Pharmacological Preconditioning with Fenofibrate in Cardiomyocyte Cultures of Neonatal Rats Subjected to Hypoxia/Reoxygenation, High Glucose, and Their Combination
Abstract
:1. Introduction
2. Results
2.1. Validation of HR Model
2.2. Cell Viability
2.3. Fenofibrate Protects Cells from HR, HG, and Both Conditions (Determination of Cytotoxicity, 8-OH-2dG, and Malonate)
2.4. Fenofibrate Decreases Apoptotic Cells in Pathological Conditions
2.5. Determination of Apoptosis Using Annexin V/PI Staining
2.6. Fenofibrate Promotes Survival Molecules
2.7. Effect of Fenofibrate in Mitochondrial Potential Using Mitotraker (MTRK) Deep Red
2.8. Fenofibrate Treatment Attenuated the Damage Produced by HR, HG, and HR/HG to Ultrastructure in Mitochondria
3. Discussion
4. Material and Methods
4.1. Animals
4.2. Neonatal Rat Cardiomyocytes (NRCMs) Isolation and Culture
4.3. Cell Viability
4.4. Quantification of Cytotoxicity
4.5. Quantification of 8-hydroxy-2-deoxyguanosine (8-OH-2dG)
4.6. Quantification of Malonate (MTO)
4.7. Subcellular Fractioning
4.8. Protein Expression by Western Blot
4.9. TUNEL for Apoptosis Detection
4.10. Determination of Apoptosis, Necrosis, and Dead Cells by Annexin V/Propidium Iodide (PI) Staining
4.11. Cell Loading with MitoTracker Deep Red
4.12. Electron Microscopy
4.13. Data Analysis
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Murry, C.E.; Jennings, R.B.; Reimer, K.A. Preconditioning with Ischemia: A Delay of Lethal Cell Injury in Ischemic Myocardium. Circulation 1986, 74, 1124–1136. [Google Scholar] [CrossRef] [PubMed]
- Torregroza, C.; Raupach, A.; Feige, K.; Weber, N.C.; Hollmann, M.W.; Huhn, R. Perioperative Cardioprotection: General Mechanisms and Pharmacological Approaches. Anesth. Analg. 2020, 131, 1765–1780. [Google Scholar] [CrossRef]
- Hausenloy, D.J.; Yellon, D.M. The Mitochondrial Permeability Transition Pore: Its Fundamental Role in Mediating Cell Death during Ischaemia and Reperfusion. J. Mol. Cell. Cardiol. 2003, 35, 339–341. [Google Scholar] [CrossRef]
- D’Arcy, M.S. Cell Death: A Review of the Major Forms of Apoptosis, Necrosis and Autophagy. Cell Biol. Int. 2019, 43, 582–592. [Google Scholar] [CrossRef] [PubMed]
- Capes, S.E.; Hunt, D.; Malmberg, K.; Gerstein, H.C. Stress Hyperglycaemia and Increased Risk of Death after Myocardial Infarction in Patients with and without Diabetes: A Systematic Overview. Lancet 2000, 355, 773–778. [Google Scholar] [CrossRef]
- Deedwania, P.; Kosiborod, M.; Barrett, E.; Ceriello, A.; Isley, W.; Mazzone, T.; Raskin, P. Hyperglycemia and Acute Coronary Syndrome: A Scientific Statement from the American Heart Association Diabetes Committee of the Council on Nutrition, Physical Activity, and Metabolism. Circulation 2008, 117, 1610–1619. [Google Scholar] [CrossRef]
- Marfella, R.; Di Filippo, C.; Portoghese, M.; Ferraraccio, F.; Rizzo, M.R.; Siniscalchi, M.; Musacchio, E.; D’Amico, M.; Rossi, F.; Paolisso, G. Tight Glycemic Control Reduces Heart Inflammation and Remodeling During Acute Myocardial Infarction in Hyperglycemic Patients. J. Am. Coll. Cardiol. 2009, 53, 1425–1436. [Google Scholar] [CrossRef] [PubMed]
