stem Cells after Cerebral Infarction. J. Clin. Neurol. 2015, 11, 297. [Google Scholar] [CrossRef]
- Zhang, S.; Dong, Y.; Chen, X.; Tan, C.S.H.; Li, M.; Miao, K.; Lu, J.-H. Toosendanin, a Late-Stage Autophagy Inhibitor, Sensitizes Triple-Negative Breast Cancer to Irinotecan Chemotherapy. Chin. Med. 2022, 17, 55. [Google Scholar] [CrossRef]
- Chen, P.; Dai, C.-H.; Shi, Z.-H.; Wang, Y.; Wu, J.-N.; Chen, K.; Su, J.-Y.; Li, J. Synergistic Inhibitory Effect of Berberine and Icotinib on Non-Small Cell Lung Cancer Cells via Inducing Autophagic Cell Death and Apoptosis. Apoptosis 2021, 26, 639–656. [Google Scholar] [CrossRef]
- Farkas, T.; Daugaard, M.; Jäättelä, M. Identification of Small Molecule Inhibitors of Phosphatidylinositol 3-Kinase and Autophagy. J. Biol. Chem. 2011, 286, 38904–38912. [Google Scholar] [CrossRef]
- Liu, J.; Liu, Y.; Meng, L.; Ji, B.; Yang, D. Synergistic Antitumor Effect of Sorafenib in Combination with ATM Inhibitor in Hepatocellular Carcinoma Cells. Int. J. Med. Sci. 2017, 14, 523–529. [Google Scholar] [CrossRef]
- Misumi, K.; Sun, J.; Kinomura, A.; Miyata, Y.; Okada, M.; Tashiro, S. Enhanced Gefitinib-induced Repression of the Epidermal Growth Factor Receptor Pathway by Ataxia Telangiectasia-mutated Kinase Inhibition in Non-small-cell Lung Cancer Cells. Cancer Sci. 2016, 107, 444–451. [Google Scholar] [CrossRef] [PubMed]
- Castro-Guijarro, A.C.; Vanderhoeven, F.; Mondaca, J.M.; Redondo, A.L.; Zoppino, F.C.M.; Fernandez-Muñoz, J.M.; Sanchez, A.M.; Flamini, M.I. Combination Treatment of Retinoic Acid Plus Focal Adhesion Kinase Inhibitor Prevents Tumor Growth and Breast Cancer Cell Metastasis. Cells 2022, 11, 2988. [Google Scholar] [CrossRef]
- Merzoug-Larabi, M.; Spasojevic, C.; Eymard, M.; Hugonin, C.; Auclair, C.; Karam, M. Protein Kinase C Inhibitor Gö6976 but Not Gö6983 Induces the Reversion of E- to N-Cadherin Switch and Metastatic Phenotype in Melanoma: Identification of the Role of Protein Kinase D1. BMC Cancer 2017, 17, 12. [Google Scholar] [CrossRef] [PubMed]
- Aaltonen, V.; Koivunen, J.; Laato, M.; Peltonen, J. PKC Inhibitor Go6976 Induces Mitosis and Enhances Doxorubicin-Paclitaxel Cytotoxicity in Urinary Bladder Carcinoma Cells. Cancer Lett. 2007, 253, 97–107. [Google Scholar] [CrossRef]
- Roy, S.; Eastman, A.; Gribble, G.W. Synthesis of 7-Keto-Goe6976 (ICP-103). ChemInform 2005, 36, 595–601. [Google Scholar] [CrossRef]
- Dickstein, R.J.; Nitti, G.; Dinney, C.P.; Davies, B.R.; Kamat, A.M.; McConkey, D.J. Autophagy Limits the Cytotoxic Effects of the AKT Inhibitor AZ7328 in Human Bladder Cancer Cells. Cancer Biol. Ther. 2012, 13, 1325–1338. [Google Scholar] [CrossRef]
- Lamoureux, F.; Thomas, C.; Crafter, C.; Kumano, M.; Zhang, F.; Davies, B.R.; Gleave, M.E.; Zoubeidi, A. Blocked Autophagy Using Lysosomotropic Agents Sensitizes Resistant Prostate Tumor Cells to the Novel Akt Inhibitor AZD5363. Clin. Cancer Res. 2013, 19, 833–844. [Google Scholar] [CrossRef]
- Tan, J.Y.; Jia, L.Q.; Shi, W.H.; He, Q.; Zhu, L.; Yu, B. Rab5a-Mediated Autophagy Regulates the Phenotype and Behavior of Vascular Smooth Muscle Cells. Mol. Med. Rep. 2016, 14, 4445–4453. [Google Scholar] [CrossRef] [PubMed]
- Peng, P.; Zhang, X.; Qi, T.; Cheng, H.; Kong, Q.; Liu, L.; Cao, X.; Ding, Z. Alpha-lipoic Acid Inhibits Lung Cancer Growth via MTOR-mediated Autophagy Inhibition. FEBS Open Bio 2020, 10, 607–618. [Google Scholar] [CrossRef] [PubMed]
- Liu, J.; Xia, H.; Kim, M.; Xu, L.; Li, Y.; Zhang, L.; Cai, Y.; Norberg, H.V.; Zhang, T.; Furuya, T.; et al. Beclin1 Controls the Levels of P53 by Regulating the Deubiquitination Activity of USP10 and USP13. Cell 2011, 147, 223–234. [Google Scholar] [CrossRef]
- Shao, S.; Li, S.; Qin, Y.; Wang, X.; Yang, Y.; Bai, H.; Zhou, L.; Zhao, C.; Wang, C. Spautin-1, a Novel Autophagy Inhibitor, Enhances Imatinib-Induced Apoptosis in Chronic Myeloid Leukemia. Int. J. Oncol. 2014, 44, 1661–1668. [Google Scholar] [CrossRef] [PubMed]
- Liao, Y.; Guo, Z.; Xia, X.; Liu, Y.; Huang, C.; Jiang, L.; Wang, X.; Liu, J.; Huang, H. Inhibition of EGFR Signaling with Spautin-1 Represents a Novel Therapeutics for Prostate Cancer. J. Exp. Clin. Cancer Res. 2019, 38, 157. [Google Scholar] [CrossRef] [PubMed]
- Guo, J.; Zhang, J.; Liang, L.; Liu, N.; Qi, M.; Zhao, S.; Su, J.; Liu, J.; Peng, C.; Chen, X.; et al. Potent USP10/13 Antagonist Spautin-1 Suppresses Melanoma Growth via ROS-mediated DNA Damage and Exhibits Synergy with Cisplatin. J. Cell Mol. Med. 2020, 24, 4324–4340. [Google Scholar] [CrossRef] [PubMed]
- DeFrances, M.C.; Debelius, D.R.; Cheng, J.; Kane, L.P. Inhibition of T-Cell Activation by PIK3IP1. Eur. J. Immunol. 2012, 42, 2754–2759. [Google Scholar] [CrossRef] [PubMed]
- Dowdle, W.E.; Nyfeler, B.; Nagel, J.; Elling, R.A.; Liu, S.; Triantafellow, E.; Menon, S.; Wang, Z.; Honda, A.; Pardee, G.; et al. Selective VPS34 Inhibitor Blocks Autophagy and Uncovers a Role for NCOA4 in Ferritin Degradation and Iron Homeostasis in Vivo. Nat. Cell Biol. 2014, 16, 1069–1079. [Google Scholar] [CrossRef]
- Baquero, P.; Dawson, A.; Mukhopadhyay, A.; Kuntz, E.M.; Mitchell, R.; Olivares, O.; Ianniciello, A.; Scott, M.T.; Dunn, K.; Nicastri, M.C.; et al. Targeting Quiescent Leukemic Stem Cells Using Second Generation Autophagy Inhibitors. Leukemia 2019, 33, 981–994. [Google Scholar] [CrossRef]
- Pasquier, B.; El-Ahmad, Y.; Filoche-Rommé, B.; Dureuil, C.; Fassy, F.; Abecassis, P.-Y.; Mathieu, M.; Bertrand, T.; Benard, T.; Barrière, C.; et al. Discovery of (2S)-8-[(3R)-3-Methylmorpholin-4-Yl]-1-(3-Methyl-2-Oxobutyl)-2-(Trifluoromethyl)-3,4-Dihydro-2H-Pyrimido[1,2-a]Pyrimidin-6-One: A Novel Potent and Selective Inhibitor of VPS34 for the Treatment of Solid Tumors. J. Med. Chem. 2015, 58, 376–400. [Google Scholar] [CrossRef]
- Banti, C.N.; Hadjikakou, S.K.; Sismanoglu, T.; Hadjiliadis, N. Anti-Proliferative and Antitumor Activity of Organotin(IV) Compounds. An Overview of the Last Decade and Future Perspectives. J. Inorg. Biochem. 2019, 194, 114–152. [Google Scholar] [CrossRef] [PubMed]
- Meunier, G.; Birsen, R.; Cazelles, C.; Belhadj, M.; Cantero-Aguilar, L.; Kosmider, O.; Fontenay, M.; Azar, N.; Mayeux, P.; Chapuis, N.; et al. Antileukemic Activity of the VPS34-IN1 Inhibitor in Acute Myeloid Leukemia. Oncogenesis 2020, 9, 94. [Google Scholar] [CrossRef]
- Bago, R.; Malik, N.; Munson, M.J.; Prescott, A.R.; Davies, P.; Sommer, E.; Shpiro, N.; Ward, R.; Cross, D.; Ganley, I.G.; et al. Characterization of VPS34-IN1, a Selective Inhibitor of VPS34, Reveals That the Phosphatidylinositol 3-Phosphate-Binding SGK3 Protein Kinase Is a Downstream Target of Class III Phosphoinositide 3-Kinase. Biochem. J. 2014, 463, 413–427. [Google Scholar] [CrossRef]
- Ronan, B.; Flamand, O.; Vescovi, L.; Dureuil, C.; Durand, L.; Fassy, F.; Bachelot, M.-F.; Lamberton, A.; Mathieu, M.; Bertrand, T.; et al. A Highly Potent and Selective VPS34 Inhibitor Alters Vesicle Trafficking and Autophagy. Nat. Chem. Biol. 2014, 10, 1013–1019. [Google Scholar] [CrossRef] [PubMed]
- Lin, C.; Tsao, Y.; Shu, C. Autophagy Modulation as a Potential Targeted Cancer Therapy: From Drug Repurposing to New Drug Development. Kaohsiung J. Med. Sci. 2021, 37, 166–171. [Google Scholar] [CrossRef]
- Carew, J.S.; Espitia, C.M.; Esquivel, J.A.; Mahalingam, D.; Kelly, K.R.; Reddy, G.; Giles, F.J.; Nawrocki, S.T. Lucanthone Is a Novel Inhibitor of Autophagy That Induces Cathepsin D-Mediated Apoptosis. J. Biol. Chem. 2011, 286, 6602–6613. [Google Scholar] [CrossRef] [PubMed]
- Radin, D.P.; Smith, G.; Moushiaveshi, V.; Wolf, A.; Bases, R.; Tsirka, S.E. Lucanthone Targets Lysosomes to Perturb Glioma Proliferation, Chemoresistance and Stemness, and Slows Tumor Growth In Vivo. Front. Oncol. 2022, 12, 852940. [Google Scholar] [CrossRef]
- Liu, M.; Bamodu, O.A.; Huang, W.-C.; Zucha, M.A.; Lin, Y.-K.; Wu, A.T.H.; Huang, C.-C.; Lee, W.-H.; Yuan, C.-C.; Hsiao, M.; et al. 4-Acetylantroquinonol B Suppresses Autophagic Flux and Improves Cisplatin Sensitivity in Highly Aggressive Epithelial Cancer through the PI3K/Akt/MTOR/P70S6K Signaling Pathway. Toxicol. Appl. Pharmacol. 2017, 325, 48–60. [Google Scholar] [CrossRef]
- De Mei, C.; Ercolani, L.; Parodi, C.; Veronesi, M.; Lo Vecchio, C.; Bottegoni, G.; Torrente, E.; Scarpelli, R.; Marotta, R.; Ruffili, R.; et al. Dual Inhibition of REV-ERBβ and Autophagy as a Novel Pharmacological Approach to Induce Cytotoxicity in Cancer Cells. Oncogene 2015, 34, 2597–2608. [Google Scholar] [CrossRef]
- Torrente, E.; Parodi, C.; Ercolani, L.; De Mei, C.; Ferrari, A.; Scarpelli, R.; Grimaldi, B. Synthesis and in Vitro Anticancer Activity of the First Class of Dual Inhibitors of REV-ERBβ and Autophagy. J. Med. Chem. 2015, 58, 5900–5915. [Google Scholar] [CrossRef]
- Xu, Z.; Chen, X.; Zhong, Z.; Chen, L.; Wang, Y. Ganoderma Lucidum Polysaccharides: Immunomodulation and Potential Anti-Tumor Activities. Am. J. Chin. Med. 2011, 39, 15–27. [Google Scholar] [CrossRef]
- Wang, Y.; Fan, X.; Wu, X. Ganoderma lucidum Polysaccharide (GLP) Enhances Antitumor Immune Response by Regulating Differentiation and Inhibition of MDSCs via a CARD9-NF-ΚB-IDO Pathway. Biosci. Rep. 2020, 40, BSR20201170. [Google Scholar] [CrossRef] [PubMed]
- Pan, H.; Wang, Y.; Na, K.; Wang, Y.; Wang, L.; Li, Z.; Guo, C.; Guo, D.; Wang, X. Autophagic Flux Disruption Contributes to Ganoderma Lucidum Polysaccharide-Induced Apoptosis in Human Colorectal Cancer Cells via MAPK/ERK Activation. Cell Death Dis. 2019, 10, 456. [Google Scholar] [CrossRef] [PubMed]
- Laraia, L.; Garivet, G.; Foley, D.J.; Kaiser, N.; Müller, S.; Zinken, S.; Pinkert, T.; Wilke, J.; Corkery, D.; Pahl, A.; et al. Image-Based Morphological Profiling Identifies a Lysosomotropic, Iron-Sequestering Autophagy Inhibitor. Angew. Chem. Int. Ed. 2020, 59, 5721–5729. [Google Scholar] [CrossRef] [PubMed]
- Rodilla, A.M.; Korrodi-Gregório, L.; Hernando, E.; Manuel-Manresa, P.; Quesada, R.; Pérez-Tomás, R.; Soto-Cerrato, V. Synthetic Tambjamine Analogues Induce Mitochondrial Swelling and Lysosomal Dysfunction Leading to Autophagy Blockade and Necrotic Cell Death in Lung Cancer. Biochem. Pharmacol. 2017, 126, 23–33. [Google Scholar] [CrossRef] [PubMed]
- Wu, M.-Y.; Wang, S.-F.; Cai, C.-Z.; Tan, J.-Q.; Li, M.; Lu, J.-J.; Chen, X.-P.; Wang, Y.-T.; Zheng, W.; Lu, J.-H. Natural Autophagy Blockers, Dauricine (DAC) and Daurisoline (DAS), Sensitize Cancer Cells to Camptothecin-Induced Toxicity. Oncotarget 2017, 8, 77673–77684. [Google Scholar] [CrossRef]
- Fu, R.; Deng, Q.; Zhang, H.; Hu, X.; Li, Y.; Liu, Y.; Hu, J.; Luo, Q.; Zhang, Y.; Jiang, X.; et al. A Novel Autophagy Inhibitor Berbamine Blocks SNARE-Mediated Autophagosome-Lysosome Fusion through Upregulation of BNIP3. Cell Death Dis. 2018, 9, 243. [Google Scholar] [CrossRef]
- Choi, H.S.; Jeong, E.-H.; Lee, T.-G.; Kim, S.Y.; Kim, H.-R.; Kim, C.H. Autophagy Inhibition with Monensin Enhances Cell Cycle Arrest and Apoptosis Induced by MTOR or Epidermal Growth Factor Receptor Inhibitors in Lung Cancer Cells. Tuberc. Respir. Dis. 2013, 75, 9. [Google Scholar] [CrossRef] [PubMed]
- Hanson, T.L.; Klopfenstein, T. Monensin, Protein Source and Protein Levels for Growing Steers. J. Anim. Sci. 1979, 48, 474–479. [Google Scholar] [CrossRef]
- Markowska, A.; Kaysiewicz, J.; Markowska, J.; Huczyński, A. Doxycycline, Salinomycin, Monensin and Ivermectin Repositioned as Cancer Drugs. Bioorg. Med. Chem. Lett. 2019, 29, 1549–1554. [Google Scholar] [CrossRef]
- Kim, S.-H.; Kim, K.-Y.; Yu, S.-N.; Park, S.-G.; Yu, H.-S.; Seo, Y.-K.; Ahn, S.-C. Monensin Induces PC-3 Prostate Cancer Cell Apoptosis via ROS Production and Ca2+ Homeostasis Disruption. Anticancer Res. 2016, 36, 5835–5844. [Google Scholar] [CrossRef] [PubMed]
