Characterization of the Coriolopsis gallica DyP for Its Potential to Biotransform Various Fluoroquinolones
Abstract
:1. Introduction
2. Results
2.1. Target Selection, Protein Production and Purification
2.2. Purification and Biochemical Characterization of CgaDyP1
2.3. Tests on Decolorization of Industrial Dyes
2.4. Tests for Fluoroquinolone Biotransformation by CgaDyP1
3. Discussion
4. Materials and Methods
4.1. Cloning, Expression of DyP-Encoding cDNA, Production and Purification of Recombinant DyP
4.2. Bioinformatics Analysis
4.3. Activity Assays and Determination of Kinetics Parameters
4.4. Influence of Temperature, pH, and Hydrogen Peroxide on DyP Activity and Enzyme Stability
4.5. Decolorization Properties
4.6. Determination of Percentage of Antibiotic Biotransformation
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Pereira Santos, A.S.; de Mendonça Lima, M.A.; Midon Paixão, M.; Pacheco Jordão, E.; Pereira Vieira, J.M. A perspective for the acceptance of water reuse: History of the valorization of wastewater throughout the development of society. Water Policy 2024, 26, 336–358. [Google Scholar] [CrossRef]
- Oberoi, A.S.; Jia, Y.; Zhang, H.; Khanal, S.K.; Lu, H. Insights into the fate and removal of antibiotics in engineered bio-logical treatment systems: A critical review. Environ. Sci. Technol. 2019, 53, 7234–7264. [Google Scholar] [CrossRef] [PubMed]
- Zhao, W.; You, J.; Yin, S.; Yang, H.; He, S.; Feng, L.; Li, J.; Zhao, Q.; Wei, L. Extracellular polymeric substances–antibiotics interaction in activated sludge: A review. Environ. Sci. Ecotechnol. 2022, 13, 100212. [Google Scholar] [CrossRef] [PubMed]
- Tsholo, K.; Molale-Tom, L.G.; Horn, S.; Bezuidenhout, C.C. Distribution of antibiotic resistance genes and antibiotic residues in drinking water production facilities: Links to bacterial community. PLoS ONE 2022, 19, e0299247. [Google Scholar] [CrossRef] [PubMed]
- Peregrina-Lucano, A.A.; Mendoza-Michel, J.; Rodríguez-Arreola, A.; Peña-Velasco, G. Detection of pharmaceutically active compounds in tap water samples by direct injection HPLC/MS-MS: A danger signal in deficiency in residue management. Bull. Environ. Contam. Toxicol. 2024, 112, 67. [Google Scholar] [CrossRef]
- Chen, L.; Zhang, X.; Zhang, M.; Zhu, Y.; Zhuo, R. Removal of heavy-metal pollutants by white rot fungi: Mechanisms, achievements, and perspectives. J. Clean. Prod. 2022, 354, 131681. [Google Scholar] [CrossRef]
- Chen, S.; Zhu, M.; Guo, X.; Yang, B.; Zhuo, R. Coupling of Fenton reaction and white rot fungi for the degradation of organic pollutants. Ecotoxicol. Environ. Saf. 2023, 254, 114697. [Google Scholar] [CrossRef]
- Lin, S.; Wei, J.; Yang, B.; Zhang, M.; Zhuo, R. Bioremediation of organic pollutants by white rot fungal cytochrome P450: The role and mechanism of CYP450 in biodegradation. Chemosphere 2022, 301, 134776. [Google Scholar] [CrossRef]