- Cortes-Lopez, F.; Sanchez-Mendoza, A.; Centurion, D.; Cervantes-Perez, L.G.; Castrejon-Tellez, V.; Del Valle-Mondragon, L.; Soria-Castro, E.; Ramirez, V.; Sanchez-Lopez, A.; Pastelin-Hernandez, G.; et al. Fenofibrate Protects Cardiomyocytes from Hypoxia/Reperfusion- and High Glucose-Induced Detrimental Effects. PPAR Res. 2021, 2021, 8895376. [Google Scholar] [CrossRef] [PubMed]
- Ibarra-Lara, L.; Sánchez-Aguilar, M.; Sánchez-Mendoza, A.; Del Valle-Mondragón, L.; Soria-Castro, E.; Carreón-Torres, E.; Díaz-Díaz, E.; Vázquez-Meza, H.; Guarner-Lans, V.; Rubio-Ruiz, M.E. Fenofibrate Therapy Restores Antioxidant Protection and Improves Myocardial Insulin Resistance in a Rat Model of Metabolic Syndrome and Myocardial Ischemia: The Role of Angiotensin II. Molecules 2017, 22, 31. [Google Scholar] [CrossRef]
- Ravingerová, T.; Čarnická, S.; Nemčeková, M.; Ledvényiová, V.; Adameová, A.; Kelly, T.; Barlaka, E.; Galatou, E.; Khandelwal, V.K.M.; Lazou, A. PPAR-Alpha Activation as a Preconditioning-like Intervention in Rats In Vivo Confers Myocardial Protection against Acute Ischaemia-Reperfusion Injury: Involvement of PI3K-Akt. Can. J. Physiol. Pharmacol. 2012, 90, 1135–1144. [Google Scholar] [CrossRef]
- Bulhak, A.A.; Jung, C.; Östenson, C.G.; Lundberg, J.O.; Sjoquist, P.O.; Pernow, J. PPAR-α Activation Protects the Type 2 Diabetic Myocardium against Ischemia-Reperfusion Injury: Involvement of the PI3-Kinase/Akt and NO Pathway. Am. J. Physiol.-Hear. Circ. Physiol. 2009, 296, 719–727. [Google Scholar] [CrossRef] [PubMed]
- Barlaka, E.; Ledvényiová, V.; Galatou, E.; Ferko, M.; Slávka, Č.; Ravingerová, T.; Lazou, A. Delayed Cardioprotective Effects of Wy-14643 Are Associated with Inhibition of Mmp-2 and Modulation of Bcl-2 Family Proteins through PPAR-α Activation in Rat Hearts Subjected to Global Ischaemia-Reperfusion1. Can. J. Physiol. Pharmacol. 2013, 91, 608–616. [Google Scholar] [CrossRef]
- Wu, K.K. Peroxisome Proliferator-Activated Receptors Protect against Apoptosis via 14-3-3. PPAR Res. 2010, 2010, 417646. [Google Scholar] [CrossRef] [PubMed]
- Yellon, D.M.; Hausenloy, D.J. Myocardial Reperfusion Injury. N. Engl. J. Med. 2007, 357, 1121–1135. [Google Scholar] [CrossRef]
- Perrelli, M.-G.; Pagliaro, P.; Penna, C. Ischemia/Reperfusion Injury and Cardioprotective Mechanisms: Role of Mitochondria and Reactive Oxygen Species. World J. Cardiol. 2011, 3, 186. [Google Scholar] [CrossRef] [PubMed]
- Wang, X.; Ma, S.; Qi, G. Effect of Hypoxia-Inducible Factor 1-Alpha on Hypoxia/Reoxygenation-Induced Apoptosis in Primary Neonatal Rat Cardiomyocytes. Biochem. Biophys. Res. Commun. 2012, 417, 1227–1234. [Google Scholar] [CrossRef]
- Abbate, A.; Bussani, R.; Amin, M.S.; Vetrovec, G.W.; Baldi, A. Acute Myocardial Infarction and Heart Failure: Role of Apoptosis. Int. J. Biochem. Cell Biol. 2006, 38, 1834–1840. [Google Scholar] [CrossRef] [PubMed]
- Anversa, P.; Cheng, W.; Liu, Y.; Leri, A.; Redaelli, G.; Kajstura, J. Apoptosis and Myocardial Infarction. Basic Res. Cardiol. 1998, 93, s008–s012. [Google Scholar] [CrossRef]