- Miura, K.; Kawano, S.; Suto, T.; Sato, T.; Chida, N.; Simizu, S. Identification of Madangamine A as a Novel Lysosomotropic Agent to Inhibit Autophagy. Bioorg. Med. Chem. 2021, 34, 116041. [Google Scholar] [CrossRef] [PubMed]
- Zhao, X.; Fang, Y.; Yang, Y.; Qin, Y.; Wu, P.; Wang, T.; Lai, H.; Meng, L.; Wang, D.; Zheng, Z.; et al. Elaiophylin, a Novel Autophagy Inhibitor, Exerts Antitumor Activity as a Single Agent in Ovarian Cancer Cells. Autophagy 2015, 11, 1849–1863. [Google Scholar] [CrossRef] [PubMed]
- Zhou, J.; Huang, X.; Qiu, H.; Gan, R.; Zhou, H.; Zhu, H.; Zhang, X.; Lu, G.; Liang, G. SSPH I, a Novel Anticancer Saponin, Inhibits Autophagy and Induces Apoptosis via ROS Accumulation and ERK1/2 Signaling Pathway in Hepatocellular Carcinoma Cells. Onco Targets Ther. 2020, 13, 5979–5991. [Google Scholar] [CrossRef] [PubMed]
- Zhou, J.; Li, G.; Zheng, Y.; Shen, H.-M.; Hu, X.; Ming, Q.-L.; Huang, C.; Li, P.; Gao, N. A Novel Autophagy/Mitophagy Inhibitor Liensinine Sensitizes Breast Cancer Cells to Chemotherapy through DNM1L-Mediated Mitochondrial Fission. Autophagy 2015, 11, 1259–1279. [Google Scholar] [CrossRef] [PubMed]
- Qi, H.; Jiang, Z.; Wang, C.; Yang, Y.; Li, L.; He, H.; Yu, Z. Sensitization of Tamoxifen-Resistant Breast Cancer Cells by Z-Ligustilide through Inhibiting Autophagy and Accumulating DNA Damages. Oncotarget 2017, 8, 29300–29317. [Google Scholar] [CrossRef]
- Salari, Z.; Khosravi, A.; Pourkhandani, E.; Molaakbari, E.; Salarkia, E.; Keyhani, A.; Sharifi, I.; Tavakkoli, H.; Sohbati, S.; Dabiri, S.; et al. The Inhibitory Effect of 6-Gingerol and Cisplatin on Ovarian Cancer and Antitumor Activity: In Silico, in Vitro, and in Vivo. Front. Oncol. 2023, 13, 1098429. [Google Scholar] [CrossRef] [PubMed]
- Nazim, U.; Jeong, J.-K.; Seol, J.-W.; Hur, J.; Eo, S.-K.; Lee, J.-H.; Park, S.-Y. Inhibition of the Autophagy Flux by Gingerol Enhances TRAIL-Induced Tumor Cell Death. Oncol. Rep. 2015, 33, 2331–2336. [Google Scholar] [CrossRef] [PubMed]
- Sang, J.; Gan, L.; Zou, M.-F.; Lin, Z.-J.; Fan, R.-Z.; Huang, J.-L.; Li, W.; Tang, G.-H.; Yin, S. Jolkinolide B Sensitizes Bladder Cancer to MTOR Inhibitors via Dual Inhibition of Akt Signaling and Autophagy. Cancer Lett. 2022, 526, 352–362. [Google Scholar] [CrossRef]
- Won, G.; Jung, J.H.; Sohn, E.J.; Park, J.E.; Kim, H.; Lee, H.-J.; Shim, B.S.; Kim, S.-H. Misaponin B Induces G2/M Arrest, Cytokinesis Failure and Impairs Autophagy. BioMed Res. Int. 2020, 2020, 5925094. [Google Scholar] [CrossRef]
- Bilir, A.; Erguven, M.; Yazihan, N.; Aktas, E.; Oktem, G.; Sabanci, A. Enhancement of Vinorelbine-Induced Cytotoxicity and Apoptosis by Clomipramine and Lithium Chloride in Human Neuroblastoma Cancer Cell Line SH-SY5Y. J. Neurooncol. 2010, 100, 385–395. [Google Scholar] [CrossRef] [PubMed]
- Zeki, A.A.; Yeganeh, B.; Kenyon, N.J.; Post, M.; Ghavami, S. Autophagy in Airway Diseases: A New Frontier in Human Asthma? Allergy 2016, 71, 5–14. [Google Scholar] [CrossRef]
- Rossi, M.; Munarriz, E.R.; Bartesaghi, S.; Milanese, M.; Dinsdale, D.; Guerra-Martin, M.A.; Bampton, E.T.W.; Glynn, P.; Bonanno, G.; Knight, R.A.; et al. Desmethylclomipramine Induces the Accumulation of Autophagy Markers by Blocking Autophagic Flux. J. Cell Sci. 2009, 122, 3330–3339. [Google Scholar] [CrossRef]
- The Synergistic Effect of Resveratrol and Hydroxychloroquine on Osteosarcoma Cell Line (MG-63) by Autophagy Modulating. Available online: https://www.researchgate.net/publication/349641481_The_Synergistic_Effect_of_Resveratrol_and_Hydroxychloroquine_on_Osteosarcoma_Cell_Line_MG-63_by_Autophagy_Modulating (accessed on 28 July 2023).
- Mei, L.; Chen, Y.; Wang, Z.; Wang, J.; Wan, J.; Yu, C.; Liu, X.; Li, W. Synergistic Anti-Tumour Effects of Tetrandrine and Chloroquine Combination Therapy in Human Cancer: A Potential Antagonistic Role for P21. Br. J. Pharmacol. 2015, 172, 2232–2245. [Google Scholar] [CrossRef] [PubMed]
- McAfee, Q.; Zhang, Z.; Samanta, A.; Levi, S.M.; Ma, X.-H.; Piao, S.; Lynch, J.P.; Uehara, T.; Sepulveda, A.R.; Davis, L.E.; et al. Autophagy Inhibitor Lys05 Has Single-Agent Antitumor Activity and Reproduces the Phenotype of a Genetic Autophagy Deficiency. Proc. Natl. Acad. Sci. USA 2012, 109, 8253–8258. [Google Scholar] [CrossRef] [PubMed]
- Amaravadi, R.K.; Winkler, J.D. Lys05: A new lysosomal autophagy inhibitor. Autophagy 2012, 8, 1383–1384. [Google Scholar] [CrossRef]
- Cárdenas, M.; Marder, M.; Blank, V.C.; Roguin, L.P. Antitumor Activity of Some Natural Flavonoids and Synthetic Derivatives on Various Human and Murine Cancer Cell Lines. Bioorg. Med. Chem. 2006, 14, 2966–2971. [Google Scholar] [CrossRef]
- Jeong, S.B.; Das, R.; Kim, D.-H.; Lee, S.; Oh, H.I.; Jo, S.; Lee, Y.; Kim, J.; Park, S.; Choi, D.K.; et al. Anticancer Effect of Verteporfin on Non-Small Cell Lung Cancer via Downregulation of ANO1. Biomed. Pharmacother. 2022, 153, 113373. [Google Scholar] [CrossRef]
- Celli, J.P.; Solban, N.; Liang, A.; Pereira, S.P.; Hasan, T. Verteporfin-Based Photodynamic Therapy Overcomes Gemcitabine Insensitivity in a Panel of Pancreatic Cancer Cell Lines. Lasers Surg. Med. 2011, 43, 565–574. [Google Scholar] [CrossRef]
- Scott, L.J.; Goa, K.L. Verteporfin. Drugs Aging 2000, 16, 139–146. [Google Scholar] [CrossRef]
- Petroni, G.; Bagni, G.; Iorio, J.; Duranti, C.; Lottini, T.; Stefanini, M.; Kragol, G.; Becchetti, A.; Arcangeli, A. Clarithromycin Inhibits Autophagy in Colorectal Cancer by Regulating the HERG1 Potassium Channel Interaction with PI3K. Cell Death Dis. 2020, 11, 161. [Google Scholar] [CrossRef] [PubMed]
- Van Nuffel, A.M. Repurposing Drugs in Oncology (ReDO)—Clarithromycin as an Anticancer Agent. Ecancermedicalscience 2015, 9, 513. [Google Scholar] [CrossRef] [PubMed]
- Peters, D.H.; Clissold, S.P. Clarithromycin. Drugs 1992, 44, 117–164. [Google Scholar] [CrossRef] [PubMed]
- Nicastri, M.C.; Rebecca, V.W.; Amaravadi, R.K.; Winkler, J.D. Dimeric Quinacrines as Chemical Tools to Identify PPT1, a New Regulator of Autophagy in Cancer Cells. Mol. Cell Oncol. 2018, 5, e1395504. [Google Scholar] [CrossRef] [PubMed]
- Rebecca, V.W.; Nicastri, M.C.; McLaughlin, N.; Fennelly, C.; McAfee, Q.; Ronghe, A.; Nofal, M.; Lim, C.-Y.; Witze, E.; Chude, C.I.; et al. A Unified Approach to Targeting the Lysosome’s Degradative and Growth Signaling Roles. Cancer Discov. 2017, 7, 1266–1283. [Google Scholar] [CrossRef]
- Goodall, M.L.; Wang, T.; Martin, K.R.; Kortus, M.G.; Kauffman, A.L.; Trent, J.M.; Gately, S.; MacKeigan, J.P. Development of Potent Autophagy Inhibitors That Sensitize Oncogenic BRAF V600E Mutant Melanoma Tumor Cells to Vemurafenib. Autophagy 2014, 10, 1120–1136. [Google Scholar] [CrossRef]
- Xie, Y.; Zhang, J.; Lu, B.; Bao, Z.; Zhao, J.; Lu, X.; Wei, Y.; Yao, K.; Jiang, Y.; Yuan, Q.; et al. Mefloquine Inhibits Esophageal Squamous Cell Carcinoma Tumor Growth by Inducing Mitochondrial Autophagy. Front. Oncol. 2020, 10, 1217. [Google Scholar] [CrossRef]
- Sharma, G.; Guardia, C.M.; Roy, A.; Vassilev, A.; Saric, A.; Griner, L.N.; Marugan, J.; Ferrer, M.; Bonifacino, J.S.; DePamphilis, M.L. A Family of PIKFYVE Inhibitors with Therapeutic Potential against Autophagy-Dependent Cancer Cells Disrupt Multiple Events in Lysosome Homeostasis. Autophagy 2019, 15, 1694–1718. [Google Scholar] [CrossRef]
- Sharma, G.; Ojha, R.; Noguera-Ortega, E.; Rebecca, V.W.; Attanasio, J.; Liu, S.; Piao, S.; Lee, J.J.; Nicastri, M.C.; Harper, S.L.; et al. PPT1 Inhibition Enhances the Antitumor Activity of Anti–PD-1 Antibody in Melanoma. JCI Insight 2020, 5, e133225. [Google Scholar] [CrossRef]
- Chen, C.; Lu, Y.; Siu, H.M.; Guan, J.; Zhu, L.; Zhang, S.; Yue, J.; Zhang, L. Identification of Novel Vacuolin-1 Analogues as Autophagy Inhibitors by Virtual Drug Screening and Chemical Synthesis. Molecules 2017, 22, 891. [Google Scholar] [CrossRef]
- Bongiorno-Borbone, L.; Giacobbe, A.; Compagnone, M.; Eramo, A.; De Maria, R.; Peschiaroli, A.; Melino, G. Anti-Tumoral Effect of Desmethylclomipramine in Lung Cancer Stem Cells. Oncotarget 2015, 6, 16926–16938. [Google Scholar] [CrossRef] [PubMed]
- Nawrocki, S.T.; Han, Y.; Visconte, V.; Przychodzen, B.; Espitia, C.M.; Phillips, J.; Anwer, F.; Advani, A.; Carraway, H.E.; Kelly, K.R.; et al. The Novel Autophagy Inhibitor ROC-325 Augments the Antileukemic Activity of Azacitidine. Leukemia 2019, 33, 2971–2974. [Google Scholar] [CrossRef] [PubMed]
- Buzun, K.; Gornowicz, A.; Lesyk, R.; Bielawski, K.; Bielawska, A. Autophagy Modulators in Cancer Therapy. Int. J. Mol. Sci. 2021, 22, 5804. [Google Scholar] [CrossRef] [PubMed]
- Xia, Y.; Jia, C.; Xue, Q.; Jiang, J.; Xie, Y.; Wang, R.; Ran, Z.; Xu, F.; Zhang, Y.; Ye, T. Antipsychotic Drug Trifluoperazine Suppresses Colorectal Cancer by Inducing G0/G1 Arrest and Apoptosis. Front. Pharmacol. 2019, 10, 1029. [Google Scholar] [CrossRef] [PubMed]
- Zhang, X.; Xu, R.; Zhang, C.; Xu, Y.; Han, M.; Huang, B.; Chen, A.; Qiu, C.; Thorsen, F.; Prestegarden, L.; et al. Trifluoperazine, a Novel Autophagy Inhibitor, Increases Radiosensitivity in Glioblastoma by Impairing Homologous Recombination. J. Exp. Clin. Cancer Res. 2017, 36, 118. [Google Scholar] [CrossRef]
- Zhang, S.; Wang, Y.; Xie, W.; Howe, E.N.W.; Busschaert, N.; Sauvat, A.; Leduc, M.; Gomes-da-Silva, L.C.; Chen, G.; Martins, I.; et al. Squaramide-Based Synthetic Chloride Transporters Activate TFEB but Block Autophagic Flux. Cell Death Dis. 2019, 10, 242. [Google Scholar] [CrossRef] [PubMed]
- Quintana, M.; Alegre-Requena, J.V.; Marqués-López, E.; Herrera, R.P.; Triola, G. Squaramides with Cytotoxic Activity against Human Gastric Carcinoma Cells HGC-27: Synthesis and Mechanism of Action. Medchemcomm 2016, 7, 550–561. [Google Scholar] [CrossRef]
- Guo, Y.; Yang, L.; Guo, W.; Wei, L.; Zhou, Y. FV-429 Enhances the Efficacy of Paclitaxel in NSCLC by Reprogramming HIF-1α-Modulated FattyAcid Metabolism. Chem. Biol. Interact. 2021, 350, 109702. [Google Scholar] [CrossRef] [PubMed]
- Chen, X.; Wei, L.; Yang, L.; Guo, W.; Guo, Q.; Zhou, Y. Glycolysis Inhibition and Apoptosis Induction in Human Prostate Cancer Cells by FV-429-Mediated Regulation of AR-AKT-HK2 Signaling Network. Food Chem. Toxicol. 2020, 143, 111517. [Google Scholar] [CrossRef]
- Hu, P.; Wang, J.; Qing, Y.; Li, H.; Sun, W.; Yu, X.; Hui, H.; Guo, Q.; Xu, J. FV-429 Induces Autophagy Blockage and Lysosome-Dependent Cell Death of T-Cell Malignancies via Lysosomal Dysregulation. Cell Death Dis. 2021, 12, 80. [Google Scholar] [CrossRef]
- Bestion, E.; Zandi, K.; Belouzard, S.; Andreani, J.; Lepidi, H.; Novello, M.; Rouquairol, C.; Baudoin, J.-P.; Rachid, M.; La Scola, B.; et al. GNS561 Exhibits Potent Antiviral Activity against SARS-CoV-2 through Autophagy Inhibition. Viruses 2022, 14, 132. [Google Scholar] [CrossRef] [PubMed]
- Harding, J.J.; Awada, A.; Roth, G.; Decaens, T.; Merle, P.; Kotecki, N.; Dreyer, C.; Ansaldi, C.; Rachid, M.; Mezouar, S.; et al. First-In-Human Effects of PPT1 Inhibition Using the Oral Treatment with GNS561/Ezurpimtrostat in Patients with Primary and Secondary Liver Cancers. Liver Cancer 2022, 11, 268–277. [Google Scholar] [CrossRef] [PubMed]
- Tan, Q.; Joshua, A.M.; Saggar, J.K.; Yu, M.; Wang, M.; Kanga, N.; Zhang, J.Y.; Chen, X.; Wouters, B.G.; Tannock, I.F. Effect of Pantoprazole to Enhance Activity of Docetaxel against Human Tumour Xenografts by Inhibiting Autophagy. Br. J. Cancer 2015, 112, 832–840. [Google Scholar] [CrossRef] [PubMed]
- Hansen, A.R.; Tannock, I.F.; Templeton, A.; Chen, E.; Evans, A.; Knox, J.; Prawira, A.; Sridhar, S.S.; Tan, S.; Vera-Badillo, F.; et al. Pantoprazole Affecting Docetaxel Resistance Pathways via Autophagy (PANDORA): Phase II Trial of High Dose Pantoprazole (Autophagy Inhibitor) with Docetaxel in Metastatic Castration-Resistant Prostate Cancer (MCRPC). Oncologist 2019, 24, 1188–1194. [Google Scholar] [CrossRef] [PubMed]