- Zhuo, R.; Fan, F. A comprehensive insight into the application of white rot fungi and their lignocellulolytic enzymes in the removal of organic pollutants. Sci. Total Environ. 2021, 778, 146132. [Google Scholar] [CrossRef]
- de Boer, S.R.; Schäffer, A.; Moreira, M.T. Towards oxidoreductase-based processes for the removal of antibiotics from wastewater. Rev. Environ. Sci. Biotechnol. 2023, 22, 899–932. [Google Scholar] [CrossRef]
- Martínez, A.T.; Ruiz-Dueñas, F.J.; Camarero, S.; Serrano, A.; Linde, D.; Lund, H.; Vind, J.; Tovborg, M.; Herold-Majumdar, O.M.; Hofrichter, M.; et al. Oxidoreductases on their way to industrial biotransformations. Biotechnol. Adv. 2017, 35, 815–831. [Google Scholar] [CrossRef] [PubMed]
- Alsadik, A.; Athamneh, K.; Yousef, A.F.; Shah, I.; Ashraf, S.S. Efficient degradation of 2-mercaptobenzothiazole and other emerging pollutants by recombinant bacterial dye decolorizing peroxidases. Biomolecules 2021, 11, 656. [Google Scholar] [CrossRef] [PubMed]
- Athamneh, K.; Alneyadi, A.; Alsadik, A.; Wong, T.S.; Ashraf, S.S. Efficient degradation of various emerging pollutants by wild type and evolved fungal DyP4 peroxidases. PLoS ONE 2022, 17, e0262492. [Google Scholar] [CrossRef] [PubMed]
- Zámocký, M.; Hofbauer, S.; Schaffner, I.; Gasselhuber, B.; Nicolussi, A.; Soudi, M.; Pirker, K.F.; Furtmüller, P.G.; Obinger, C. Inde-pendent evolution of four heme peroxidase superfamilies. Arch. Biochem. Biophys. 2015, 574, 108–119. [Google Scholar] [CrossRef] [PubMed]
- Acharya, G.; Kaur, G.; Subramanian, S. Evolutionary relationships between heme-binding ferredoxin α+ β bar-rels. BMC Bioinform. 2016, 17, 168. [Google Scholar] [CrossRef]
- Sugano, Y. DyP-type peroxidases comprise a novel heme peroxidase family. Cell. Mol. Life Sci. 2009, 66, 1387–1403. [Google Scholar] [CrossRef]
- Gu, J.; Qiu, Q.; Yu, Y.; Sun, X.; Tian, K.; Chang, M.; Wang, Y.; Zhang, F.; Huo, H. Bacterial transformation of lignin: Key enzymes and high-value products. Biotechnol. Biofuels Bioprod. 2024, 17, 2. [Google Scholar] [CrossRef]
- Linde, D.; Ruiz-Dueñas, F.J.; Fernández-Fueyo, E.; Guallar, V.; Hammel, K.E.; Pogni, R.; Martínez, A.T. Basidiomycete DyPs: Genomic diversity, structural-functional aspects, reaction mechanism and environmental significance. Arch. Biochem. Biophys. 2015, 574, 66–74. [Google Scholar] [CrossRef]
- Gomi, N.; Yoshida, S.; Matsumoto, K.; Okudomi, M.; Konno, H.; Hisabori, T.; Sugano, Y. Degradation of the synthetic dye amaranth by the fungus Bjerkandera adusta Dec 1: Inference of the degradation pathway from an analysis of de-colorized products. Biodegradation 2011, 22, 1239–1245. [Google Scholar] [CrossRef]
- Faraco, V.; Piscitelli, A.; Sannia, G.; Giardina, P. Identification of a new member of the dye-decolorizing peroxidase family from Pleurotus ostreatus. World J. Microbiol. Biotechnol. 2007, 23, 889–893. [Google Scholar] [CrossRef]
