Neuroprotection of Transcranial Cortical and Peripheral Somatosensory Electrical Stimulation by Modulating a Common Neuronal Death Pathway in Mice with Ischemic Stroke
Abstract
:1. Introduction
2. Results
2.1. Effects of Therapeutic Electrical Stimulation on Motor Restoration in Ischemic Stroke
2.2. Transcriptomic Analysis of Potent Signaling Pathways in Response to Therapeutic Electrical Stimulation in Ischemic Stroke
2.3. Effects of Therapeutic Electrical Stimulation on Inflammatory Cytokine Regulation in Ischemic Stroke
2.4. Immunofluorescence Analysis of the Signaling Pathways of Inflammatory Cytokines in Response to Therapeutic Electrical Stimulation in Ischemic Stroke
2.5. Immunofluorescence Analysis of Neurotrophic Factors (NTFs) in Response to Therapeutic Electrical Stimulation in Ischemic Stroke
2.6. Effects of Peripheral Somatosensory Stimulation Using EA on Cortical Activity in Ischemic Stroke
3. Discussion
4. Materials and Methods
4.1. Experimental Procedures
4.2. Animals
4.3. MCAO Model
4.4. Electrical Stimulation
4.5. Behavioral Assessments
4.6. RNA-Seq
4.7. Western Blotting
4.8. Immunofluorescence
4.9. Computational Simulation
4.10. Electroencephalograms
4.11. Statistical Analyses
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- GBD 2016 Lifetime Risk of Stroke Collaborator; Feigin, V.L.; Nguyen, G.; Cercy, K.; Johnson, C.O.; Alam, T.; Parmar, P.G.; Abajobir, A.A.; Abate, K.H.; Abd-Allah, F.; et al. Global, Regional, and Country-Specific Lifetime Risks of Stroke, 1990 and 2016. N. Engl. J. Med. 2018, 379, 2429–2437. [Google Scholar] [CrossRef] [PubMed]
- Campbell, B.C.V.; Khatri, P. Stroke. Lancet 2020, 396, 129–142. [Google Scholar] [CrossRef] [PubMed]
- Di Pino, G.; Pellegrino, G.; Assenza, G.; Capone, F.; Ferreri, F.; Formica, D.; Ranieri, F.; Tombini, M.; Ziemann, U.; Rothwell, J.C.; et al. Modulation of brain plasticity in stroke: A novel model for neurorehabilitation. Nat. Rev. Neurol. 2014, 10, 597–608. [Google Scholar] [CrossRef] [PubMed]
- Jolugbo, P.; Ariens, R.A.S. Thrombus Composition and Efficacy of Thrombolysis and Thrombectomy in Acute Ischemic Stroke. Stroke 2021, 52, 1131–1142. [Google Scholar] [CrossRef] [PubMed]
- Hummel, F.; Celnik, P.; Giraux, P.; Floel, A.; Wu, W.H.; Gerloff, C.; Cohen, L.G. Effects of non-invasive cortical stimulation on skilled motor function in chronic stroke. Brain 2005, 128, 490–499. [Google Scholar] [CrossRef]
- Hermann, D.M.; Chopp, M. Promoting brain remodelling and plasticity for stroke recovery: Therapeutic promise and potential pitfalls of clinical translation. Lancet Neurol. 2012, 11, 369–380. [Google Scholar] [CrossRef]
- Peruzzotti-Jametti, L.; Cambiaghi, M.; Bacigaluppi, M.; Gallizioli, M.; Gaude, E.; Mari, S.; Sandrone, S.; Cursi, M.; Teneud, L.; Comi, G.; et al. Safety and efficacy of transcranial direct current stimulation in acute experimental ischemic stroke. Stroke 2013, 44, 3166–3174. [Google Scholar] [CrossRef] [PubMed]
- Reinhart, R.M.G.; Nguyen, J.A. Working memory revived in older adults by synchronizing rhythmic brain circuits. Nat. Neurosci. 2019, 22, 820–827. [Google Scholar] [CrossRef]
- Bikson, M.; Esmaeilpour, Z.; Adair, D.; Kronberg, G.; Tyler, W.J.; Antal, A.; Datta, A.; Sabel, B.A.; Nitsche, M.A.; Loo, C.; et al. Transcranial electrical stimulation nomenclature. Brain Stimul. 2019, 12, 1349–1366. [Google Scholar] [CrossRef]
- NIH Consensus Conference. Acupuncture. JAMA 1998, 280, 1518–1524. [Google Scholar] [CrossRef]
- Xu, M.; Li, D.; Zhang, S. Acupuncture for acute stroke. Cochrane Database Syst. Rev. 2018, 3, CD003317. [Google Scholar] [CrossRef]