- Molero-Valenzuela, A.; Fontova, P.; Alonso-Carrillo, D.; Carreira-Barral, I.; Torres, A.A.; García-Valverde, M.; Benítez-García, C.; Pérez-Tomás, R.; Quesada, R.; Soto-Cerrato, V. A Novel Late-Stage Autophagy Inhibitor That Efficiently Targets Lysosomes Inducing Potent Cytotoxic and Sensitizing Effects in Lung Cancer. Cancers 2022, 14, 3387. [Google Scholar] [CrossRef] [PubMed]
- Hernando, E.; Soto-Cerrato, V.; Cortés-Arroyo, S.; Pérez-Tomás, R.; Quesada, R. Transmembrane Anion Transport and Cytotoxicity of Synthetic Tambjamine Analogs. Org. Biomol. Chem. 2014, 12, 1771–1778. [Google Scholar] [CrossRef] [PubMed]
- Guntuku, L.; Gangasani, J.K.; Thummuri, D.; Borkar, R.M.; Manavathi, B.; Ragampeta, S.; Vaidya, J.R.; Sistla, R.; Vegi, N.G.M. IITZ-01, a Novel Potent Lysosomotropic Autophagy Inhibitor, Has Single-Agent Antitumor Efficacy in Triple-Negative Breast Cancer in Vitro and in Vivo. Oncogene 2019, 38, 581–595. [Google Scholar] [CrossRef]
- Chen, J.; Shen, Y.; Wu, B.; Yang, P.; Sun, G.; Liu, X.; Qiang, P.; Gao, Y.; Sha, F.; Li, Z.; et al. CUR5g, a Novel Autophagy Inhibitor, Exhibits Potent Synergistic Anticancer Effects with Cisplatin against Non-Small-Cell Lung Cancer. Cell Death Discov. 2022, 8, 435. [Google Scholar] [CrossRef] [PubMed]
- Klionsky, D.J.; Elazar, Z.; Seglen, P.O.; Rubinsztein, D.C. Does Bafilomycin A1 Block the Fusion of Autophagosomes with Lysosomes? Autophagy 2008, 4, 849–850. [Google Scholar] [CrossRef]
- Ko, H.; Kim, Y.-J.; Park, J.-S.; Park, J.H.; Yang, H.O. Autophagy Inhibition Enhances Apoptosis Induced by Ginsenoside Rk1 in Hepatocellular Carcinoma Cells. Biosci. Biotechnol. Biochem. 2009, 73, 2183–2189. [Google Scholar] [CrossRef]
- Lim, J.-H.; Park, J.-W.; Kim, M.-S.; Park, S.-K.; Johnson, R.S.; Chun, Y.-S. Bafilomycin Induces the P21-Mediated Growth Inhibition of Cancer Cells under Hypoxic Conditions by Expressing Hypoxia-Inducible Factor-1α. Mol. Pharmacol. 2006, 70, 1856–1865. [Google Scholar] [CrossRef] [PubMed]
- Redmann, M.; Benavides, G.A.; Berryhill, T.F.; Wani, W.Y.; Ouyang, X.; Johnson, M.S.; Ravi, S.; Barnes, S.; Darley-Usmar, V.M.; Zhang, J. Inhibition of Autophagy with Bafilomycin and Chloroquine Decreases Mitochondrial Quality and Bioenergetic Function in Primary Neurons. Redox Biol. 2017, 11, 73–81. [Google Scholar] [CrossRef] [PubMed]
- Yan, Y.; Jiang, K.; Liu, P.; Zhang, X.; Dong, X.; Gao, J.; Liu, Q.; Barr, M.P.; Zhang, Q.; Hou, X.; et al. Bafilomycin A1 Induces Caspase-Independent Cell Death in Hepatocellular Carcinoma Cells via Targeting of Autophagy and MAPK Pathways. Sci. Rep. 2016, 6, 37052. [Google Scholar] [CrossRef] [PubMed]
- La Ferla, B.; Airoldi, C.; Zona, C.; Orsato, A.; Cardona, F.; Merlo, S.; Sironi, E.; D’Orazio, G.; Nicotra, F. Natural Glycoconjugates with Antitumor Activity. Nat. Prod. Rep. 2011, 28, 630–648. [Google Scholar] [CrossRef] [PubMed]
- Kiyoshima, T.; Yoshida, H.; Wada, H.; Nagata, K.; Fujiwara, H.; Kihara, M.; Hasegawa, K.; Someya, H.; Sakai, H. Chemoresistance to Concanamycin A1 in Human Oral Squamous Cell Carcinoma Is Attenuated by an HDAC Inhibitor Partly via Suppression of Bcl-2 Expression. PLoS ONE 2013, 8, e80998. [Google Scholar] [CrossRef] [PubMed]
- Limpert, A.S.; Lambert, L.J.; Bakas, N.A.; Bata, N.; Brun, S.N.; Shaw, R.J.; Cosford, N.D.P. Autophagy in Cancer: Regulation by Small Molecules. Trends Pharmacol. Sci. 2018, 39, 1021–1032. [Google Scholar] [CrossRef] [PubMed]
- Akin, D.; Wang, S.K.; Habibzadegah-Tari, P.; Law, B.; Ostrov, D.; Li, M.; Yin, X.-M.; Kim, J.-S.; Horenstein, N.; Dunn, W.A. A Novel ATG4B Antagonist Inhibits Autophagy and Has a Negative Impact on Osteosarcoma Tumors. Autophagy 2014, 10, 2021–2035. [Google Scholar] [CrossRef] [PubMed]
- Clissold, S.P.; Heel, R.C. Tioconazole. Drugs 1986, 31, 29–51. [Google Scholar] [CrossRef] [PubMed]
- Shi, J.; Dong, X.; Li, H.; Wang, H.; Jiang, Q.; Liu, L.; Wang, L.; Dong, J. Nicardipine Sensitizes Temozolomide by Inhibiting Autophagy and Promoting Cell Apoptosis in Glioma Stem Cells. Aging 2021, 13, 6820–6831. [Google Scholar] [CrossRef]
- Bosc, D.; Vezenkov, L.; Bortnik, S.; An, J.; Xu, J.; Choutka, C.; Hannigan, A.M.; Kovacic, S.; Loo, S.; Clark, P.G.K.; et al. A New Quinoline-Based Chemical Probe Inhibits the Autophagy-Related Cysteine Protease ATG4B. Sci. Rep. 2018, 8, 11653. [Google Scholar] [CrossRef]
- Fu, Y.; Hong, L.; Xu, J.; Zhong, G.; Gu, Q.; Gu, Q.; Guan, Y.; Zheng, X.; Dai, Q.; Luo, X.; et al. Discovery of a Small Molecule Targeting Autophagy via ATG4B Inhibition and Cell Death of Colorectal Cancer Cells in Vitro and in Vivo. Autophagy 2019, 15, 295–311. [Google Scholar] [CrossRef] [PubMed]
- Wang, Z.L.; Deng, Q.; Chong, T.; Wang, Z.M. Autophagy Suppresses the Proliferation of Renal Carcinoma Cell. Eur. Rev. Med. Pharmacol. Sci. 2018, 22, 343–350. [Google Scholar] [CrossRef] [PubMed]
- Jones, T.M.; Carew, J.S.; Nawrocki, S.T. Therapeutic Targeting of Autophagy for Renal Cell Carcinoma Therapy. Cancers 2020, 12, 1185. [Google Scholar] [CrossRef] [PubMed]
- Chacon-Barahona, J.A.; MacKeigan, J.P.; Lanning, N.J. Unique Metabolic Contexts Sensitize Cancer Cells and Discriminate between Glycolytic Tumor Types. Cancers 2023, 15, 1158. [Google Scholar] [CrossRef] [PubMed]
- Petherick, K.J.; Conway, O.J.L.; Mpamhanga, C.; Osborne, S.A.; Kamal, A.; Saxty, B.; Ganley, I.G. Pharmacological Inhibition of ULK1 Kinase Blocks Mammalian Target of Rapamycin (MTOR)-Dependent Autophagy. J. Biol. Chem. 2015, 290, 11376–11383. [Google Scholar] [CrossRef] [PubMed]
- Tang, F.; Hu, P.; Yang, Z.; Xue, C.; Gong, J.; Sun, S.; Shi, L.; Zhang, S.; Li, Z.; Yang, C.; et al. SBI0206965, a Novel Inhibitor of Ulk1, Suppresses Non-Small Cell Lung Cancer Cell Growth by Modulating Both Autophagy and Apoptosis Pathways. Oncol. Rep. 2017, 37, 3449–3458. [Google Scholar] [CrossRef] [PubMed]
- Ahwazi, D.; Neopane, K.; Markby, G.R.; Kopietz, F.; Ovens, A.J.; Dall, M.; Hassing, A.S.; Gräsle, P.; Alshuweishi, Y.; Treebak, J.T.; et al. Investigation of the Specificity and Mechanism of Action of the ULK1/AMPK Inhibitor SBI-0206965. Biochem. J. 2021, 478, 2977–2997. [Google Scholar] [CrossRef] [PubMed]
- Egan, D.F.; Chun, M.G.H.; Vamos, M.; Zou, H.; Rong, J.; Miller, C.J.; Lou, H.J.; Raveendra-Panickar, D.; Yang, C.-C.; Sheffler, D.J.; et al. Small Molecule Inhibition of the Autophagy Kinase ULK1 and Identification of ULK1 Substrates. Mol. Cell 2015, 59, 285–297. [Google Scholar] [CrossRef] [PubMed]
- Lazarus, M.B.; Novotny, C.J.; Shokat, K.M. Structure of the Human Autophagy Initiating Kinase ULK1 in Complex with Potent Inhibitors. ACS Chem. Biol. 2015, 10, 257–261. [Google Scholar] [CrossRef]
- Chen, Y.; Xie, X.; Wang, C.; Hu, Y.; Zhang, H.; Zhang, L.; Tu, S.; He, Y.; Li, Y. Dual Targeting of NUAK1 and ULK1 Using the Multitargeted Inhibitor MRT68921 Exerts Potent Antitumor Activities. Cell Death Dis. 2020, 11, 712. [Google Scholar] [CrossRef]
- Bogdan, M.; Timson, M.J.; Al-Hashimi, H.; Smith, B.D.; Flynn, D.L. Abstract 1377: DCC-3116, a First-in-Class Selective Inhibitor of ULK1/2 Kinases and Autophagy, Synergizes with Encorafenib and Cetuximab in BRAF V600E Mutant Colorectal Cancer Models. Cancer Res 2023, 83, 1377. [Google Scholar] [CrossRef]
- Smith, B.D.; Vogeti, L.; Gupta, A.; Singh, J.; Al-Ani, G.; Bulfer, S.L.; Caldwell, T.M.; Timson, M.J.; Vogeti, S.; Ahn, Y.M.; et al. Abstract B129: Preclinical Studies with DCC-3116, an ULK Kinase Inhibitor Designed to Inhibit Autophagy as a Potential Strategy to Address Mutant RAS Cancers. Mol. Cancer Ther. 2019, 18, B129. [Google Scholar] [CrossRef]
- Xue, S.-T.; Li, K.; Gao, Y.; Zhao, L.-Y.; Gao, Y.; Yi, H.; Jiang, J.-D.; Li, Z.-R. The Role of the Key Autophagy Kinase ULK1 in Hepatocellular Carcinoma and Its Validation as a Treatment Target. Autophagy 2020, 16, 1823–1837. [Google Scholar] [CrossRef] [PubMed]
- Huang, T.; Wan, X.; Alvarez, A.A.; James, C.D.; Song, X.; Yang, Y.; Sastry, N.; Nakano, I.; Sulman, E.P.; Hu, B.; et al. MIR93 (MicroRNA-93) Regulates Tumorigenicity and Therapy Response of Glioblastoma by Targeting Autophagy. Autophagy 2019, 15, 1100–1111. [Google Scholar] [CrossRef] [PubMed]
- Wood, S.D.; Grant, W.; Adrados, I.; Choi, J.Y.; Alburger, J.M.; Duckett, D.R.; Roush, W.R. In Silico HTS and Structure Based Optimization of Indazole-Derived ULK1 Inhibitors. ACS Med. Chem. Lett. 2017, 8, 1258–1263. [Google Scholar] [CrossRef] [PubMed]
- Murray, E.J.B.; Grisanti, M.S.; Bentley, G.V.; Murray, S.S. E64d, a Membrane-Permeable Cysteine Protease Inhibitor, Attenuates the Effects of Parathyroid Hormone on Osteoblasts in Vitro. Metabolism 1997, 46, 1090–1094. [Google Scholar] [CrossRef]
- Müller, S.; Dennemärker, J.; Reinheckel, T. Specific Functions of Lysosomal Proteases in Endocytic and Autophagic Pathways. Biochim. Biophys. Acta (BBA)-Proteins Proteom. 2012, 1824, 34–43. [Google Scholar] [CrossRef]
- Ni, H.-M.; Bockus, A.; Wozniak, A.L.; Jones, K.; Weinman, S.; Yin, X.-M.; Ding, W.-X. Dissecting the Dynamic Turnover of GFP-LC3 in the Autolysosome. Autophagy 2011, 7, 188–204. [Google Scholar] [CrossRef] [PubMed]
- Chen, X.; Xu, Z.; Zeng, S.; Wang, X.; Liu, W.; Qian, L.; Wei, J.; Yang, X.; Shen, Q.; Gong, Z.; et al. The Molecular Aspect of Antitumor Effects of Protease Inhibitor Nafamostat Mesylate and Its Role in Potential Clinical Applications. Front. Oncol. 2019, 9, 852. [Google Scholar] [CrossRef]
- Hwang, H.-Y.; Cho, Y.S.; Kim, J.Y.; Yun, K.N.; Yoo, J.S.; Lee, E.; Kim, I.; Kwon, H.J. Autophagic Inhibition via Lysosomal Integrity Dysfunction Leads to Antitumor Activity in Glioma Treatment. Cancers 2020, 12, 543. [Google Scholar] [CrossRef]
- Yang, Y.; Hu, L.; Zheng, H.; Mao, C.; Hu, W.; Xiong, K.; Wang, F.; Liu, C. Application and Interpretation of Current Autophagy Inhibitors and Activators. Acta Pharmacol. Sin. 2013, 34, 625–635. [Google Scholar] [CrossRef]
- Tanida, I.; Minematsu-Ikeguchi, N.; Ueno, T.; Kominami, E. Lysosomal Turnover, but Not a Cellular Level, of Endogenous LC3 Is a Marker for Autophagy. Autophagy 2005, 1, 84–91. [Google Scholar] [CrossRef] [PubMed]
- Kominami, E.; Hashida, S.; Khairallah, E.A.; Katunuma, N. Sequestration of Cytoplasmic Enzymes in an Autophagic Vacuole-Lysosomal System Induced by Injection of Leupeptin. J. Biol. Chem. 1983, 258, 6093–6100. [Google Scholar] [CrossRef]
- Kakizoe, T.; Takayasu, H.; Kawachi, T.; Sugimura, T.; Takeuchi, T.; Umezawa, H. Effect of Leupeptin, a Protease Inhibitor, on Induction of Bladder Tumors in Rats by N-Butyl-N-(4-Hydroxybutyl) Nitrosamine23. JNCI J. Natl. Cancer Inst. 1976, 56, 433–435. [Google Scholar] [CrossRef] [PubMed]
- Kobara, M.; Nessa, N.; Toba, H.; Nakata, T. Induction of Autophagy Has Protective Roles in Imatinib-Induced Cardiotoxicity. Toxicol. Rep. 2021, 8, 1087–1097. [Google Scholar] [CrossRef]
- Altman, J.K.; Platanias, L.C. A New Purpose for an Old Drug: Inhibiting Autophagy with Clarithromycin. Leuk. Lymphoma 2012, 53, 1255–1256. [Google Scholar] [CrossRef] [PubMed]
- Zeng, X.; Zhao, H.; Li, Y.; Fan, J.; Sun, Y.; Wang, S.; Wang, Z.; Song, P.; Ju, D. Targeting Hedgehog Signaling Pathway and Autophagy Overcomes Drug Resistance of BCR-ABL-Positive Chronic Myeloid Leukemia. Autophagy 2015, 11, 355–372. [Google Scholar] [CrossRef]
- Shingu, T.; Fujiwara, K.; Bögler, O.; Akiyama, Y.; Moritake, K.; Shinojima, N.; Tamada, Y.; Yokoyama, T.; Kondo, S. Inhibition of Autophagy at a Late Stage Enhances Imatinib-Induced Cytotoxicity in Human Malignant Glioma Cells. Int. J. Cancer 2009, 124, 1060–1071. [Google Scholar] [CrossRef]
- Xie, Y.; Fan, S.; Ni, D.; Wan, W.; Xu, P.; Ding, Y.; Zhang, R.; Lu, J.; Zhang, N.; Zhang, Y.; et al. An ATG4B Inhibitor Blocks Autophagy and Sensitizes Sorafenib Inhibition Activities in HCC Tumor Cells. Bioorg Med. Chem. 2023, 84, 117262. [Google Scholar] [CrossRef]