- Linde, D.; Coscolin, C.; Liers, C.; Hofrichter, M.; Martínez, A.T.; Ruiz-Dueñas, F.J. Heterologous expression and physicochemical characterization of a fungal dye-decolorizing peroxidase from Auricularia auricula-judae. Protein Expr. Purif. 2014, 103, 28–37. [Google Scholar] [CrossRef] [PubMed]
- Amara, S.; Perrot, T.; Navarro, D.; Deroy, A.; Benkhelfallah, A.; Chalak, A.; Daou, M.; Chevret, D.; Faulds, C.B.; Berrin, J.G.; et al. Enzyme activities of two recombinant heme-containing peroxidases, TvDyP and TvVP2, identified from the secretome of Trametes versicolor. Appl. Environ. Microbiol. 2018, 84, e02826-17. [Google Scholar] [CrossRef] [PubMed]
- Ben Ayed, A.; Saint-Genis, G.; Vallon, L.; Linde, D.; Turbé-Doan, A.; Haon, M.; Daou, M.; Bertrand, E.; Faulds, C.B.; Sciara, G.; et al. Exploring the Diversity of Fungal DyPs in Mangrove Soils to Produce and Characterize Novel Biocatalysts. J. Fungi 2021, 7, 321. [Google Scholar] [CrossRef]
- Ben Ayed, A.; Akrout, I.; Albert, Q.; Greff, S.; Simmler, C.; Armengaud, J.; Kielbasa, M.; Turbé-Doan, A.; Chaduli, D.; Navarro, D.; et al. Biotransformation of the fluoroquinolone, levofloxacin, by the white-rot fungus Coriolopsis gallica. J. Fungi 2022, 8, 965. [Google Scholar] [CrossRef] [PubMed]
- Colpa, D.I.; Fraaije, M.W.; van Bloois, E. DyP-type peroxidases: A promising and versatile class of enzymes. J. Ind. Microb. Biotechnol. 2014, 41, 1–7. [Google Scholar] [CrossRef] [PubMed]
- Liers, C.; Pecyna, M.J.; Kellner, H.; Worrich, A.; Zorn, H.; Steffen, K.T.; Hofrichter, M.; Ullrich, R. Substrate oxidation by dye-decolorizing peroxidases (DyPs) from wood- and litter-degrading agaricomycetes compared to other fungal and plant heme-peroxidases. Appl. Microbiol. Biotechnol. 2013, 97, 5839–5849. [Google Scholar] [CrossRef] [PubMed]
- Valderrama, B.; Ayala, M.; Vazquez-Duhalt, R. Suicide inactivation of peroxidases and the challenge of engineering more robust enzymes. Chem. Biol. 2002, 9, 555–565. [Google Scholar] [CrossRef]
- Duan, Z.; Shen, R.; Liu, B.; Yao, M.; Jia, R. Comprehensive investigation of a dye-decolorizing peroxidase and a manganese peroxidase from Irpex lacteus F17, a lignin-degrading basidiomycete. AMB Express 2018, 8, 119. [Google Scholar] [CrossRef]
- Sugano, Y.; Muramatsu, R.; Ichiyanagi, A.; Sato, T.; Shoda, M.J. DyP, a unique dye-decolorizing peroxidase, represents a novel heme peroxidase family: ASP171 replaces the distal histidine of classical peroxidases. Biol. Chem. 2007, 282, 36652–36658. [Google Scholar] [CrossRef]
- de Eugenio, L.I.; Peces-Pérez, R.; Linde, D.; Prieto, A.; Barriuso, J.; Ruiz-Dueñas, F.J.; Martínez, M.J. Characterization of a dye-decolorizing peroxidase from Irpex lacteus expressed in Escherichia coli: An enzyme with wide substrate specificity able to transform lignosulfonates. J. Fungi 2021, 7, 325. [Google Scholar] [CrossRef]
- Fernández-Fueyo, E.; Linde, D.; Almendral, D.; López-Lucendo, M.F.; Ruiz-Dueñas, F.J.; Martínez, A.T. Description of the first fungal dye-decolorizing peroxidase oxidizing manganese (II). Appl. Microbiol. Biotechnol. 2015, 99, 927–942. [Google Scholar] [CrossRef] [PubMed]