- Rawshani, A.; Rawshani, A.; Franzén, S.; Eliasson, B.; Svensson, A.M.; Miftaraj, M.; McGuire, D.K.; Sattar, N.; Rosengren, A.; Gudbjörnsdottir, S. Range of Risk Factor Levels: Control, Mortality, and Cardiovascular Outcomes in Type 1 Diabetes Mellitus. Circulation 2017, 135, 1522–1531. [Google Scholar] [CrossRef]
- Jia, G.; DeMarco, V.G.; Sowers, J.R. Insulin Resistance and Hyperinsulinaemia in Diabetic Cardiomyopathy. Nat. Rev. Endocrinol. 2016, 12, 144–153. [Google Scholar] [CrossRef]
- Gan, L.; Xie, D.; Liu, J.; Bond Lau, W.; Christopher, T.A.; Lopez, B.; Zhang, L.; Gao, E.; Koch, W.; Ma, X.L.; et al. Small Extracellular Microvesicles Mediated Pathological Communications between Dysfunctional Adipocytes and Cardiomyocytes as a Novel Mechanism Exacerbating Ischemia/Reperfusion Injury in Diabetic Mice. Circulation 2020, 141, 968–983. [Google Scholar] [CrossRef] [PubMed]
- Kroese, L.J.; Scheffer, P.G. 8-Hydroxy-2′-Deoxyguanosine and Cardiovascular Disease: A Systematic Review. Curr. Atheroscler. Rep. 2014, 16, 452. [Google Scholar] [CrossRef]
- Gomez-Lazaro, M.; Galindo, M.F.; Melero-Fernandez De Mera, R.M.; Fernandez-Gómez, F.J.; Concannon, C.G.; Segura, M.F.; Comella, J.X.; Prehn, J.H.M.; Jordan, J. Reactive Oxygen Species and P38 Mitogen-Activated Protein Kinase Activate Bax to Induce Mitochondrial Cytochrome c Release and Apoptosis in Response to Malonate. Mol. Pharmacol. 2007, 71, 736–743. [Google Scholar] [CrossRef] [PubMed]
- Tzeng, J.; Byun, J.; Park, J.Y.; Yamamoto, T.; Schesing, K.; Tian, B.; Sadoshima, J.; Oka, S.I. An Ideal PPAR Response Element Bound to and Activated by PPARα. PLoS ONE 2015, 10, e134996. [Google Scholar] [CrossRef] [PubMed]
- Wang, M.; Zhang, J.; Zhang, J.; Sun, K.; Li, Q.; Kuang, B.; Wang, M.M.Z.; Hou, S.; Gong, N. Methyl Eugenol Attenuates Liver Ischemia Reperfusion Injury via Activating PI3K/Akt Signaling. Int. Immunopharmacol. 2021, 99, 108023. [Google Scholar] [CrossRef]
- Yue, T.L.; Bao, W.; Jucker, B.M.; Gu, J.L.; Romanic, A.M.; Brown, P.J.; Cui, J.; Thudium, D.T.; Boyce, R.; Burns-Kurtis, C.L.; et al. Activation of Peroxisome Proliferator-Activated Receptor-α Protects the Heart from Ischemia/Reperfusion Injury. Circulation 2003, 108, 2393–2399. [Google Scholar] [CrossRef]
- Peña-Blanco, A.; García-Sáez, A.J. Bax, Bak and beyond—Mitochondrial Performance in Apoptosis. FEBS J. 2018, 285, 416–431. [Google Scholar] [CrossRef]
- Edlich, F. BCL-2 Proteins and Apoptosis: Recent Insights and Unknowns. Biochem. Biophys. Res. Commun. 2018, 500, 26–34. [Google Scholar] [CrossRef]
- Hong, J.R.; Wang, H.V.; Hong, J.R. Anti-Apoptotic Genes Bcl-2 and Bcl-XL Overexpression Can Block Iridovirus Serine/Threonine Kinase-Induced Bax/Mitochondria-Mediated Cell Death in GF-1 Cells. Fish Shellfish Immunol. 2017, 61, 120–129. [Google Scholar] [CrossRef]
- Kimura, H.; Kamiyama, K.; Imamoto, T.; Takeda, I.; Masunaga, S.; Kobayashi, M.; Mikami, D.; Takahashi, N.; Kasuno, K.; Sugaya, T.; et al. Fenofibrate Reduces Cisplatin-Induced Apoptosis by Inhibiting the P53/Puma/Caspase-9 Pathway and the MAPK/Caspase-8 Pathway Rather than by Promoting Autophagy in Murine Renal Proximal Tubular Cells. Biochem. Biophys. Rep. 2022, 30, 101237. [Google Scholar] [CrossRef]