- Yuan, H. Inhibition of Autophagy Significantly Enhances Combination Therapy with Sorafenib and HDAC Inhibitors for Human Hepatoma Cells. World J. Gastroenterol. 2014, 20, 4953. [Google Scholar] [CrossRef]
- Liu, X.; Sun, K.; Wang, H.; Dai, Y. Inhibition of Autophagy by Chloroquine Enhances the Antitumor Efficacy of Sorafenib in Glioblastoma. Cell Mol. Neurobiol. 2016, 36, 1197–1208. [Google Scholar] [CrossRef] [PubMed]
- Abdel-Aziz, A.K.; Shouman, S.; El-Demerdash, E.; Elgendy, M.; Abdel-Naim, A.B. Chloroquine Synergizes Sunitinib Cytotoxicity via Modulating Autophagic, Apoptotic and Angiogenic Machineries. Chem. Biol. Interact. 2014, 217, 28–40. [Google Scholar] [CrossRef] [PubMed]
- Zeng, F.; Li, Y.; Meng, Y.; Sun, H.; He, Y.; Yin, M.; Chen, X.; Deng, G. BET Inhibitors Synergize with Sunitinib in Melanoma through GDF15 Suppression. Exp. Mol. Med. 2023, 55, 364–376. [Google Scholar] [CrossRef] [PubMed]
- Li, M.; Xu, Y.; Lu, W.; Li, Y.; Tan, S.; Lin, H.; Wu, T.; Li, Y.; Wang, S.; Zhao, Y. Chloroquine Potentiates the Anticancer Effect of Sunitinib on Renal Cell Carcinoma by Inhibiting Autophagy and Inducing Apoptosis. Oncol. Lett. 2017, 15, 2839–2846. [Google Scholar] [CrossRef]
- Pan, H.; Wang, Z.; Jiang, L.; Sui, X.; You, L.; Shou, J.; Jing, Z.; Xie, J.; Ge, W.; Cai, X.; et al. Autophagy Inhibition Sensitizes Hepatocellular Carcinoma to the Multikinase Inhibitor Linifanib. Sci. Rep. 2014, 4, 6683. [Google Scholar] [CrossRef] [PubMed]
- Lai, X.; Shi, Y.; Zhou, M. Dihydroartemisinin Enhances Gefitinib Cytotoxicity against Lung Adenocarcinoma Cells by Inducing ROS-dependent Apoptosis and Ferroptosis. Kaohsiung J. Med. Sci. 2023, 39, 699–709. [Google Scholar] [CrossRef] [PubMed]
- Dragowska, W.H.; Weppler, S.A.; Wang, J.C.; Wong, L.Y.; Kapanen, A.I.; Rawji, J.S.; Warburton, C.; Qadir, M.A.; Donohue, E.; Roberge, M.; et al. Induction of Autophagy Is an Early Response to Gefitinib and a Potential Therapeutic Target in Breast Cancer. PLoS ONE 2013, 8, e76503. [Google Scholar] [CrossRef] [PubMed]
- Liu, Z.; He, K.; Ma, Q.; Yu, Q.; Liu, C.; Ndege, I.; Wang, X.; Yu, Z. Autophagy Inhibitor Facilitates Gefitinib Sensitivity in Vitro and in Vivo by Activating Mitochondrial Apoptosis in Triple Negative Breast Cancer. PLoS ONE 2017, 12, e0177694. [Google Scholar] [CrossRef]
- Sugita, S.; Ito, K.; Yamashiro, Y.; Moriya, S.; Che, X.-F.; Yokoyama, T.; Hiramoto, M.; Miyazawa, K. EGFR-Independent Autophagy Induction with Gefitinib and Enhancement of Its Cytotoxic Effect by Targeting Autophagy with Clarithromycin in Non-Small Cell Lung Cancer Cells. Biochem. Biophys. Res. Commun. 2015, 461, 28–34. [Google Scholar] [CrossRef]
- Meng, J.; Chang, C.; Chen, Y.; Bi, F.; Ji, C.; Liu, W. EGCG Overcomes Gefitinib Resistance by Inhibiting Autophagy and Augmenting Cell Death through Targeting ERK Phosphorylation in NSCLC. Onco Targets Ther. 2019, 12, 6033–6043. [Google Scholar] [CrossRef]
- Hajiahmadi, S.; Lorzadeh, S.; Iranpour, R.; Karima, S.; Rajabibazl, M.; Shahsavari, Z.; Ghavami, S. Temozolomide, Simvastatin and Acetylshikonin Combination Induces Mitochondrial-Dependent Apoptosis in GBM Cells, Which Is Regulated by Autophagy. Biology 2023, 12, 302. [Google Scholar] [CrossRef] [PubMed]
- Zou, Y.; Ling, Y.-H.; Sironi, J.; Schwartz, E.L.; Perez-Soler, R.; Piperdi, B. The Autophagy Inhibitor Chloroquine Overcomes the Innate Resistance of Wild-Type EGFR Non-Small-Cell Lung Cancer Cells to Erlotinib. J. Thorac. Oncol. 2013, 8, 693–702. [Google Scholar] [CrossRef] [PubMed]
- Lobo, M.R.; Green, S.C.; Schabel, M.C.; Gillespie, G.Y.; Woltjer, R.L.; Pike, M.M. Quinacrine Synergistically Enhances the Antivascular and Antitumor Efficacy of Cediranib in Intracranial Mouse Glioma. Neuro Oncol. 2013, 15, 1673–1683. [Google Scholar] [CrossRef] [PubMed]
- Jarauta, V.; Jaime, P.; Gonzalo, O.; de Miguel, D.; Ramírez-Labrada, A.; Martínez-Lostao, L.; Anel, A.; Pardo, J.; Marzo, I.; Naval, J. Inhibition of Autophagy with Chloroquine Potentiates Carfilzomib-Induced Apoptosis in Myeloma Cells in Vitro and in Vivo. Cancer Lett. 2016, 382, 1–10. [Google Scholar] [CrossRef] [PubMed]
- Baranowska, K.; Misund, K.; Starheim, K.K.; Holien, T.; Johansson, I.; Darvekar, S.; Buene, G.; Waage, A.; Bjørkøy, G.; Sundan, A. Hydroxychloroquine Potentiates Carfilzomib Toxicity towards Myeloma Cells. Oncotarget 2016, 7, 70845–70856. [Google Scholar] [CrossRef] [PubMed]
- Hsu, C.-M.; Yen, C.-H.; Wang, S.-C.; Liu, Y.-C.; Huang, C.-T.; Wang, M.-H.; Chuang, T.-M.; Ke, Y.-L.; Yeh, T.-J.; Gau, Y.-C.; et al. Emodin Ameliorates the Efficacy of Carfilzomib in Multiple Myeloma Cells via Apoptosis and Autophagy. Biomedicines 2022, 10, 1638. [Google Scholar] [CrossRef] [PubMed]
- Moriya, S.; Che, X.-F.; Komatsu, S.; Abe, A.; Kawaguchi, T.; Gotoh, A.; Inazu, M.; Tomoda, A.; Miyazawa, K. Macrolide Antibiotics Block Autophagy Flux and Sensitize to Bortezomib via Endoplasmic Reticulum Stress-Mediated CHOP Induction in Myeloma Cells. Int. J. Oncol. 2013, 42, 1541–1550. [Google Scholar] [CrossRef] [PubMed]
- Di Lernia, G.; Leone, P.; Solimando, A.G.; Buonavoglia, A.; Saltarella, I.; Ria, R.; Ditonno, P.; Silvestris, N.; Crudele, L.; Vacca, A.; et al. Bortezomib Treatment Modulates Autophagy in Multiple Myeloma. J. Clin. Med. 2020, 9, 552. [Google Scholar] [CrossRef] [PubMed]
- Kawaguchi, T.; Miyazawa, K.; Moriya, S.; Ohtomo, T.; Che, X.F.; Naito, M.; Itoh, M.; Tomoda, A. Combined Treatment with Bortezomib Plus Bafilomycin A1 Enhances the Cytocidal Effect and Induces Endoplasmic Reticulum Stress in U266 Myeloma Cells: Crosstalk among Proteasome, Autophagy-Lysosome and ER Stress. Int. J. Oncol. 2011, 38, 643–654. [Google Scholar] [CrossRef]
- Zhang, X.; Li, W.; Wang, C.; Leng, X.; Lian, S.; Feng, J.; Li, J.; Wang, H. Inhibition of Autophagy Enhances Apoptosis Induced by Proteasome Inhibitor Bortezomib in Human Glioblastoma U87 and U251 Cells. Mol. Cell Biochem. 2014, 385, 265–275. [Google Scholar] [CrossRef]
- Han, Q.; Bai, H.; Xu, Y.; Zhou, M.; Zhou, H.; Dong, X.; Chen, B. Solamargine Induces Autophagy-mediated Apoptosis and Enhances Bortezomib Activity in Multiple Myeloma. Clin. Exp. Pharmacol. Physiol. 2022, 49, 674–685. [Google Scholar] [CrossRef] [PubMed]
- Yang, L. BH3 Mimetic ABT-737 Sensitizes Colorectal Cancer Cells to Ixazomib Through MCL-1 Downregulation and Autophagy Inhibition. Int. J. Radiat. Oncol. Biol. Phys. 2016, 96, E559. [Google Scholar] [CrossRef]
- Loh, J.S.; Rahim, N.A.; Tor, Y.S.; Foo, J.B. Simultaneous Proteasome and Autophagy Inhibition Synergistically Enhances Cytotoxicity of Doxorubicin in Breast Cancer Cells. Cell Biochem. Funct. 2022, 40, 403–416. [Google Scholar] [CrossRef] [PubMed]
- Petiot, A.; Ogier-Denis, E.; Blommaart, E.F.C.; Meijer, A.J.; Codogno, P. Distinct Classes of Phosphatidylinositol 3′-Kinases Are Involved in Signaling Pathways That Control Macroautophagy in HT-29 Cells. J. Biol. Chem. 2000, 275, 992–998. [Google Scholar] [CrossRef] [PubMed]
- Dischler, N.M.; Xu, L.; Li, Y.; Nichols, C.B.; Alspaugh, J.A.; Bills, G.F.; Gloer, J.B. Wortmannin and Wortmannine Analogues from an Undescribed Niesslia sp. J. Nat. Prod. 2019, 82, 532–538. [Google Scholar] [CrossRef] [PubMed]
- Wiesinger, D.; Gubler, H.U.; Haefliger, W.; Hauser, D. Antiinflammatory Activity of the New Mould Metabolite 11-Desacetoxy-Wortmannin and of Some of Its Derivatives. Experientia 1974, 30, 135–136. [Google Scholar] [CrossRef]
- Teranishi, F.; Takahashi, N.; Gao, N.; Akamo, Y.; Takeyama, H.; Manabe, T.; Okamoto, T. Phosphoinositide 3-Kinase Inhibitor (Wortmannin) Inhibits Pancreatic Cancer Cell Motility and Migration Induced by Hyaluronan in Vitro and Peritoneal Metastasis in Vivo. Cancer Sci. 2009, 100, 770–777. [Google Scholar] [CrossRef] [PubMed]
- Powis, G.; Bonjouklian, R.; Berggren, M.M.; Gallegos, A.; Abraham, R.; Ashendel, C.; Zalkow, L.; Matter, W.F.; Dodge, J.; Grindey, G. Wortmannin, a Potent and Selective Inhibitor of Phosphatidylinositol-3-Kinase. Cancer Res. 1994, 54, 2419–2423. [Google Scholar]
- Thelen, M.; Wymann, M.P.; Langen, H. Wortmannin Binds Specifically to 1-Phosphatidylinositol 3-Kinase While Inhibiting Guanine Nucleotide-Binding Protein-Coupled Receptor Signaling in Neutrophil Leukocytes. Proc. Natl. Acad. Sci. USA 1994, 91, 4960–4964. [Google Scholar] [CrossRef]
- Rao, J.; Mei, L.; Liu, J.; Tang, X.; Yin, S.; Xia, C.; Wei, J.; Wan, D.; Wang, X.; Wang, Y.; et al. Size-Adjustable Micelles Co-Loaded with a Chemotherapeutic Agent and an Autophagy Inhibitor for Enhancing Cancer Treatment via Increased Tumor Retention. Acta Biomater. 2019, 89, 300–312. [Google Scholar] [CrossRef]
- Akter, R.; Hossain, M.Z.; Kleve, M.G.; Gealt, M.A. Wortmannin Induces MCF-7 Breast Cancer Cell Death via the Apoptotic Pathway, Involving Chromatin Condensation, Generation of Reactive Oxygen Species, and Membrane Blebbing. Breast Cancer Targets Ther. 2012, 4, 103–113. [Google Scholar] [CrossRef]
- Au, K.M.; Min, Y.; Tian, X.; Zhang, L.; Perello, V.; Caster, J.M.; Wang, A.Z. Improving Cancer Chemoradiotherapy Treatment by Dual Controlled Release of Wortmannin and Docetaxel in Polymeric Nanoparticles. ACS Nano 2015, 9, 8976–8996. [Google Scholar] [CrossRef] [PubMed]
- Brunn, G.J.; Hudson, C.C.; Sekulić, A.; Williams, J.M.; Hosoi, H.; Houghton, P.J.; Lawrence, J.C.; Abraham, R.T. Phosphorylation of the Translational Repressor PHAS-I by the Mammalian Target of Rapamycin. Science 1997, 277, 99–101. [Google Scholar] [CrossRef] [PubMed]
- Sarkaria, J.N.; Tibbetts, R.S.; Busby, E.C.; Kennedy, A.P.; Hill, D.E.; Abraham, R.T. Inhibition of Phosphoinositide 3-Kinase Related Kinases by the Radiosensitizing Agent Wortmannin. Cancer Res. 1998, 58, 4375–4382. [Google Scholar] [PubMed]
- Brunn, G.J.; Williams, J.; Sabers, C.; Wiederrecht, G.; Lawrence, J.C.; Abraham, R.T. Direct Inhibition of the Signaling Functions of the Mammalian Target of Rapamycin by the Phosphoinositide 3-Kinase Inhibitors, Wortmannin and LY294002. EMBO J. 1996, 15, 5256–5267. [Google Scholar] [CrossRef]
- Feldman, M.E.; Shokat, K.M. New Inhibitors of the PI3K-Akt-MTOR Pathway: Insights into MTOR Signaling from a New Generation of Tor Kinase Domain Inhibitors (TORKinibs). In Phosphoinositide 3-Kinase in Health and Disease; Springer: Berlin/Heidelberg, Germany, 2010; Volume 2, pp. 241–262. [Google Scholar]
- Zhang, M.; Hagan, C.T.; Min, Y.; Foley, H.; Tian, X.; Yang, F.; Mi, Y.; Au, K.M.; Medik, Y.; Roche, K.; et al. Nanoparticle Co-Delivery of Wortmannin and Cisplatin Synergistically Enhances Chemoradiotherapy and Reverses Platinum Resistance in Ovarian Cancer Models. Biomaterials 2018, 169, 1–10. [Google Scholar] [CrossRef] [PubMed]
- Phuwapraisirisan, P.; Rangsan, J.; Siripong, P.; Tip-Pyang, S. 9-Epi-Viridiol, a Novel Cytotoxic Furanosteroid from Soil Fungus Trichoderma virens. Nat. Prod. Res. 2006, 20, 1321–1325. [Google Scholar] [CrossRef] [PubMed]
- Del Bel, M.; Abela, A.R.; Ng, J.D.; Guerrero, C.A. Enantioselective Chemical Syntheses of the Furanosteroids (−)-Viridin and (−)-Viridiol. J. Am. Chem. Soc. 2017, 139, 6819–6822. [Google Scholar] [CrossRef] [PubMed]
- Pal, I.; Mandal, M. PI3K and Akt as Molecular Targets for Cancer Therapy: Current Clinical Outcomes. Acta Pharmacol. Sin. 2012, 33, 1441–1458. [Google Scholar] [CrossRef]
- Howes, A.L.; Chiang, G.G.; Lang, E.S.; Ho, C.B.; Powis, G.; Vuori, K.; Abraham, R.T. The Phosphatidylinositol 3-Kinase Inhibitor, PX-866, Is a Potent Inhibitor of Cancer Cell Motility and Growth in Three-Dimensional Cultures. Mol. Cancer Ther. 2007, 6, 2505–2514. [Google Scholar] [CrossRef]