- Zhao, Z.Q. Neural mechanism underlying acupuncture analgesia. Prog. Neurobiol. 2008, 85, 355–375. [Google Scholar] [CrossRef]
- Celnik, P.; Paik, N.J.; Vandermeeren, Y.; Dimyan, M.; Cohen, L.G. Effects of combined peripheral nerve stimulation and brain polarization on performance of a motor sequence task after chronic stroke. Stroke 2009, 40, 1764–1771. [Google Scholar] [CrossRef]
- Rizzo, V.; Terranova, C.; Crupi, D.; Sant’angelo, A.; Girlanda, P.; Quartarone, A. Increased transcranial direct current stimulation after effects during concurrent peripheral electrical nerve stimulation. Brain Stimul. 2014, 7, 113–121. [Google Scholar] [CrossRef]
- Liebetanz, D.; Nitsche, M.A.; Tergau, F.; Paulus, W. Pharmacological approach to the mechanisms of transcranial DC-stimulation-induced after-effects of human motor cortex excitability. Brain 2002, 125, 2238–2247. [Google Scholar] [CrossRef]
- Fritsch, B.; Reis, J.; Martinowich, K.; Schambra, H.M.; Ji, Y.; Cohen, L.G.; Lu, B. Direct current stimulation promotes BDNF-dependent synaptic plasticity: Potential implications for motor learning. Neuron 2010, 66, 198–204. [Google Scholar] [CrossRef] [PubMed]
- Wischnewski, M.; Engelhardt, M.; Salehinejad, M.A.; Schutter, D.; Kuo, M.F.; Nitsche, M.A. NMDA Receptor-Mediated Motor Cortex Plasticity After 20 Hz Transcranial Alternating Current Stimulation. Cereb. Cortex 2019, 29, 2924–2931. [Google Scholar] [CrossRef] [PubMed]
- Shin, H.K.; Lee, S.W.; Choi, B.T. Modulation of neurogenesis via neurotrophic factors in acupuncture treatments for neurological diseases. Biochem. Pharmacol. 2017, 141, 132–142. [Google Scholar] [CrossRef] [PubMed]
- Donnan, G.A.; Baron, J.C.; Ma, H.; Davis, S.M. Penumbral selection of patients for trials of acute stroke therapy. Lancet Neurol. 2009, 8, 261–269. [Google Scholar] [CrossRef]
- Esposito, E.; Li, W.; Mandeville, E.T.; Park, J.H.; Sencan, I.; Guo, S.; Shi, J.; Lan, J.; Lee, J.; Hayakawa, K.; et al. Potential circadian effects on translational failure for neuroprotection. Nature 2020, 582, 395–398. [Google Scholar] [CrossRef]
- Tuo, Q.Z.; Zhang, S.T.; Lei, P. Mechanisms of neuronal cell death in ischemic stroke and their therapeutic implications. Med. Res. Rev. 2022, 42, 259–305. [Google Scholar] [CrossRef] [PubMed]
- Hordacre, B.; McCambridge, A.B.; Ridding, M.C.; Bradnam, L.V. Can Transcranial Direct Current Stimulation Enhance Poststroke Motor Recovery? Development of a Theoretical Patient-Tailored Model. Neurology 2021, 97, 170–180. [Google Scholar] [CrossRef] [PubMed]
- Yarbrough, C.K.; Ong, C.J.; Beyer, A.B.; Lipsey, K.; Derdeyn, C.P. Endovascular Thrombectomy for Anterior Circulation Stroke: Systematic Review and Meta-Analysis. Stroke 2015, 46, 3177–3183. [Google Scholar] [CrossRef] [PubMed]
- Yuen, M.M.; Prabhat, A.M.; Mazurek, M.H.; Chavva, I.R.; Crawford, A.; Cahn, B.A.; Beekman, R.; Kim, J.A.; Gobeske, K.T.; Petersen, N.H.; et al. Portable, low-field magnetic resonance imaging enables highly accessible and dynamic bedside evaluation of ischemic stroke. Sci. Adv. 2022, 8, eabm3952. [Google Scholar] [CrossRef]
- Faingold, C.L. Electrical stimulation therapies for CNS disorders and pain are mediated by competition between different neuronal networks in the brain. Med. Hypotheses 2008, 71, 668–681. [Google Scholar] [CrossRef]
- Sansing, L.H.; Harris, T.H.; Welsh, F.A.; Kasner, S.E.; Hunter, C.A.; Kariko, K. Toll-like receptor 4 contributes to poor outcome after intracerebral hemorrhage. Ann. Neurol. 2011, 70, 646–656. [Google Scholar] [CrossRef] [PubMed]