- Kinnally, K.W.; Antonsson, B. A Tale of Two Mitochondrial Channels, MAC and PTP, in Apoptosis. Apoptosis 2007, 12, 857–868. [Google Scholar] [CrossRef] [PubMed]
- Hattori, N.; Saiki, S.; Imai, Y. Regulation by Mitophagy. Int. J. Biochem. Cell Biol. 2014, 53, 147–150. [Google Scholar] [CrossRef] [PubMed]
- Nishimura, G.; Proske, R.J.; Doyama, H.; Higuchi, M. Regulation of Apoptosis by Respiration: Cytochrome c Release by Respiratory Substrates. FEBS Lett. 2001, 505, 399–404. [Google Scholar] [CrossRef] [PubMed]
- Kar, D.; Bandyopadhyay, A. Targeting Peroxisome Proliferator Activated Receptor α (PPAR α) for the Prevention of Mitochondrial Impairment and Hypertrophy in Cardiomyocytes. Cell. Physiol. Biochem. 2018, 49, 245–259. [Google Scholar] [CrossRef]
- Wang, C.; Youle, R.J. The Role of Mitochondria in Apoptosis. Annu. Rev. Genet. 2009, 43, 95–118. [Google Scholar] [CrossRef]
- Brewer, J.H.; Allgeier, D.L. Safe Self-Contained Carbon Dioxide-Hydrogen Anaerobic System. Appl. Microbiol. 1966, 14, 985–988. [Google Scholar] [CrossRef]
- Brewer, J.H.; Allgeier, D.L. Disposable Hydrogen Generator. Science 1965, 147, 1033–1034. [Google Scholar] [CrossRef]
- Jin, K.K.; Pedram, A.; Razandi, M.; Levin, E.R. Estrogen Prevents Cardiomyocyte Apoptosis Through Inhibition of Reactive Oxygen Species and Differential Regulation of P38 Kinase Isoforms. J. Biol. Chem. 2006, 281, 6760–6767. [Google Scholar] [CrossRef]
- Karki, P.; Fliegel, L. Overexpression of the NHE1 Isoform of the Na+/H+ Exchanger Causes Elevated Apoptosis in Isolated Cardiomyocytes after Hypoxia/Reoxygenation Challenge. Mol. Cell. Biochem. 2010, 338, 47–57. [Google Scholar] [CrossRef]
- Smiley, S.T.; Reers, M.; Mottola-Hartshorn, C.; Lin, M.; Chen, A.; Smith, T.W.; Steele, G.D.; Chen, L.B. Intracellular Heterogeneity in Mitochondrial Membrane Potentials Revealed by a J-Aggregate-Forming Lipophilic Cation JC-1. Proc. Natl. Acad. Sci. USA 1991, 88, 3671–3675. [Google Scholar] [CrossRef]
- Kvasnicová, V.; Samcová, E.; Jursová, A.; Jelínek, I. Determination of 8-Hydroxy-2′-Deoxyguanosine in Untreated Urine by Capillary Electrophoresis with UV Detection. J. Chromatogr. A 2003, 985, 513–517. [Google Scholar] [CrossRef]
- Tůma, P.; Samcová, E.; Kvasnicová, V. Improved Detection Limit for a Direct Determination of 8-Hydroxy-2′-Deoxyguanosine in Untreated Urine Samples by Capillary Electrophoresis with Optical Detection. J. Chromatogr. B Anal. Technol. Biomed. Life Sci. 2004, 813, 255–261. [Google Scholar] [CrossRef] [PubMed]
- Dimauro, I.; Pearson, T.; Caporossi, D.; Jackson, M.J. A Simple Protocol for the Subcellular Fractionation of Skeletal Muscle Cells and Tissue. BMC Res. Notes 2012, 5, 513. [Google Scholar] [CrossRef]
- Colin-Val, Z.; Vera-Márquez, C.D.; Herrera-Rodríguez, M.A.; del Pilar Ramos-Godinez, M.; López-Saavedra, A.; Cano-Martínez, A.; Robledo-Cadena, D.X.; Rodríguez-Enríquez, S.; Correa, F.; Delgado-Buenrostro, N.L.; et al. Titanium Dioxide (E171) Induces Toxicity in H9c2 Rat Cardiomyoblasts and Ex Vivo Rat Hearts. Cardiovasc. Toxicol. 2022, 22, 713–726. [Google Scholar] [CrossRef] [PubMed]