- Peng, X.; Gong, F.; Chen, Y.; Jiang, Y.; Liu, J.; Yu, M.; Zhang, S.; Wang, M.; Xiao, G.; Liao, H. Autophagy Promotes Paclitaxel Resistance of Cervical Cancer Cells: Involvement of Warburg Effect Activated Hypoxia-Induced Factor 1-α-Mediated Signaling. Cell Death Dis. 2014, 5, e1367. [Google Scholar] [CrossRef] [PubMed]
- Wu, Y.; Wang, X.; Guo, H.; Zhang, B.; Zhang, X.-B.; Shi, Z.-J.; Yu, L. Synthesis and Screening of 3-MA Derivatives for Autophagy Inhibitors. Autophagy 2013, 9, 595–603. [Google Scholar] [CrossRef] [PubMed]
- Blommaart, E.F.C.; Krause, U.; Schellens, J.P.M.; Vreeling-Sindelarova, H.; Meijer, A.J. The Phosphatidylinositol 3-Kinase Inhibitors Wortmannin and LY294002 Inhibit Autophagy in Isolated Rat Hepatocytes. Eur. J. Biochem. 1997, 243, 240–246. [Google Scholar] [CrossRef] [PubMed]
- Knight, Z.A.; Shokat, K.M. Chemically Targeting the PI3K Family. Biochem. Soc. Trans. 2007, 35, 245–249. [Google Scholar] [CrossRef] [PubMed]
- Ryabaya, O.O.; Inshakov, A.N.; Egorova, A.V.; Emelyanova, M.A.; Nasedkina, T.V.; Zasedatelev, A.S.; Khochenkov, D.A.; Stepanova, E.V. Autophagy Inhibitors Chloroquine and LY294002 Enhance Temozolomide Cytotoxicity on Cutaneous Melanoma Cell Lines in Vitro. Anticancer. Drugs 2017, 28, 307–315. [Google Scholar] [CrossRef] [PubMed]
- Duarte, A.; Silveira, G.G.; Soave, D.F.; Costa, J.P.O.; Silva, A.R. The Role of the LY294002—A Non-Selective Inhibitor of Phosphatidylinositol 3-Kinase (PI3K) Pathway- in Cell Survival and Proliferation in Cell Line SCC-25. Asian Pac. J. Cancer Prev. 2019, 20, 3377–3383. [Google Scholar] [CrossRef] [PubMed]
- Akkoç, Y.; Berrak, Ö.; Arısan, E.D.; Obakan, P.; Çoker-Gürkan, A.; Palavan-Ünsal, N. Inhibition of PI3K Signaling Triggered Apoptotic Potential of Curcumin Which Is Hindered by Bcl-2 through Activation of Autophagy in MCF-7 Cells. Biomed. Pharmacother. 2015, 71, 161–171. [Google Scholar] [CrossRef] [PubMed]
- Pasquier, B. SAR405, a PIK3C3/VPS34 Inhibitor That Prevents Autophagy and Synergizes with MTOR Inhibition in Tumor Cells. Autophagy 2015, 11, 725–726. [Google Scholar] [CrossRef]
- Mindell, J.A. Lysosomal Acidification Mechanisms. Annu. Rev. Physiol. 2012, 74, 69–86. [Google Scholar] [CrossRef]
- Piao, S.; Amaravadi, R.K. Targeting the Lysosome in Cancer. Ann. N. Y. Acad. Sci. 2016, 1371, 45–54. [Google Scholar] [CrossRef]
- Sharma, R.K.; Chakotiya, A.S. Phytoconstituents of Zingiber Officinale Targeting Host Viral Protein Interaction at Entry Point of SARS CoV 2 A Molecular Docking Study. Def. Life Sci. J. 2020, 5, 268–277. [Google Scholar] [CrossRef]
- Homewood, C.A.; Warhurst, D.C.; Peters, W.; Baggaley, V.C. Lysosomes, PH and the Anti-Malarial Action of Chloroquine. Nature 1972, 235, 50–52. [Google Scholar] [CrossRef]
- Kremer, J.M. Rational Use of New and Existing Disease-Modifying Agents in Rheumatoid Arthritis. Ann. Intern. Med. 2001, 134, 695. [Google Scholar] [CrossRef] [PubMed]
- Sorour, A.A.; Kurmann, R.D.; Shahin, Y.E.; Crowson, C.S.; Achenbach, S.J.; Mankad, R.; Myasoedova, E. Use of Hydroxychloroquine and Risk of Heart Failure in Patients With Rheumatoid Arthritis. J. Rheumatol. 2021, 48, 1508–1511. [Google Scholar] [CrossRef] [PubMed]
- Romanelli, F.; Smith, K.; Hoven, A. Chloroquine and Hydroxychloroquine as Inhibitors of Human Immunodeficiency Virus (HIV-1) Activity. Curr. Pharm. Des. 2004, 10, 2643–2648. [Google Scholar] [CrossRef]
- Rainsford, K.D.; Parke, A.L.; Clifford-Rashotte, M.; Kean, W.F. Therapy and Pharmacological Properties of Hydroxychloroquine and Chloroquine in Treatment of Systemic Lupus Erythematosus, Rheumatoid Arthritis and Related Diseases. Inflammopharmacology 2015, 23, 231–269. [Google Scholar] [CrossRef] [PubMed]
- Jin, Z.; Wang, F.; Pan, W.; Liu, L.; Wu, M.; Hu, H.; Ding, X.; Wei, H.; Zou, Y.; Qian, X.; et al. Association of Antimalarial Drugs with Decreased Overall and Cause Specific Mortality in Systemic Lupus Erythematosus. Rheumatology 2021, 60, 1774–1783. [Google Scholar] [CrossRef]
- Liu, J.; Cao, R.; Xu, M.; Wang, X.; Zhang, H.; Hu, H.; Li, Y.; Hu, Z.; Zhong, W.; Wang, M. Hydroxychloroquine, a Less Toxic Derivative of Chloroquine, Is Effective in Inhibiting SARS-CoV-2 Infection in Vitro. Cell Discov. 2020, 6, 16. [Google Scholar] [CrossRef]
- O’Neill, P.M.; Bray, P.G.; Hawley, S.R.; Ward, S.A.; Park, B.K. 4-Aminoquinolines—Past, Present, and Future; A Chemical Perspective. Pharmacol. Ther. 1998, 77, 29–58. [Google Scholar] [CrossRef]
- Fernández, A.; Ordóñez, R.; Reiter, R.J.; González-Gallego, J.; Mauriz, J.L. Melatonin and Endoplasmic Reticulum Stress: Relation to Autophagy and Apoptosis. J. Pineal Res. 2015, 59, 292–307. [Google Scholar] [CrossRef]
- Abdel Karim, N.F.; Ahmad, I.; Gaber, O.; Eldessouki, I.; Olowokure, O.O.; Farooq, M.; Morris, J.C. Phase I Trial of Chloroquine (CQ)/Hydroxychloroquine (HCQ) in Combination with Carboplatin-Gemcitabine (CG) in Patients with Advanced Solid Tumors. J. Clin. Oncol. 2019, 37, 3027. [Google Scholar] [CrossRef]
- Kim, Y.; Bang, S.-C.; Lee, J.-H.; Ahn, B.-Z. Pulsatilla Saponin D: The Antitumor Principle FromPulsatilla Koreana. Arch. Pharm. Res. 2004, 27, 915–918. [Google Scholar] [CrossRef] [PubMed]
- Wang, K.; Tu, Y.; Wan, J.-B.; Chen, M.; He, C. Synergistic Anti-Breast Cancer Effect of Pulsatilla Saponin D and Camptothecin through Interrupting Autophagic–Lysosomal Function and Promoting P62-Mediated Ubiquitinated Protein Aggregation. Carcinogenesis 2020, 41, 804–816. [Google Scholar] [CrossRef] [PubMed]
- Wu, W.K.K.; Coffelt, S.B.; Cho, C.H.; Wang, X.J.; Lee, C.W.; Chan, F.K.L.; Yu, J.; Sung, J.J.Y. The Autophagic Paradox in Cancer Therapy. Oncogene 2012, 31, 939–953. [Google Scholar] [CrossRef] [PubMed]
- Zhang, J.; Feng, Y.; Forgac, M. Proton Conduction and Bafilomycin Binding by the V0 Domain of the Coated Vesicle V-ATPase. J. Biol. Chem. 1994, 269, 23518–23523. [Google Scholar] [CrossRef] [PubMed]
- Yoshimori, T.; Yamamoto, A.; Moriyama, Y.; Futai, M.; Tashiro, Y. Bafilomycin A1, a Specific Inhibitor of Vacuolar-Type H(+)-ATPase, Inhibits Acidification and Protein Degradation in Lysosomes of Cultured Cells. J. Biol. Chem. 1991, 266, 17707–17712. [Google Scholar] [CrossRef] [PubMed]
- Metzger-Filho, O.; Moulin, C.; Awada, A. Molecular Targeted Therapy in Prevalent Tumors: Learning from the Past and Future Perspectives. Curr. Clin. Pharmacol. 2010, 5, 166–177. [Google Scholar] [CrossRef]
- Ekstrand, A.I.; Jönsson, M.; Lindblom, A.; Borg, Å.; Nilbert, M. Frequent Alterations of the PI3K/AKT/MTOR Pathways in Hereditary Nonpolyposis Colorectal Cancer. Fam. Cancer 2010, 9, 125–129. [Google Scholar] [CrossRef] [PubMed]
- Kocaturk, N.M.; Akkoc, Y.; Kig, C.; Bayraktar, O.; Gozuacik, D.; Kutlu, O. Autophagy as a Molecular Target for Cancer Treatment. Eur. J. Pharm. Sci. 2019, 134, 116–137. [Google Scholar] [CrossRef]
- Shimobayashi, M.; Hall, M.N. Making New Contacts: The MTOR Network in Metabolism and Signalling Crosstalk. Nat. Rev. Mol. Cell Biol. 2014, 15, 155–162. [Google Scholar] [CrossRef]
- Dancey, J. MTOR Signaling and Drug Development in Cancer. Nat. Rev. Clin. Oncol. 2010, 7, 209–219. [Google Scholar] [CrossRef] [PubMed]
- Wang, L.; Zhu, Y.-R.; Wang, S.; Zhao, S. Autophagy Inhibition Sensitizes WYE-354-Induced Anti-Colon Cancer Activity in Vitro and in Vivo. Tumor Biol. 2016, 37, 11743–11752. [Google Scholar] [CrossRef] [PubMed]
- Yu, K.; Toral-Barza, L.; Shi, C.; Zhang, W.-G.; Lucas, J.; Shor, B.; Kim, J.; Verheijen, J.; Curran, K.; Malwitz, D.J.; et al. Biochemical, Cellular, and In Vivo Activity of Novel ATP-Competitive and Selective Inhibitors of the Mammalian Target of Rapamycin. Cancer Res. 2009, 69, 6232–6240. [Google Scholar] [CrossRef] [PubMed]
- Liu, Z.; Liu, J.; Li, L.; Nie, D.; Tao, Q.; Wu, J.; Fan, J.; Lin, C.; Zhao, S.; Ju, D. Inhibition of Autophagy Potentiated the Antitumor Effect of Nedaplatin in Cisplatin-Resistant Nasopharyngeal Carcinoma Cells. PLoS ONE 2015, 10, e0135236. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Q.-Y.; Mao, J.-H.; Liu, P.; Huang, Q.-H.; Lu, J.; Xie, Y.-Y.; Weng, L.; Zhang, Y.; Chen, Q.; Chen, S.-J.; et al. A Systems Biology Understanding of the Synergistic Effects of Arsenic Sulfide and Imatinib in BCR/ABL-Associated Leukemia. Proc. Natl. Acad. Sci. USA 2009, 106, 3378–3383. [Google Scholar] [CrossRef] [PubMed]
- Cleveland, J. Targeting Autophagy: A Novel Anticancer Strategy with Therapeutic Implications for Imatinib Resistance. Biologics 2008, 2, 201–204. [Google Scholar] [CrossRef] [PubMed]
- Burchert, A. Roots of Imatinib Resistance: A Question of Self-Renewal? Drug Resist. Updates 2007, 10, 152–161. [Google Scholar] [CrossRef] [PubMed]
- Narrandes, S.; Xu, W. Gene Expression Detection Assay for Cancer Clinical Use. J. Cancer 2018, 9, 2249–2265. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.; Fang, Y.; Yan, L.; Yuan, N.; Zhang, S.; Xu, L.; Nie, M.; Zhang, X.; Wang, J. Erythroleukemia Cells Acquire an Alternative Mitophagy Capability. Sci. Rep. 2016, 6, 24641. [Google Scholar] [CrossRef]
- Cao, Y.; Cai, J.; Li, X.; Yuan, N.; Zhang, S. Autophagy Governs Erythroid Differentiation Both in Vitro and in Vivo. Hematology 2016, 21, 225–233. [Google Scholar] [CrossRef]
- Kim, N.-Y.; Han, B.-I.; Lee, M. Cytoprotective Role of Autophagy against BH3 Mimetic Gossypol in ATG5 Knockout Cells Generated by CRISPR-Cas9 Endonuclease. Cancer Lett. 2016, 370, 19–26. [Google Scholar] [CrossRef]
- Horne, D.J.; Graustein, A.D.; Shah, J.A.; Peterson, G.; Savlov, M.; Steele, S.; Narita, M.; Hawn, T.R. Human ULK1 Variation and Susceptibility to Mycobacterium tuberculosis Infection. J. Infect. Dis. 2016, 214, 1260–1267. [Google Scholar] [CrossRef] [PubMed]
- Ohshima, J.; Lee, Y.; Sasai, M.; Saitoh, T.; Su Ma, J.; Kamiyama, N.; Matsuura, Y.; Pann-Ghill, S.; Hayashi, M.; Ebisu, S.; et al. Role of Mouse and Human Autophagy Proteins in IFN-γ–Induced Cell-Autonomous Responses against Toxoplasma gondii. J. Immunol. 2014, 192, 3328–3335. [Google Scholar] [CrossRef] [PubMed]
- Chang, H.; Zou, Z. Targeting Autophagy to Overcome Drug Resistance: Further Developments. J. Hematol. Oncol. 2020, 13, 159. [Google Scholar] [CrossRef] [PubMed]
- Sharma, P.; McAlinden, K.D.; Ghavami, S.; Deshpande, D.A. Chloroquine: Autophagy Inhibitor, Antimalarial, Bitter Taste Receptor Agonist in Fight against COVID-19, a Reality Check? Eur. J. Pharmacol. 2021, 897, 173928. [Google Scholar] [CrossRef]
- Mohsen, S.; Sobash, P.T.; Algwaiz, G.F.; Nasef, N.; Al-Zeidaneen, S.A.; Karim, N.A. Autophagy Agents in Clinical Trials for Cancer Therapy: A Brief Review. Curr. Oncol. 2022, 29, 1695–1708. [Google Scholar] [CrossRef] [PubMed]
- Wu, Y.; Ni, Z.; Yan, X.; Dai, X.; Hu, C.; Zheng, Y.; He, F.; Lian, J. Targeting the MIR34C-5p-ATG4B-Autophagy Axis Enhances the Sensitivity of Cervical Cancer Cells to Pirarubicin. Autophagy 2016, 12, 1105–1117. [Google Scholar] [CrossRef] [PubMed]
- Zhan, L.; Li, J.; Wei, B. Autophagy Therapeutics: Preclinical Basis and Initial Clinical Studies. Cancer Chemother. Pharmacol. 2018, 82, 923–934. [Google Scholar] [CrossRef]
- Mizushima, N.; Levine, B. Autophagy in Human Diseases. N. Engl. J. Med. 2020, 383, 1564–1576. [Google Scholar] [CrossRef]
- Sotelo, J.; Briceño, E.; López-González, M.A. Adding Chloroquine to Conventional Treatment for Glioblastoma Multiforme: A Randomized, Double-Blind, Placebo-Controlled Trial. Ann. Intern. Med. 2006, 144, 337–343. [Google Scholar] [CrossRef]
- Jutten, B.; Keulers, T.G.; Schaaf, M.B.E.; Savelkouls, K.; Theys, J.; Span, P.N.; Vooijs, M.A.; Bussink, J.; Rouschop, K.M.A. EGFR Overexpressing Cells and Tumors Are Dependent on Autophagy for Growth and Survival. Radiother. Oncol. 2013, 108, 479–483. [Google Scholar] [CrossRef] [PubMed]
- Jutten, B.; Rouschop, K. EGFR Signaling and Autophagy Dependence for Growth, Survival, and Therapy Resistance. Cell Cycle 2014, 13, 42–51. [Google Scholar] [CrossRef] [PubMed]
