On the Boundary of Exploratory Genomics and Translation in Sequential Glioblastoma
Abstract
:1. Introduction
2. Results
2.1. WES Coverage and Mapping Quality in the GBM-P and GBM-R Cohorts
2.2. Genomic Variants in the GBM Sample Pairs
2.3. Oncogenic and Likely Oncogenic Variants in the 10 GBM Sample Pairs
2.4. Variants That also Frequently Occur in Tumors Other Than GBM
2.5. Potential Therapeutic Targets Detected in the 10 GBM Sample Pairs
2.6. Clonality and Tumor Mutation Rate (TMR) in the 10 GBM Sample Pairs
3. Discussion
4. Materials and Methods
4.1. Subjects of the Study
4.2. Sample Characteristics
4.3. Sample Preparation and Quality Check
4.4. TERT Promoter Sequencing
4.5. Library Preparation for WES
4.6. Bioinformatics
4.7. Filtering Pipeline for Variant Selection
4.8. Identification of Oncogenic and Likely Oncogenic Variants in GBM-p, GBM-R and GBM-S
4.9. Tumor Mutation Rate (TMR)
4.10. Tumor Heterogeneity
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- The Cancer Genome Atlas Research Network. Comprehensive genomic characterization defines human glioblastoma genes and core pathways. Nature 2008, 455, 1061–1068. [Google Scholar] [CrossRef] [PubMed]
- International Cancer Genome Consortium/The Cancer Genome Atlas Research Network. Pan-cancer analysis of whole genomes. Nature 2020, 578, 82–93. [Google Scholar] [CrossRef] [PubMed]
- Louis, D.N.; Perry, A.; Reifenberger, G.; Von Deimling, A.; Figarella-Branger, D.; Cavenee, W.K.; Ohgaki, H.; Wiestler, O.D.; Kleihues, P.; Ellison, D.W. The 2016 World Health Organization classification of tumors of the central nervous system: A summary. Acta Neuropathol. 2016, 131, 803–820. [Google Scholar] [CrossRef] [PubMed]
- Louis, D.N.; Perry, A.; Wesseling, P.; Brat, D.J.; Cree, I.A.; Figarella-Branger, D.; Hawkins, C.; Ng, H.K.; Pfister, S.M.; Reifenberger, G.; et al. The 2021 WHO Classification of Tumors of the Central Nervous System: A summary. Neuro-Oncology 2021, 23, 1231–1251. [Google Scholar] [CrossRef] [PubMed]
- Verhaak, R.G.W.; Hoadley, K.A.; Purdom, E.; Wang, V.; Wilkerson, M.D.; Miller, C.R.; Ding, L.; Golub, T.; Jill, P.; Alexe, G.; et al. Cancer Genome Atlas Research Network. Integrated genomic analysis identifies clinically relevant subtypes of glioblastoma characterized by abnormalities in PDGFRA, IDH1, EGFR, and NF1. Cancer Cell 2010, 17, 98–110. [Google Scholar] [CrossRef] [PubMed]
- Noushmehr, H.; Weisenberger, D.J.; Diefes, K.; Phillips, H.S.; Pujara, K.; Berman, B.P.; Pan, F.; Pelloski, C.E.; Sulman, E.P.; Bhat, K.P.; et al. Cancer Genome Atlas Research Network. Identification of a CpG island methylator phenotype that defines a distinct subgroup of glioma. Cancer Cell 2010, 17, 510–522. [Google Scholar] [CrossRef] [PubMed]
- The GLASS Consortium. Glioma through the looking GLASS: Molecular evolution of diffuse gliomas and the Glioma Longitudinal Analysis Consortium. Neuro-Oncology 2018, 20, 873–884. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.; Cazzato, E.; Ladewig, E.; Frattini, V.; Rosenbloom, D.I.S.; Zairis, S.; Abate, F.; Liu, Z.; Elliott, O.; Shin, Y.-J.; et al. Clonal evolution of glioblastoma under therapy. Nat. Genet. 2016, 48, 768–776. [Google Scholar] [CrossRef] [PubMed]