- Lauber, C.; Schwarz, T.; Quoc, K.N.; Lorenz, P.; Lochnit, G.; Zorn, H. Identification, heterologous expression and characterization of a dye-decolorizing peroxidase of Pleurotus sapidus. AMB Express 2017, 7, 164. [Google Scholar] [CrossRef] [PubMed]
Volume (mL) | Total Activity (nkatal) | Protein (mg) | Specific Activity (nkatal mg−1) | Yield, % | Purification (Fold) | |
---|---|---|---|---|---|---|
E. coli surprenant lysis | 140 | 36.400 | 7973.9 | 4.6 | 100 | 1 |
IMAC | 170 | 82.280 | 4252 | 19.4 | 226 | 4.24 |
GF | 16 | 32.000 | 2.9 | 11.034 | 88 | 2389 |
Dye | CgaDyP1 | UnFDyP1 | TvDyP |
---|---|---|---|
AB | 58.1 ± 0.028 | 18.8 ± 0.008 | 75.0 ± 0.007 |
BB | − | − | − |
RB5 | 33.1 ± 0.033 | 32.3 ± 0.009 | − |
DB79 | 2.6 ± 0.005 | 5.2 ± 0.005 | − |
VG | 13.8 ± 0.008 | − | − |
CgaDyp1 | TveDyP | unFDyP1 | AauDyp | PosDyp1 | ||
---|---|---|---|---|---|---|
ABTS | Km (mM) kcat (s−1) kcat/Km (s−1 mM−1) | 0.14 ± 0.02 2.95 21.3 | 0.29 ± 0.05 582 1989.4 | 0.65 ± 0.08 0.32 0.49 | 0.12 ± 0.01 225 1813 | 0.78 ± 0.07 208 267 |
DMP | Km (mM) kcat (s−1) kcat/Km (s−1 mM−1) | 0.15 ± 0.03 3.82 26.2 | 1.03 ± 0.8 87.4 85.2 | 0 0 0 | 0.70 ± 0.06 120 170.7 | 31.1 ± 3.8 64 2.1 |
RB19 | Km (mM) kcat (s−1) kcat/Km (s−1 mM−1) | 0 0 0 | 0.04 ± 0.003 23.8 629.6 | 1.50 ± 0.88 3.34 2.23 | 0.09 ± 0.01 224 2488 | 0.045 ± 0.007 5 111 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Staita, K.; Akrout, I.; Lambert, J.; Turbé-Doan, A.; Lomascolo, A.; Faulds, C.B.; Zouari-Mechichi, H.; Sciara, G.; Mechichi, T.; Record, E. Characterization of the Coriolopsis gallica DyP for Its Potential to Biotransform Various Fluoroquinolones. Int. J. Mol. Sci. 2024, 25, 11392. https://doi.org/10.3390/ijms252111392
Staita K, Akrout I, Lambert J, Turbé-Doan A, Lomascolo A, Faulds CB, Zouari-Mechichi H, Sciara G, Mechichi T, Record E. Characterization of the Coriolopsis gallica DyP for Its Potential to Biotransform Various Fluoroquinolones. International Journal of Molecular Sciences. 2024; 25(21):11392. https://doi.org/10.3390/ijms252111392
Chicago/Turabian StyleStaita, Karima, Imen Akrout, Julien Lambert, Annick Turbé-Doan, Anne Lomascolo, Craig B. Faulds, Héla Zouari-Mechichi, Giuliano Sciara, Tahar Mechichi, and Eric Record. 2024. "Characterization of the Coriolopsis gallica DyP for Its Potential to Biotransform Various Fluoroquinolones" International Journal of Molecular Sciences 25, no. 21: 11392. https://doi.org/10.3390/ijms252111392
APA StyleStaita, K., Akrout, I., Lambert, J., Turbé-Doan, A., Lomascolo, A., Faulds, C. B., Zouari-Mechichi, H., Sciara, G., Mechichi, T., & Record, E. (2024). Characterization of the Coriolopsis gallica DyP for Its Potential to Biotransform Various Fluoroquinolones. International Journal of Molecular Sciences, 25(21), 11392. https://doi.org/10.3390/ijms252111392