- Rouschop, K.M.A.; van den Beucken, T.; Dubois, L.; Niessen, H.; Bussink, J.; Savelkouls, K.; Keulers, T.; Mujcic, H.; Landuyt, W.; Voncken, J.W.; et al. The Unfolded Protein Response Protects Human Tumor Cells during Hypoxia through Regulation of the Autophagy Genes MAP1LC3B and ATG5. J. Clin. Investig. 2010, 120, 127–141. [Google Scholar] [CrossRef]
- Wolpin, B.M.; Rubinson, D.A.; Wang, X.; Chan, J.A.; Cleary, J.M.; Enzinger, P.C.; Fuchs, C.S.; McCleary, N.J.; Meyerhardt, J.A.; Ng, K.; et al. Phase II and Pharmacodynamic Study of Autophagy Inhibition Using Hydroxychloroquine in Patients With Metastatic Pancreatic Adenocarcinoma. Oncologist 2014, 19, 637–638. [Google Scholar] [CrossRef] [PubMed]
- Trial of Ulixertinib in Combination with Hydroxychloroquine in Patients with Advanced Gastrointestinal (GI) Malignancies—Full Text View—ClinicalTrials.Gov. Available online: https://classic.clinicaltrials.gov/ct2/show/NCT05221320 (accessed on 6 August 2023).
- Sirolimus or Vorinostat and Hydroxychloroquine in Advanced Cancer—Full Text View—ClinicalTrials.Gov. Available online: https://classic.clinicaltrials.gov/ct2/show/NCT01266057 (accessed on 6 August 2023).
- Study Record|ClinicalTrials.Gov. Available online: https://www.clinicaltrials.gov/study/NCT04214418?tab=results (accessed on 6 August 2023).
- Paricalcitol and Hydroxychloroquine in Combination with Gemcitabine and Nab-Paclitaxel for Advanced Pancreatic Cancer—Full Text View—ClinicalTrials.Gov. Available online: https://classic.clinicaltrials.gov/ct2/show/NCT04524702 (accessed on 6 August 2023).
- ABemacicliB or Abemaciclib and HydroxYchloroquine to Target Minimal Residual Disease in Breast Cancer—Full Text View—ClinicalTrials.Gov. Available online: https://clinicaltrials.gov/ct2/show/NCT04523857 (accessed on 13 May 2023).
- Combined Carfilzomib and Hydroxychloroquine in Patients with Relapsed/Refractory Multiple Myeloma—Full Text View—ClinicalTrials.Gov. Available online: https://classic.clinicaltrials.gov/ct2/show/NCT04163107 (accessed on 6 August 2023).
- LY3214996 +/- HCQ in Pancreatic Cancer—Full Text View—ClinicalTrials.Gov. Available online: https://classic.clinicaltrials.gov/ct2/show/NCT04386057 (accessed on 6 August 2023).
Targets | Inhibitors | The Combination | The Molecular Mechanisms of Anticancer Action | References |
---|---|---|---|---|
Class III PI3K | KU55933 | Gefitinib |
| [82,83,84] |
Gö6976 | Retinoic acid |
| [85,86,87,88] | |
AZ7328 | - |
| [89] | |
AZD5363 | CQ |
| [90] | |
RAB5A | - |
| [91] | |
Lipoic Acid | - |
| [92] | |
Oxymatrine | Doxorubicin |
| [79] | |
VPS34 | Spautin-1 | Imatinib (IM) |
| [93,94,95,96] |
PIK-III | - |
| [97,98,99] | |
Compound 31 | - |
| [100,101] | |
VPS34-IN1 | - |
| [102,103] | |
SAR405 | Everolimus |
| [104,105] | |
Autophagy flux | Lucanthone | Temozolomide |
| [106,107] |
Toosendanin (TSN) | Irinotecan |
| [80] | |
4-Acetylantroquinon B | Cisplatin |
| [108] | |
ARN5187 | - |
| [109,110] | |
Ganoderma Lucidum polysaccharide | CQ |
| [111,112,113] | |
Oxautin-1 |
| [114] | ||
Tambjamine | - |
| [115] | |
Dauricine and daurisoline | Camptothecin (CPT) |
| [116] | |
Berbamine | Icotinib |
| [81,117] | |
Monensin | Rapamycin |
| [118,119,120,121] | |
Madangamines | - |
| [122] | |
Elaiophylin | Cisplatin |
| [123] | |
Pulsatilla saponin D (PSD) | CPT |
| [72] | |
Schizocapsa plantaginea Hance 1 | - |
| [124] | |
Liensinine | Doxorubicin |
| [125] | |
Z- Ligustilide | Tamoxifen |
| [126] | |
Ginsenoside | Cisplatin |
| [67,72] | |
[6]-Gingerol | Cisplatin |
| [127,128] | |
Jolkinolide B | - |
| [129] | |
Misaponin B | - |
| [130] | |
Clomipramine | - |
| [131,132,133] | |
Chloroquine (CQ) | Tetrandrine |
| [67,72] | |
Hydroxychloroquine (HCQ) | Resveratrol |
| [134] | |
Quinacrine | Cediranib |
| [67,72,73,135] | |
Lys05 | - |
| [136,137] | |
Compound 30 | - |
| [110,138] | |
Verteporfin | - |
| [139,140,141] | |
Clarithromycin | 5-fluorouracil (5-FU) |
| [142,143,144] | |
DQ661 | Gemcitabine |
| [145,146] | |
VATG-027/VATG-032 | - |
| [147] | |
Mefloquine | - |
| [148] | |
WX8 family | - |
| [149] | |
Vacuolin-1 | - |
| [150,151] | |
Desmethylclomipramine | Doxorubicin |
| [133,152] | |
ROC-325 | Azacitidine (AZA) |
| [153,154] | |
Trifluoperazine | - |
| [155,156] | |
Squaramides | - |
| [157,158] | |
FV-429 | - |
| [159,160,161] | |
GNS561/Ezurpimtrostat | - |
| [162,163] | |
Pantoprazole | Docetaxel |
| [164,165] | |
LAI-1 | Cisplatin |
| [166] | |
Tambjamines (anion-selective ionophores) | - |
| [167] | |
IITZ-01 and IITZ-02 | - |
| [168] | |
CUR5g | Cisplatin |
| [166,169] | |
V-ATPase | Bafilomycin A1 (Baf A1) | CQ |
| [170,171,172,173,174] |
Concanamycin A | Vorinostat |
| [175,176] | |
ATGs | NSC185058 | - |
| [177,178] |
Tioconazole | Nicardipine |
| [37,179,180] | |
LV-320 | - |
| [181] | |
S130 | Caloric restriction |
| [182] | |
ULK | ULK-101 | KRAS-targeted drug (AMG-510) |
| [33,183,184,185] |
ULK-100 | - |
| [33,183,184] | |
MRT67307 | Amino acid withdrawal |
| [186] | |
SBI-0206965 | Cisplatin/AZD8055 |
| [33,187,188,189] | |
Compound 6 | - |
| [190] | |
MRT68921 | WZ4003 |
| [191] | |
DCC-3116 | Encorafenib and Cetuximab |
| [192,193] | |
XST-14 | Sorafenib |
| [194] | |
MiR-93 | CQ or NSC185085 |
| [195] | |
SR-17398 | - |
| [196] | |
Acid proteases | Pepstatin A | E64d |
| [197,198,199,200,201,202,203] |
Leupeptin | Cycloheximide |
| [203,204,205] | |
Tyrosine kinase | IM | CQ/Clarithromycin/BafA1 |
| [206,207,208,209] |
Sorafenib | CQ/3-MA |
| [210,211,212] | |
Sunitinib | CQ/Bromodomain |
| [213,214,215] | |
Linifanib | CQ, HCQ or 3-MA |
| [216] | |
Gefitini | HCQ/BafA1/3-MA, Clarithromycin/EGCG/CQ |
| [217,218,219,220,221] | |
Erlotinib | Shikonin/CQ |
| [222,223] | |
Cediranib | Quinacrine |
| [224] | |
Carfilzomib | Emodin/CQ/HCQ |
| [225,226,227] | |
Proteasome | Bortezomib | Solamargine/BafA1/CQ, 3-MA/ATG7 siRNA |
| [228,229,230,231,232] |
Ixazomib | ABT-737 Doxorubicin |
| [233,234] |
Trail ID | Condition | Status of Study | Treatment | Phase | Outcome Measures | Methods | ||
---|---|---|---|---|---|---|---|---|
Doses | Duration | Single/Combined | ||||||
NCT03754179 | Melanoma | Recruiting | Dabrafenib (DAB) Trametinib (TRA) Hydroxychloroquine (HCQ) | 1, 2 | Safety, efficacy | DAB (150 mg/day) TRA (2 mg/day) HCQ (200 mg twice/day) | Started in January 2018 and completed in July 2022 | Combined |
NCT02432417 | Glioblastoma, astrocytoma (Grade IV) | Withdrawn | CQ Temozolomide Chemoradiation | 2 | Overall survival, side effects, tumor hypoxia | CQ (400 mg/day) Temozolomide (75 mg/m2) Radiation (30 fractions of 2 Gy) | Started in November 2023, and will complete in November 2023 | With radiotherapy |
NCT05221320 | Advanced gastrointestinal malignancies (RAS mutation) | Recruiting | Ulixertinib HCQ | 2 | Overall response rate, side effects | Ulixertinib (450 mg BID twice/day) HCQ (600 mg BID/day) | Started in May 2022, and will complete March in 2025 | Combined |
NCT01266057 | Advanced cancer types | Completed | HCQ Sirolimus Vorinostat | 1 | Estimated maximum tolerated dose, safety, efficacy | HCQ (200 mg/day) Sirolimus (2 mg/day) Vorinostat (200 mg/day) | Started in April 2011 and completed in February 2021 | Combined |
NCT04214418 | Gastrointestinal, pancreatic, and agnostic cancer (specifically, KRAS-mutated advanced malignancies) | Active, not recruiting | HCQ Cobimetinib (MEK inhibitor) Atezolizumab (Immune Checkpoint Blockade) | 1, 2 | Estimated maximum tolerated dose, safety, tolerability | HCQ (600 mg twice/day) Cobimetinib (40–60 mg) Atezolizumab (840 mg/day 1 and 15) | Started in February 2020, and will complete in September 2024 | Combined |
NCT04524702 | Advanced pancreatic cancer | Active, not recruiting | Paricalcitol HCQ Gemcitabine and Nab-paclitaxel | 2 | Antitumor effect, safety | Paricalcitol (IV 3 times/week) HCQ (twice a day/month) Gemcitabine and Nab-paclitaxel IV (Over 30 min/days 1, 8, and 15) | Started in September 2020, and will complete in August 2024 | Combined |
NCT04386057 | Pancreatic cancer (metastatic) | Active, not recruiting | HCQ LY3214996 | 2 | Safety, antitumor activity | HCQ (Twice/day by mouth) LY3214996—not stated | Started in May 2020, and will complete in February 2024 | Combined |
NCT04523857 | Breast cancer | Recruiting | Abemaciclib HCQ | 2 | Safety, efficacy | Abemaciclib (100–150 mg twice/day) HCQ (600 mg twice/day) | Started in November 2021, and will complete in December 2028 | Combined |
NCT00765765 | Breast cancer | Terminated | HCQ Ixabepilone | 1, 2 | Tumor response rate, survival rate, biomarkers of autophagy inhibition | HCQ (200 mg/day/month to 200 mg twice/day/month) Ixabepilone dose range is 32–40 mg/m2 | Started in February 2009 and completed in December 2011 | Combined |
NCT03774472 | ER-positive HER2-negative breast cancer | Active, not recruiting | HCQ Palbociclib Letrozole | 1, 2 | Dose response, cancer cell proliferation, cell cycle | HCQ (400 mg versus recommended phase 2 dose) Palbociclib and Letrozole—not stated | Started in August 2018, and will complete in December 2025 | Combined |
NCT04163107 | Advanced multiple myeloma | Completed | HCQ Carfilzomib Dexamethasone | 1 | Maximum tolerated dose | To be defined | Started in July 2020 and completed in December 2021 | Combined |
NCT00568880 | Myeloma | Completed | HCQ Bortezomib | 1 | Safety, efficacy | HCQ (200–600 mg/day) Bortezomib IV (1.0–1.3 mg/m2) | Started in September 2010 and completed in June 2011 | Combined |
NCT04892017 | Pancreatic ductal adenocarcinoma, melanoma, non-small cell lung cancer, colorectal cancer, and solid metastatic tumor | Recruiting | DCC-3116 TRA Binimetinib Sotorasib | 1, 2 | Tumor response rate | DCC-3116 (orally twice/day) TRA, binimetinib, and sotorasib—not stated | Started in June 2021, and will complete in October 2024 | Monotherapy and combination |
NCT04911816 | Pancreatic adenocarcinoma | Recruiting | mFOLFIRINOX HCQ | 1, 2 | Maximum tolerated dose of FHQ, tumor response rate | mFOLFIRINOX—not stated, HCQ orally (400–1200 mg) | Started in July 2021, and will complete in June 2028 | Combined |
NCT04566133 | Bile tract carcinoma (KRAS mutation refractory) | Completed | HCQ TRA | 2 | Progression free survival, response rate, safety | HCQ orally (600 mg twice/day) TRA orally (2 mg/day) | Started in February 2015 and completed in December 2022 | Combined |
NCT02337309 | Neuroblastoma | Terminated | SF1126 | 1 | Safe dose in the pediatric population | SF1126 IV (3 + 3 dose escalation) | Started in July 2015 and completed in May 2018 | Monotherapy |
NCT03037437 | Hepatocellular cancer | Recruiting | Sorafenib HCQ | 2 | Time to tumor progression | Sorafenib (400 mg/day) HCQ (400 mg/day) | Started in February 2017, and will complete in March 2025 | Combined |
NCT05576896 | Stage IV colorectal (BRAF V600E) | Recruiting | HCQ Encorafenib Cetuximab Panitumumab | 2 | Tumor response, survival, safety | HCQ—not stated Encorafenib (300 mg/day) Cetuximab (250 mg/m2–400 mg/m2) Panitumumab—not stated | Started in October 2022, and will complete in July 2025 | Combined |
NCT05036226 | Advanced solid tumors or relapse prostate cancer | Recruiting | HCQ Metformin Sirolimus Dasatinib and nelfinavir | 1, 2 | Maximum tolerated dose, quality of life, disease control rate | HCQ (600mg twice/day) Metformin (500 mg/day for 7 days, then increase to 1000 mg/daily) Sirolimus (0.5 mg/day) Dasatinib and nelfinavir—not stated | Started in March 2022, and will complete in October 2025 | Combined |