- Neilsen, B.K.; Sleightholm, R.; McComb, R.; Ramkissoon, S.H.; Ross, J.S.; Corona, R.J.; Miller, V.A.; Cooke, M.; Aizenberg, M.R. Comprehensive genetic alteration profiling in primary and recurrent glioblastoma. J. Neurooncol. 2019, 142, 111–118. [Google Scholar] [CrossRef] [PubMed]
- Barthel, F.P.; Johnson, K.C.; Varn, F.S.; Moskalik, A.D.; Tanner, G.; Kocakavuk, E.; Anderson, K.J.; Abiola, O.; Aldape, K.; Alfaro, K.D.; et al. Longitudinal trajectories of diffuse glioma in adults. Nature 2019, 576, 112–120. [Google Scholar] [CrossRef] [PubMed]
- Körber, V.; Yang, J.; Barah, P.; Wu, Y.; Stichel, D.; Gu, Z.; Fletcher, M.N.C.; Jones, D.; Hentschel, B.; Lamszus, K.; et al. Evolutionary trajectories of IDHWT glioblastomas reveal a common path of early tumorigenesis instigated years ahead of initial diagnosis. Cancer Cell 2019, 35, 692–704. [Google Scholar] [CrossRef]
- Sahm, F.; Schrimpf, D.; Jones, D.T.; Meyer, J.; Kratz, A.; Reuss, D.; Capper, D.; Koelsche, C.; Korshunov, A.; Wiestler, B.; et al. Next-generation sequencing in routine brain tumor diagnostics enables an integrated diagnosis and identifies actionable targets. Acta Neuropathol. 2016, 131, 903–910. [Google Scholar] [CrossRef] [PubMed]
- Erson-Omay, E.Z.; Henegariu, O.; Omay, S.B.; Harmancı, A.S.; Youngblood, M.W.; Mishra-Gorur, K. Longitudinal analysis of treatment-induced genomic alterations in gliomas. Genome Med. 2017, 9, 12. [Google Scholar] [CrossRef]
- Schäfer, N.; Gielen, G.H.; Rauschenbach, L.; Kebir, S.; Till, A.; Reinartz, R.; Simon, M.; Niehusmann, P.; Kleinschnitz, C.; Herrlinger, U.; et al. Longitudinal heterogeneity in glioblastoma: Moving targets in recurrent versus primary tumors. J. Transl. Med. 2019, 17, 96. [Google Scholar] [CrossRef]
- Cho, Y.A.; Kim, D.; Lee, B.; Shim, J.H.; Suh, Y.-L. Incidence, clinicopathologic, and genetic characteristics of mismatch repair gene-mutated glioblastomas. J. Neurooncol. 2021, 153, 43–53. [Google Scholar] [CrossRef] [PubMed]
- Kraboth, Z.; Galik, B.; Tompa, M.; Kajtar, B.; Urban, P.; Gyenesei, A.; Miseta, A.; Kalman, B. DNA CpG methylation in sequential glioblastoma specimens. J. Cancer Res. Clin. Oncol. 2020, 146, 2885–2896. [Google Scholar] [CrossRef] [PubMed]
- Kraboth, Z.; Kajtár, B.; Gálik, B.; Gyenesei, A.; Miseta, A.; Kalman, B. Involvement of the Catecholamine Pathway in Glioblastoma Development. Cells 2021, 10, 549. [Google Scholar] [CrossRef]
- Tompa, M.; Kajtar, B.; Galik, B.; Gyenesei, A.; Kalman, B. DNA methylation and protein expression of Wnt pathway markers in progressive glioblastoma. Pathol. Res. Pract. 2021, 222, 153429. [Google Scholar] [CrossRef] [PubMed]
- Saiki, A.Y.; Caenepeel, S.; Cosgrove, E.; Su, C.; Boedigheimer, M.; Oliner, J.D. Identifying the determinants of response to MDM2 inhibition. Oncotarget 2015, 6, 7701. [Google Scholar] [CrossRef] [PubMed]
- Michaud, K.; Solomon, D.A.; Oermann, E.; Kim, J.-S.; Zhong, W.-Z.; Prados, M.D.; Ozawa, T.; James, C.D.; Waldman, T. Pharmacologic inhibition of cyclin-dependent kinases 4 and 6 arrests the growth of glioblastoma multiforme intracranial xenografts. Cancer Res. 2010, 70, 3228–3238. [Google Scholar] [CrossRef] [PubMed]