- Fang, H.; Wang, P.F.; Zhou, Y.; Wang, Y.C.; Yang, Q.W. Toll-like receptor 4 signaling in intracerebral hemorrhage-induced inflammation and injury. J. Neuroinflamm. 2013, 10, 27. [Google Scholar] [CrossRef]
- Liesz, A.; Dalpke, A.; Mracsko, E.; Antoine, D.J.; Roth, S.; Zhou, W.; Yang, H.; Na, S.Y.; Akhisaroglu, M.; Fleming, T.; et al. DAMP signaling is a key pathway inducing immune modulation after brain injury. J. Neurosci. 2015, 35, 583–598. [Google Scholar] [CrossRef] [PubMed]
- Klegeris, A. Regulation of neuroimmune processes by damage- and resolution-associated molecular patterns. Neural Regen. Res. 2021, 16, 423–429. [Google Scholar] [CrossRef]
- Fitzgerald, K.A.; Kagan, J.C. Toll-like Receptors and the Control of Immunity. Cell 2020, 180, 1044–1066. [Google Scholar] [CrossRef]
- Urra, X.; Cervera, A.; Obach, V.; Climent, N.; Planas, A.M.; Chamorro, A. Monocytes are major players in the prognosis and risk of infection after acute stroke. Stroke 2009, 40, 1262–1268. [Google Scholar] [CrossRef] [PubMed]
- Caso, J.R.; Pradillo, J.M.; Hurtado, O.; Lorenzo, P.; Moro, M.A.; Lizasoain, I. Toll-like receptor 4 is involved in brain damage and inflammation after experimental stroke. Circulation 2007, 115, 1599–1608. [Google Scholar] [CrossRef] [PubMed]
- Rodhe, J.; Burguillos, M.A.; de Pablos, R.M.; Kavanagh, E.; Persson, A.; Englund, E.; Deierborg, T.; Venero, J.L.; Joseph, B. Spatio-temporal activation of caspase-8 in myeloid cells upon ischemic stroke. Acta Neuropathol. Commun. 2016, 4, 92. [Google Scholar] [CrossRef] [PubMed]
- Gordon, S.; Taylor, P.R. Monocyte and macrophage heterogeneity. Nat. Rev. Immunol. 2005, 5, 953–964. [Google Scholar] [CrossRef] [PubMed]
- Garcia-Culebras, A.; Duran-Laforet, V.; Pena-Martinez, C.; Ballesteros, I.; Pradillo, J.M.; Diaz-Guzman, J.; Lizasoain, I.; Moro, M.A. Myeloid cells as therapeutic targets in neuroinflammation after stroke: Specific roles of neutrophils and neutrophil-platelet interactions. J. Cereb. Blood Flow. Metab. 2018, 38, 2150–2164. [Google Scholar] [CrossRef] [PubMed]
- Tschoe, C.; Bushnell, C.D.; Duncan, P.W.; Alexander-Miller, M.A.; Wolfe, S.Q. Neuroinflammation after Intracerebral Hemorrhage and Potential Therapeutic Targets. J. Stroke 2020, 22, 29–46. [Google Scholar] [CrossRef] [PubMed]
- Bis, J.C.; Heckbert, S.R.; Smith, N.L.; Reiner, A.P.; Rice, K.; Lumley, T.; Hindorff, L.A.; Marciante, K.D.; Enquobahrie, D.A.; Monks, S.A.; et al. Variation in inflammation-related genes and risk of incident nonfatal myocardial infarction or ischemic stroke. Atherosclerosis 2008, 198, 166–173. [Google Scholar] [CrossRef] [PubMed]
- Endres, M.; Moro, M.A.; Nolte, C.H.; Dames, C.; Buckwalter, M.S.; Meisel, A. Immune Pathways in Etiology, Acute Phase, and Chronic Sequelae of Ischemic Stroke. Circ. Res. 2022, 130, 1167–1186. [Google Scholar] [CrossRef] [PubMed]
- Colgan, L.A.; Hu, M.; Misler, J.A.; Parra-Bueno, P.; Moran, C.M.; Leitges, M.; Yasuda, R. PKCalpha integrates spatiotemporally distinct Ca2+ and autocrine BDNF signaling to facilitate synaptic plasticity. Nat. Neurosci. 2018, 21, 1027–1037. [Google Scholar] [CrossRef]
- Ahn, S.M.; Jung, D.H.; Lee, H.J.; Pak, M.E.; Jung, Y.J.; Shin, Y.I.; Shin, H.K.; Choi, B.T. Contralesional Application of Transcranial Direct Current Stimulation on Functional Improvement in Ischemic Stroke Mice. Stroke 2020, 51, 2208–2218. [Google Scholar] [CrossRef]
- Lee, H.J.; Jung, D.H.; Kim, N.K.; Shin, H.K.; Choi, B.T. Effects of electroacupuncture on the functionality of NG2-expressing cells in perilesional brain tissue of mice following ischemic stroke. Neural Regen. Res. 2022, 17, 1556–1565. [Google Scholar] [CrossRef] [PubMed]