NCT05070104 | Metastatic colorectal cancer | Withdrawn (no funding) | CPI-613 (Devimistat) Modified FFX Bevacizumab | 1 | Safety and tolerability, objective response rate, overall survival | CPI-613 (250–1000 mg/m2) Irinotecan (50 mg/m2), Leucovorin (400 mg/m2), Oxaliplatin (85 mg/m2), 5FU (2400 mg/m2) Bevacizumab (5 mg/kg) | Started in March 2023, and will complete in November 2024 | Combined |
NCT05708326 | Chronic lymphocytic leukemia, small lymphocytic lymphoma | Com-pleted | Intermittent Fasting | A Case Crossover Study | Changes in lymphocytes, metabolites, autophagy, gene expression, inflammation, gut microbiome | 5:2 Method (intermittent fasting regimen) 16/8 Method (intermittent fast regimen) | Started in June 2023, and completed in March 2024 | - |
NCT04527549 | Melanoma (Stage IIIC or IV BRAF V600 E/K) | Active, not recruiting | DAB TRA with or without HCQ | 2 | Progression-free survival, overall survival, adverse events, treatment duration | To be defined | Started in June 2021, and will complete in November 2025 | Combined |
NCT05763992 | Triple-negative breast cancer | Recruiting | Chemoimmunotherapy and fasting | 2 | Pathologic response, survival, safety, compliance, adverse events | Control diet or fasting-like approach Anthracycline–taxane–carboplatin chemotherapy plus pembrolizumab | Started in May 2023, and will complete in May 2026 | - |
NCT00813423 | Advanced solid tumors (not responded to chemotherapy) | Completed | Sunitinib Malate HCQ | 1 | Dose response, survival, efficacy, biomarkers, safety | To be defined | Started in February 2010 and completed in July 2023 | Combined and monotherapy |
NCT04841148 | Breast cancer ER positive (disseminated tumor cells) | Recruiting | Avelumab or HCQ with or without palbociclib | 2 | Safety, efficacy, recurrence | Avelumab (10 mg/kg) HCQ (600 mg twice/day) Palociclib (125 mg/day) | Started in June 2021, and will complete in May 2028 | Combined |
NCT02512926 | Children with solid tumors (relapsed/refractory) or leukemia | Completed | Carfilzomib Cyclophosphamide Etoposide | 1 | Dose response, toxicity, biomarkers, genomic predictors | To be defined | Started in February 2016, and completed in January 2024 | Combined |
NCT05448677 | Hepatocellular carcinoma (unresectable) | Recruiting | Ezurpimtrostat Atezolizumab Bevacizumab | 2 | Progression-free survival, objective response rate, tumor response | Ezurpimtrostat—not stated Atezolizumab (1200 mg/day) Bevacizumab (15 mg/kg) | Started in December 2022, and will complete in December 2025 | Combined |
NCT03598595 | Osteosarcoma (recurrent or refractory) | Active, not recruiting | Gemcitabine Docetaxel HCQ | 1, 2 | Maximum tolerated dose, disease control rate, event-free survival, overall response | To be defined | Started in January 2019, and will complete in September 2024 | Combined |
NCT03529448 | Glioblastoma | Recruiting | TN-TC11G (THC + CBD) Temozolomide Radiation | 1, 2 | Dose, efficacy, safety, survival, biomarkers | TN-TC11G—not stated. Temozolomide (75 mg/m2, 150 mg/m2, 200 mg/m2) Radiation (1.8–2.0 Gy/day) (total dose 58–60 Gy) | Started in July 2023, and will complete in December 2025 | Combined |
NCT04201457 | Glioma of the brain | Recruiting | DAB TRA HCQ | 1, 2 | Dose, efficacy, PK, safety, biomarkers, progression | To be defined | Started in January 2020, and will complete in June 2029 | Combined |
NCT02339168 | Hormone-resistant prostate cancer | Active, not recruiting | Enzalutamide Metformin Hydrochloride | 1 | Toxicity, efficacy, PSA response, survival, radiographic progression | To be defined | Started in June 2016, and will complete in December 2024 | Combined |
NCT01480154 | Advanced solid tumors (melanoma, prostate or kidney cancers) | Active, not recruiting | MK2206 (inhibitor) and HCQ | 1 | Toxicity, dose, autophagy biomarkers | To be defined | Started in November 2011, and its primary completion date was February 2020 | Combined |
NCT04132505 | Metastatic pancreatic cancer (KRAS mutation) | Recruiting | Binimetinib HCQ | 1 | Dose, efficacy, safety, survival, biomarkers, body composition changes | To be defined | Started in October 2019, and will complete in December 2023 | Combined |
NCT04873895 | Metastatic colorectal cancer (liver dominant) | Recruiting | TACE (transarterial chemoembolization) Axitinib HCQ | 1 | Safety, liver response, progression-free overall survival | TACE (4–8-week intervals) Axitinib (5 mg twice/day) HCQ (600 mg twice/day) | Started in January 2022, and will complete in December 2024 | Combined |
NCT04190433 | Lymphoma, sarcoma, breast cancer | Withdrawn | Anthracycline Lisinopril Pravastatin Spironolactone | 2 | Cardiac function, recovery rates, time to recovery | To be defined | Started in September 2020 and completed in April 2023 | Combined |
NCT02316340 | Colorectal cancer | Completed | Vorinostat HCQ Regorafenib | 2 | Progression-free survival | Vorinostat (400 mg by mouth/day) HCQ (600 mg by mouth/day) Regorafenib (160 mg by mouth/day) | Started in February 2015 and completed in April 2018 | Combined |
NCT01206530 | Rectal cancer, colon cancer metastasis | Completed | HCQ Oxaliplatin Leucovorin 5-FU Bevacizumab | 1, 2 | progression-free survival, overall survival, toxicity incidence, autophagy markers | HCQ (600 or 800 mg) Oxaliplatin (85 mg/m2) Leucovorin (400 mg/m2) 5-FU (400–2400 mg/m2) Bevacizumab—not stated | Started in September 2010 and completed in September 2017 | Combined |
NCT01978184 | Pancreatic cancer | Completed | Gemcitabine Abraxane HCQ | 2 | Histopathologic response, survival, toxicity | Gemcitabine (1000 mg/m2) Abraxane (125 mg/m2) HCQ (1200mg) | Started in November 2013 and completed in February 2018 | Combined |
NCT01510119 | Metastatic clear cell renal cell carcinoma | Completed | RAD001 HCQ | 1, 2 | Disease control | RAD001 (10 mg/day by mouth) HCQ (400 mg twice/day by mouth) | Started in September 2011 and completed in January 2017 | Combined |
NCT02257424 | Advanced BRAF mutant melanoma | Completed | HCQ TRA DAB | 1, 2 | Maximum tolerated dose, progression-free survival rate | HCQ—not stated TRA (2 mg/day) DAB (150 mg twice/day by mouth) | Started in October 2014 and completed in October 2021 | Combined |
NCT01023477 | Breast cancer | Completed | CQ | 1, 2 | Tumor size, cancer cell proliferation index, treatment-related adverse events | CQ (250 mg/week in phase 1) CQ (500 mg/week in phase 2) | Started in December 2009 and completed in October 2016 | Monotherapy |
NCT01777477 | Pancreatic cancer | Completed | CQ Gemcitabine | 1 | Maximum tolerated dose | CQ (100 mg, 200 mg or 300 mg) Gemcitabine (1000 mg/m2) | Started in July 2012 and completed in May 2015 | Combined |
NCT01469455 | Melanoma | Completed | DT01CQ | 1 | Tolerability, safety, pharmacokinetics | DT01 (16–64 mg/3 times a week) CQ—not stated | Started in October 2011 and completed in July 2015 | Combined |
NCT02378532 | Glioblastoma | Completed | CQ Temozolomide Radiotherapy | 1 | Toxicity, pharmacokinetics, maximum tolerated dose, autophagic markers, EGFRvIII status | CQ (200–600 mg) Temozolomide (75 mg/m2) | Started in August 2016 and completed in July 2019 | Combined |
NCT04397679 | Glioblastoma | Recruiting | CQ Temozolomide Radiotherapy | 2 | Overall adverse events, incidence of dermatitis toxicity | To be defined | Started in August 2021, and will complete in April 2025 | Combined |
NCT01438177 | Multiple myeloma | Terminated | CQ Velcade Cyclophosphamide | 2 | Response rate, adverse events, response relative to autophagy | CQ (500 mg/day by mouth) Velcade (1.3 mg/m2) Cyclophosphamide (50 mg twice/day by mouth) | Started in October 2011 and completed in February 2014 | Combined |
NCT01006369 | Colorectal cancer | Completed | HCQ | 2 | Progression-free survival, overall response rate, safety, disease control rate, response duration, autophagy biomarkers | HCQ (200 mg/day) | Started in May 2009 and completed in April 2016 | Combined with capecitabine, oxaliplatin, and bevacizumab |
NCT01978184 | Pancreatic cancer | Completed | HCQ Gemcitabine Abraxane | 2 | Histopathology, survival, treatment response | HCQ (1200 mg twice/day) Gemcitabine (1000 mg/m2) Abraxane (125 mg/m2) | Started in November 2013 and completed in February 2018 | Combined |
NCT00224978 | Glioblastoma | Completed | CQ | 3 | Survival after surgery, survival at two years | To be defined | Started in January 2005, and its completion date was in August 2005 | Monotherapy |
NCT01446016 | Breast cancer | Completed | CQ Paclitaxel Docetaxel Abraxane Ixabepilone | 2 | Overall response rate, progression-free survival, overall survival | CQ (250 mg/day) Paclitaxel-175 mg/m2 Docetaxel (75 mg/m2) Abraxane (260 mg/m2) Ixabepilone (40 mg/m2) | Started in September 2011, and its completion date was in March 2019 | Combined |
NCT02496741 | IDH1/2-mutated solid tumors | Completed | CQ Metformin | 1, 2 | Maximum tolerated dose, D2HG concentration in serum/urine/bile/ tumor, tumor response, dose response | CQ (once/day) Metformin (twice/day) | Started in November 2015 and completed in November 2019 | Combined |
NCT02232243 | Solid tumor | Completed | HCQ | 1 | Number of patients with elevated Par-4 levels, optimal HCQ dose based on Par-4 toxicity and response | HCQ (200 mg twice/day) | Started in July 2015 and completed in December 2018 | Monotherapy |
NCT01273805 | Pancreatic cancer | Completed | HCQ | 2 | Progression-free survival rate, tumor response rate, overall survival, toxicity | HCQ (600 mg twice/day by mouth) | Started in January 2011 and completed in February 2014 | Monotherapy |
NCT01649947 | Lung cancer | Completed | HCQ Paclitaxel Bevacizumab Carboplatin | 2 | Tumor response rate, progression-free survival, overall survival, adverse events | HCQ (400 mg/day) Paclitaxel (200 mg/m2) Bevacizumab (15 mg/kg) Carboplatin IV (over 15–30 min) | Started in December 2011 and completed in June 2015 | Combined |
NCT01506973 | Pancreatic cancer | Completed | HCQ Gemcitabine Abraxane | 1, 2 | Overall and one year of survival | HCQ (1200 mg/day) Gemcitabine (1000 mg/m2) Abraxane (125 mg/m2) | Started in December 2011 and completed in March 2022 | Combined |
NCT00486603 | Central nervous system tumors | Completed | HCQ Temozolomide Radiation | 1, 2 | Maximum tolerated dose, pharmacokinetics, overall survival, autophagy inhibition, toxicity, correlations with genetic markers | HCQ (200 mg/day) Temozolomide (75 mg/m2) | Started in October 2007 and completed in January 2014 | Combined |
NCT02071537 | Malignant neoplasm | Completed | CQ Gemcitabine Carboplatin | 1 | Maximum tolerated dose, overall survival, time to disease progression | CQ (50–200 mg/day) Gemcitabine (1250 mg/m2) Carboplatin—not stated | Started in December 2014 May and completed in December 2018 | Combined |
NCT03513211 | Prostate cancer | Completed | HCQ Suba-itraconazole | 1, 2 | Dose, efficacy, safety, disease progression | HCQ (Escalating doses in Rolling 6 Phase I) Suba-itraconazole (150 mg PO BD) | Started in August 2018, and will complete in October 2023 | Combined |
NCT03344172 | Pancreatic cancer | Terminated | Gemcitabine Nab-Paclitaxel HCQ Avelumab | 2 | Safety, histopathologic response, changes in autophagy biomarkers, coagulation index | Gemcitabine (1000 mg/m2) Nab-paclitaxel (125 mg/m2) HCQ (600 mg/BID/day) Avelumab (10 mg/kg) | Started in December 2017 and completed in April 2019 | Combined |
NCT00726596 | Prostate cancer | Completed | HCQ | 2 | PSA response, safety, autophagy biomarkers | HCQ (400–600/day) | Started in August 2008 and completed in January 2018 | Monotherapy |
NCT05680662 | Metastatic breast cancer and TNBC | Not yet recruiting | Quercetin EGCG Metformin Zinc | 1 | Invasive disease-free survival, adverse events | Quercetin (500 mg/ day) EGCG (300 mg/day) Metformin (850 mg/day) Zinc (50 mg/day) | Started in January 2023, and completed in January 2024 | Combined |