- Lee, J.C.; Vivanco, I.; Beroukhim, R.; Huang, J.H.Y.; Feng, W.L.; DeBiasi, R.M.; Yoshimoto, K.; King, J.C.; Nghiemphu, P.; Yuza, Y.; et al. Epidermal growth factor receptor activation in glioblastoma through novel missense mutations in the extracellular domain. PloS Med. 2006, 3, e485. [Google Scholar] [CrossRef] [PubMed]
- Johanns, T.M.; Miller, C.A.; Dorward, I.G.; Tsien, C.; Chang, E.; Perry, A.; Uppaluri, R.; Ferguson, C.; Schmidt, R.E.; Dahiya, S.; et al. Immunogenomics of hypermutated glioblastoma: A patient with germline POLE deficiency treated with checkpoint blockade immunotherapy. Cancer Discov. 2016, 6, 1230–1236. [Google Scholar] [CrossRef] [PubMed]
- Li, M.M.; Datto, M.; Duncavage, E.J.; Kulkarni, S.; Lindeman, N.I.; Roy, S.; Tsimberidou, A.M.; Vnencak-Jones, C.L.; Wolff, D.J.; Younes, A.; et al. Standards and guidelines for the interpretation and reporting of sequence variants in cancer: A joint consensus recommendation of the Association for Molecular Pathology, American Society of Clinical Oncology, and College of American Pathologists. J. Mol. Diagn. 2017, 19, 4–23. [Google Scholar] [CrossRef]
- Oh, E.; Choi, Y.-L.; Kwon, M.J.; Kim, R.N.; Kim, Y.J.; Song, J.-Y.; Jung, K.S.; Shin, Y.K. Comparison of accuracy of whole-exome sequencing with formalin-fixed paraffin-embedded and fresh frozen tissue samples. PLoS ONE 2015, 10, e0144162. [Google Scholar] [CrossRef] [PubMed]
- Robbe, P.; Popitsch, N.; Knight, S.J.; Antoniou, P.; Becq, J.; He, M.; Kanapin, A.; Samsonova, A.; Vavoulis, D.V.; Ross, M.T.; et al. Clinical whole-genome sequencing from routine formalin-fixed, paraffin-embedded specimens: Pilot study for the 100,000 Genomes Project. Genet. Med. 2018, 20, 1196–1205. [Google Scholar] [CrossRef] [PubMed]
- Kerick, M.; Isau, M.; Timmermann, B.; Sültmann, H.; Herwig, R.; Krobitsch, S.; Schaefer, G.; Verdorfer, I.; Bartsch, G.; Klocker, H.; et al. Targeted high throughput sequencing in clinical cancer settings: Formaldehyde fixed-paraffin embedded (FFPE) tumor tissues, input amount and tumor heterogeneity. BMC Med. Genom. 2011, 4, 68. [Google Scholar] [CrossRef] [PubMed]
- Jin, H.; Yu, Z.; Tian, T.; Shen, G.; Chen, W.; Fan, M.; He, Q.; Dai, D.; Zhang, X.; Liu, D. Integrative Genomic and Transcriptomic Analysis of Primary Malignant Gliomas Revealed Different Patterns Between Grades and Somatic Mutations Related to Glioblastoma Prognosis. Front. Mol. Biosci. 2022, 9, 873042. [Google Scholar] [CrossRef] [PubMed]
- Saadeh, F.S.; Morsi, R.Z.; El-Kurdi, A.; Nemer, G.; Mahfouz, R.; Charafeddine, M.; Khoury, J.; Najjar, M.W.; Khoueiry, P.; Assi, H.I. Correlation of genetic alterations by whole-exome sequencing with clinical outcomes of glioblastoma patients from the Lebanese population. PLoS ONE 2020, 15, e0242793. [Google Scholar] [CrossRef] [PubMed]
- Stasik, S.; Juratli, T.A.; Petzold, A.; Richter, S.; Zolal, A.; Schackert, G.; Dahl, A.; Krex, D.; Thiede, C. Exome sequencing identifies frequent genomic loss of TET1 in IDH-wild-type glioblastoma. Neoplasia 2020, 22, 800–808. [Google Scholar] [CrossRef] [PubMed]