- Chazotte, B. Labeling Mitochondria with Mitotracker Dyes. Cold Spring Harb. Protoc. 2011, 6, 990–992. [Google Scholar] [CrossRef] [PubMed]
- Cano-Martínez, A.; Bautista-Pérez, R.; Castrejón-Téllez, V.; Carreón-Torres, E.; Pérez-Torres, I.; Díaz-Díaz, E.; Flores-Estrada, J.; Guarner-Lans, V.; Rubio-Ruíz, M.E. Resveratrol and Quercetin as Regulators of Inflammatory and Purinergic Receptors to Attenuate Liver Damage Associated to Metabolic Syndrome. Int. J. Mol. Sci. 2021, 22, 8939. [Google Scholar] [CrossRef]
- González-Morán, M.G.; Soria-Castro, E. Changes in the Tubular Compartment of the Testis of Gallus Domesticus During Development. Br. Poult. Sci. 2010, 51, 296–307. [Google Scholar] [CrossRef]
- González-Morán, M.G.; Soria-Castro, E. Histological and Stereological Studies on Leydig Cells in the Testes of Gallus Domesticus from Pre-Hatching to Sexual Maturity. Anim. Reprod. Sci. 2010, 120, 129–135. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Oidor-Chan, V.H.; Sánchez-López, A.; Cano-Martinez, A.; García-Niño, W.R.; Soria-Castro, E.; del Valle-Mondragón, L.; Zarco-Olvera, G.; Patlán, M.; Guarner-Lans, V.; Rodríguez-Maldonado, E.; et al. Pharmacological Preconditioning with Fenofibrate in Cardiomyocyte Cultures of Neonatal Rats Subjected to Hypoxia/Reoxygenation, High Glucose, and Their Combination. Int. J. Mol. Sci. 2024, 25, 11391. https://doi.org/10.3390/ijms252111391
Oidor-Chan VH, Sánchez-López A, Cano-Martinez A, García-Niño WR, Soria-Castro E, del Valle-Mondragón L, Zarco-Olvera G, Patlán M, Guarner-Lans V, Rodríguez-Maldonado E, et al. Pharmacological Preconditioning with Fenofibrate in Cardiomyocyte Cultures of Neonatal Rats Subjected to Hypoxia/Reoxygenation, High Glucose, and Their Combination. International Journal of Molecular Sciences. 2024; 25(21):11391. https://doi.org/10.3390/ijms252111391
Chicago/Turabian StyleOidor-Chan, Víctor Hugo, Araceli Sánchez-López, Agustina Cano-Martinez, Willy Ramses García-Niño, Elizabeth Soria-Castro, Leonardo del Valle-Mondragón, Gabriela Zarco-Olvera, Mariana Patlán, Veronica Guarner-Lans, Emma Rodríguez-Maldonado, and et al. 2024. "Pharmacological Preconditioning with Fenofibrate in Cardiomyocyte Cultures of Neonatal Rats Subjected to Hypoxia/Reoxygenation, High Glucose, and Their Combination" International Journal of Molecular Sciences 25, no. 21: 11391. https://doi.org/10.3390/ijms252111391
APA StyleOidor-Chan, V. H., Sánchez-López, A., Cano-Martinez, A., García-Niño, W. R., Soria-Castro, E., del Valle-Mondragón, L., Zarco-Olvera, G., Patlán, M., Guarner-Lans, V., Rodríguez-Maldonado, E., Flores-Estrada, J., Castrejón-Téllez, V., & Ibarra-Lara, L. (2024). Pharmacological Preconditioning with Fenofibrate in Cardiomyocyte Cultures of Neonatal Rats Subjected to Hypoxia/Reoxygenation, High Glucose, and Their Combination. International Journal of Molecular Sciences, 25(21), 11391. https://doi.org/10.3390/ijms252111391