- Chen, W.; Liu, G.; Su, Y.; Zhang, Y.; Lin, Y.; Jiang, M.; Huang, H.; Ren, G.; Yan, J. EEG signal varies with different outcomes in comatose patients: A quantitative method of electroencephalography reactivity. J. Neurosci. Methods 2020, 342, 108812. [Google Scholar] [CrossRef] [PubMed]
- Lefaucheur, J.P.; Antal, A.; Ayache, S.S.; Benninger, D.H.; Brunelin, J.; Cogiamanian, F.; Cotelli, M.; De Ridder, D.; Ferrucci, R.; Langguth, B.; et al. Evidence-based guidelines on the therapeutic use of transcranial direct current stimulation (tDCS). Clin. Neurophysiol. 2017, 128, 56–92. [Google Scholar] [CrossRef] [PubMed]
- Voroslakos, M.; Takeuchi, Y.; Brinyiczki, K.; Zombori, T.; Oliva, A.; Fernandez-Ruiz, A.; Kozak, G.; Kincses, Z.T.; Ivanyi, B.; Buzsaki, G.; et al. Direct effects of transcranial electric stimulation on brain circuits in rats and humans. Nat. Commun. 2018, 9, 483. [Google Scholar] [CrossRef]
- Asamoah, B.; Khatoun, A.; Mc Laughlin, M. tACS motor system effects can be caused by transcutaneous stimulation of peripheral nerves. Nat. Commun. 2019, 10, 266. [Google Scholar] [CrossRef] [PubMed]
- Nitsche, M.A.; Fricke, K.; Henschke, U.; Schlitterlau, A.; Liebetanz, D.; Lang, N.; Henning, S.; Tergau, F.; Paulus, W. Pharmacological modulation of cortical excitability shifts induced by transcranial direct current stimulation in humans. J. Physiol. 2003, 553, 293–301. [Google Scholar] [CrossRef] [PubMed]
- Monai, H.; Ohkura, M.; Tanaka, M.; Oe, Y.; Konno, A.; Hirai, H.; Mikoshiba, K.; Itohara, S.; Nakai, J.; Iwai, Y.; et al. Calcium imaging reveals glial involvement in transcranial direct current stimulation-induced plasticity in mouse brain. Nat. Commun. 2016, 7, 11100. [Google Scholar] [CrossRef] [PubMed]
- Jung, D.H.; Lee, J.H.; Lee, H.J.; Park, J.W.; Jung, Y.J.; Shin, H.K.; Choi, B.T. Therapeutic effects of a novel electrode for transcranial direct current stimulation in ischemic stroke mice. Theranostics 2024, 14, 1325–1343. [Google Scholar] [CrossRef]
- Liu, Z.; Chen, X.; Gao, Y.; Sun, S.; Yang, L.; Yang, Q.; Bai, F.; Xiong, L.; Wang, Q. Involvement of GluR2 up-regulation in neuroprotection by electroacupuncture pretreatment via cannabinoid CB1 receptor in mice. Sci. Rep. 2015, 5, 9490. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lee, H.; Lee, J.; Jung, D.; Oh, H.; Shin, H.; Choi, B. Neuroprotection of Transcranial Cortical and Peripheral Somatosensory Electrical Stimulation by Modulating a Common Neuronal Death Pathway in Mice with Ischemic Stroke. Int. J. Mol. Sci. 2024, 25, 7546. https://doi.org/10.3390/ijms25147546
Lee H, Lee J, Jung D, Oh H, Shin H, Choi B. Neuroprotection of Transcranial Cortical and Peripheral Somatosensory Electrical Stimulation by Modulating a Common Neuronal Death Pathway in Mice with Ischemic Stroke. International Journal of Molecular Sciences. 2024; 25(14):7546. https://doi.org/10.3390/ijms25147546
Chicago/Turabian StyleLee, Hongju, Juyeon Lee, Dahee Jung, Harim Oh, Hwakyoung Shin, and Byungtae Choi. 2024. "Neuroprotection of Transcranial Cortical and Peripheral Somatosensory Electrical Stimulation by Modulating a Common Neuronal Death Pathway in Mice with Ischemic Stroke" International Journal of Molecular Sciences 25, no. 14: 7546. https://doi.org/10.3390/ijms25147546
APA StyleLee, H., Lee, J., Jung, D., Oh, H., Shin, H., & Choi, B. (2024). Neuroprotection of Transcranial Cortical and Peripheral Somatosensory Electrical Stimulation by Modulating a Common Neuronal Death Pathway in Mice with Ischemic Stroke. International Journal of Molecular Sciences, 25(14), 7546. https://doi.org/10.3390/ijms25147546