NCT01128296 | Pancreatic cancer | Completed | HCQ Gemcitabine | 1, 2 | Efficacy, safety | HCQ (200–1200 mg/day) Gemcitabine (10 mg/m2/min) | Started in October 2010 and completed in July 2014 | Combined |
NCT04011410 | Prostate cancer | Active, not recruiting | HCQ | 2 | Cancer progression, ADT-free survival, progression-free survival | HCQ (200 mg twice/day by mouth) | Started in December 2019, and will complete in November 2026 | Monotherapy |
NCT01550367 | Renal cell cancer | Completed | HCQ Interleukin-2 | 1, 2 | Efficacy, safety, immune response | HCQ (600 mg/day) Interleukin-2 (600,000 IU/kg) | Started in March 2012 and completed in February 2019 | Combined |
NCT04735068 | Non-small cell lung cancer, KRAS mutation-related tumors | Active, not recruiting | HCQ Binimetinib | 2 | Safety, efficacy | HCQ (400 mg twice/day) Binimetinib (45 mg twice/day) | Started in April 2021, and will complete in December 2023 | Combined |
NCT05083780 | Pancreatic cancer | Active, not recruiting | HCQ Chlorphensin carbamate mFOLFIRINOX | 1 | Safety, efficacy | HCQ (200 mg twice/day by mouth) Chlorphenesin carbamate (250 mg twice/day by mouth) mFOLFIRINOX—not stated | Started in November 2021, and will complete in December 2024 | Combined |
NCT05518110 | Pancreatic cancer | Recruiting | HCQ TRA | 2 | Safety, efficacy | HCQ (600 mg twice/day by mouth) TRA (2 mg/day by mouth) | Started in May 2023, and will complete April 2025 | Combined |
NCT03979651 | Melanoma | Completed | HCQ TRA | 1, 2 | Safety, efficacy, survival, side effects | HCQ (400 mg once/day by mouth) TRA (2 mg once/day by mouth) | Started in October 2019, and its completion date was in March 2022 | Combined |
NCT05953350 | HR+/HER2− breast cancer | Recruiting | HCQ Palbociclib | 1, 2 | Safety, efficacy, dose response, survival over 12 months | HCQ (600 mg) Palbociclib (100 mg QD, 150 mg QD, and 200 mg QD) | Started in June 2023, and will complete in December 2024 | Combined |
NCT01023737 | Advanced solid tumors | Completed | HCQ Vorinostat | 1 | Safe maximum dose, effectiveness in reducing tumor size | HCQ (400 mg, 600 mg, 800 mg, 1000 mg/day by mouth) Vorinostat (300 mg/day) | Started in November 2009, and its completion date was in January 2023 | Combined |
NCT02421575 | Prostate cancer | Completed | HCQ | 1 | Autophagy, PSA levels, apoptosis markers, circulating tumor cells | Not defined | Started in July 2012, and its completion date was in February 2016 | Monotherapy |
NCT05842174 | Hepatocellular carcinoma | Not yet recruiting | HCQ Lipiodol | 1, 2 | Local progression-free survival | Not defined | Started in September 2023, and will complete in August 2028 | Combined |
NCT05433402 | Stage III colon cancer | Withdrawn | ChlorproMAZINE | 1, 2 | Overall survival, new colon cancer/ polyp’s occurrence time | ChlorproMAZINE (50 mg IV) | Started in July 2022, and its completion date was in September 2022 | Combined |
NCT02466802 | Advanced solid tumors | Completed | Regorafenib Sildenafil Citrate | 1 | Safety, toxicity, antitumor effects, impact on regorafenib pharmacokinetics | Not defined | Started in July 2015, and its completion date was in January 2019 | Combined |
NCT01324596 | Lymphoma (large B-Cell) | Completed | Bortezomib | 3 | Overall survival, time to progression, response duration, overall response rates, toxicity | Bortezomib (100 mg by mouth) | Started in April 2011, and its completion date was in June 2015 | Monotherapy |
NCT06218524 | Adult recurrence glioblastoma | Not yet recruiting | Haloperidol Tablets Temozolomide | 2 | Relief percentage, overall survival, DRD2 expression, haloperidol adverse reactions | Haloperidol tablet (6 mg triple/day by mouth) Temozolomide (150 mg/kg once/day by mouth) | Started in January 2024, and will complete in July 2028 | Combined |
NCT06076837 | Metastatic pancreas cancer | Not yet recruiting | Botensilimab Balstilimab Chloroquine Phosphate Celecoxib | 1 | Maximum tolerated dose, safety, treatment response, survival rates, biomarker changes | Botensilimab (50 mg IV) Balstilimab (240 mg IV) Chloroquine Phosphate (500 mg) Celecoxib (200 mg twice/day) | Started in December 2023, and will complete in December 2025 | Combined |
NCT01292408 | Breast cancer | Unknown Status | HCQ | 2 | Changes in hypoxia and autophagy markers | HCQ (400–800 mg) | Started in January 2011, and its completion date was in January 2012 | Monotherapy |
NCT01430585 | Breast cancer | Terminated | PF-04691502 Letrozole | 2 | Changes in Ki-67, objective response, pharmacokinetic parameters, genetic alterations | Not defined | Started in March 2012, and its completion date was in December 2012 | Combined |
NCT01697293 | Stage IIB-IV breast cancer | Terminated | Cyclophosphamide Doxorubicin hydrochloride | 1, 2 | Pathologic response rates, safety, biomarker analysis | Cyclophosphamide (600 mg) Doxorubicin hydrochloride (60 mg) | Started in January 2012, and its completion date was in June 2020 | Combined |
NCT00411788 | HER-2+ metastatic breast cancer | Completed | Rapamycin Trastuzumab | 2 | Objective response rate, cardiac dysfunction incidence, molecular changes | Rapamycin (6 mg/day) Trastuzumab (2–4 mg/kg) | Started in December 2006, and its completion date was in April 2010 | Combined |
NCT01628913 | Pancreatic neuroendocrine tumors | Terminated | BEZ235 Everolimus | 2 | Progression free survival, overall survival, time to treatment failure | BEZ235 (400 mg twice/day by mouth) Everolimus (10 mg/day by mouth) | Started in October 2012, and its completion date was in September 2019 | Combined |
NCT01210911 | Pancreatic cancer | Completed | Gemcitabine Erlotinib Metformin | 2 | Objective response rate and toxicity profile | Gemcitabine (1000 mg/m2) Erlotinib (100 mg) Metformin (500–1000 mg twice/day) | Started in August 2010, and its completion date was in April 2014 | Combined |
NCT00786682 | Metastatic prostate cancer | Terminated | HCQ Docetaxel | 2 | Tumor response rate, time to disease progression, overall survival, safety | HCQ (200 mg twice/day) Docetaxel (75 mg/m2 IV) | Started in December 2008, and its completion date was in October 2010 | Combined |
NCT00003084 | Prostate cancer | Completed | Doxorubicin hydrochloride Estramustine phosphate sodium Etoposide | 2 | PSA-based response rate | Not defined | Started in December 1997, and its completion date was in November 2011 | Combined |
NCT00657982 | Intermediate or high-risk prostate cancer | Unknow Status | RAD001 | 2 | Tumor response rate, PSA failure assessed between 3 to 5 years | RAD001 10 mg/day | Started in April 2008, and its completion date was in March 2010 | Monotherapy |
NCT01313559 | Naive prostate cancer | Terminated | Pasireotide Everolimus | 2 | Progression-free survival, PSA levels, progression-free survival | Not defined | Started in June 2011, and its completion date was in November 2012 | Combined |
NCT00574769 | Advanced prostate cancer | Completed | RAD001 Docetaxel Bevacizumab | 1, 2 | Efficacy, dose response | RAD001 (2.5–5 mg/day by mouth) Docetaxel (75 mg/m2 every 21 days IV) Bevacizumab (15 mg/kg every 21 days IV) | Started in February 2010, and its completion date was in February 2016 | Combined |
NCT01433913 | Prostate cancer | Completed | Metformin hydrochloride | 2 | Tumor and serum biomarkers | Not defined | Started in November 2011, and its completion date was in April 2014 | Monotherapy |
NCT01396200 | Multiple myeloma | Completed | HCQ Rapamycin | 1 | Number of adverse events, the feasibility of treatment | HCQ (600–800 mg/day by mouth) Rapamycin (3 mg, 4 mg, 9 mg, 12 mg/day by mouth) | Started in June 2011, and its completion date was in October 2012 | Combined |
NCT02631252 | Myelogenous leukemia | Terminated | HCQ Mitoxantrone Etoposide | 1 | Complete response, overall survival, relapse-free survival, pharmacodynamic endpoints | HCQ (600–1400 mg twice/day by mouth) Mitoxantrone (10 mg/m2 IVPB in 50 mL NS) Etoposide (100 mg/m2 IV) | Started in August 2016, and its completion date was in October 2017 | Combined |
NCT01227135 | CML | Unknown Status | HCQ Imatinib mesylate | 2 | Safety, efficacy, BCR/ABL levels, drug levels, effects on progenitors | Not defined | Started in March 2010, and its primary completion date was in March 2012 | Monotherapy, and Combined |
NCT01689987 | Relapsed or refractory multiple myeloma | Completed | HCQ Rapamycin Cyclophosphamide Dexamethasone | 1 | Maximum tolerated dose, myeloma response, progression-free survival | Noy defined | Started in September 2012, and its primary completion date was in April 2016 | Combined |
NCT01079767 | Advanced liver cancer and cirrhosis | Terminated | Temsirolimus | 2 | 3-month disease-control rate, progression-free survival, response rates, overall survival | Not defined | Started in January 2010, and its primary completion date was in December 2010 | Monotherapy |
NCT01035229 | Advanced hepatocellular carcinoma | Completed | Everolimus | 3 | Overall survival, time to tumor progression, disease control rate, pharmacokinetics | Everolimus (2.5 mg) | Started in April 2010, and its completion date was in October 2013 | Monotherapy |
NCT00492752 | Advanced hepatocellular carcinoma | Completed | Sorafenib | 3 | Overall survival, time, disease control rate, overall response rate, pharmacokinetics | Sorafenib (400 mg twice/day by mouth) | Started in October 2005, and its completion date was in July 2009 | Monotherapy |
NCT00522665 | Colorectal cancer | Completed | Irinotecan Cetuximab RAD001 | 1, 2 | Maximum tolerated dose, response rates | Irinotecan (125 mg/m2 IV) Cetuximab (250 mg/m2 IV) Not defined | Started in August 2008, and its completion date was in February 2015 | Combined |
NCT01628913 | Colorectal cancer | Terminated | MK-2206 | 2 | Overall objective response rate, overall survival, safety, tolerability, adverse event profiles | MK-2206 (200 mg by mouth) | Started in August 2010, and its completion date was in August 2011 | Monotherapy |
NCT01941953 | Refractory colorectal cancer | Completed | Metformin 5-FU | 2 | Disease control rate, progression-free survival, overall survival | Metformin (850 mg) 5-FU (425 mg/m2) | Started in November 2012, and its completion date was in March 2015 | Combined |
NCT01460979 | Ovarian carcinoma or advanced endometrial carcinoma | Completed | Temsirolimus | 2 | Progression-free survival, safety, stable disease rates, overall survival | Temsirolimus (25 mg) | Started in October 2010, and its completion date was in November 2015 | Monotherapy |
NCT01031381 | Ovarian, peritoneal, and fallopian tube cancer | Completed | RAD001 Bevacizumab | 2 | Progression-free survival, treatment response | RAD001 (10 mg once/day by mouth) Not defined | Started in September 2010, and its completion date was in December 2014 | Combined |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hassan, A.M.I.A.; Zhao, Y.; Chen, X.; He, C. Blockage of Autophagy for Cancer Therapy: A Comprehensive Review. Int. J. Mol. Sci. 2024, 25, 7459. https://doi.org/10.3390/ijms25137459
Hassan AMIA, Zhao Y, Chen X, He C. Blockage of Autophagy for Cancer Therapy: A Comprehensive Review. International Journal of Molecular Sciences. 2024; 25(13):7459. https://doi.org/10.3390/ijms25137459
Chicago/Turabian StyleHassan, Ahmed Mostafa Ibrahim Abdelrahman, Yuxin Zhao, Xiuping Chen, and Chengwei He. 2024. "Blockage of Autophagy for Cancer Therapy: A Comprehensive Review" International Journal of Molecular Sciences 25, no. 13: 7459. https://doi.org/10.3390/ijms25137459
APA StyleHassan, A. M. I. A., Zhao, Y., Chen, X., & He, C. (2024). Blockage of Autophagy for Cancer Therapy: A Comprehensive Review. International Journal of Molecular Sciences, 25(13), 7459. https://doi.org/10.3390/ijms25137459