- Noorani, I.; de la Rosa, J.; Choi, Y.H.; Strong, A.; Ponstingl, H.; Vijayabaskar, M.S.; Lee, J.; Lee, E.; Richard-Londt, A.; Friedrich, M.; et al. PiggyBac mutagenesis and exome sequencing identify genetic driver landscapes and potential therapeutic targets of EGFR-mutant gliomas. Genome Biol. 2020, 21, 26. [Google Scholar] [CrossRef]
- Garrett, A.-M.; Lastakchi, S.; McConville, C. The personalisation of glioblastoma treatment using whole exome sequencing: A pilot study. Genes 2020, 11, 173. [Google Scholar] [CrossRef] [PubMed]
- Shin, H.; Sa, J.K.; Bae, J.S.; Koo, H.; Jin, S.; Cho, H.J.; Choi, S.W.; Kyoung, J.M.; Kim, J.Y.; Seo, Y.J.; et al. Clinical targeted next-generation sequencing panels for detection of somatic variants in gliomas. Cancer Res. Treat. Off. J. Korean Cancer Assoc. 2020, 52, 41. [Google Scholar] [CrossRef]
- Shi, Z.; Li, K.K.; Kwan, J.S.H.; Yang, R.R.; Aibaidula, A.; Tang, Q.; Bao, Y.; Mao, Y.; Chen, H.; Ng, H. Whole-exome sequencing revealed mutational profiles of giant cell glioblastomas. Brain Pathol. 2019, 29, 782–792. [Google Scholar] [CrossRef] [PubMed]
- Kraboth, Z.; Kalman, B. Longitudinal characteristics of glioblastoma in genome-wide studies. Pathol. Oncol. Res. 2019, 26, 2035–2047. [Google Scholar] [CrossRef] [PubMed]
- McNulty, S.N.; Cottrell, C.E.; Vigh-Conrad, K.A.; Carter, J.H.; Heusel, J.W.; Ansstas, G.; Dahiya, S. Beyond sequence variation: Assessment of copy number variation in adult glioblastoma through targeted tumor somatic profiling. Hum. Pathol. 2019, 86, 170–181. [Google Scholar] [CrossRef] [PubMed]
- Dhar, S.S.; Zhao, D.; Lin, T.; Gu, B.; Pal, K.; Wu, S.J.; Alam, H.; Lv, J.; Yun, K.; Gopalakrishnan, V.; et al. MLL4 is required to maintain broad H3 K4 me3 peaks and super-enhancers at tumor suppressor genes. Mol. Cell 2018, 70, 825–841. [Google Scholar] [CrossRef] [PubMed]
- Luo, G.; Chen, G.; Chen, P.; Zhou, J. Pan-cancer analysis of histone methyltransferase KMT2 D with potential implications for prognosis and immunotherapy in human cancer. Comb. Chem. High Throughput Screen. 2023, 26, 83–92. [Google Scholar] [CrossRef] [PubMed]
- Dhar, S.S.; Lee, M.G. Cancer-epigenetic function of the histone methyltransferase KMT2 D and therapeutic opportunities for the treatment of KMT2 D-deficient tumors. Oncotarget 2021, 12, 1296. [Google Scholar] [CrossRef] [PubMed]
- Pacelli, C.; Adipietro, I.; Malerba, N.; Squeo, G.M.; Piccoli, C.; Amoresano, A.; Pinto, G.; Pucci, P.; Lee, J.-E.; Ge, K.; et al. Loss of function of the gene encoding the histone methyltransferase KMT2 D leads to deregulation of mitochondrial respiration. Cells 2020, 9, 1685. [Google Scholar] [CrossRef] [PubMed]
- Zhang, P.; Meng, X.; Liu, L.; Li, S.; Li, Y.; Ali, S.; Li, S.; Xiong, J.; Liu, X.; Li, S.; et al. Identification of the prognostic signatures of glioma with different PTEN status. Front. Oncol. 2021, 11, 633357. [Google Scholar] [CrossRef]
- Kung, A.L.; Rebel, V.I.; Bronson, R.T.; Ch’Ng, L.-E.; Sieff, C.A.; Livingston, D.M.; Yao, T.-P. Gene dose-dependent control of hematopoiesis and hematologic tumor suppression by CBP. Genes Dev. 2000, 14, 272–277. [Google Scholar] [CrossRef]
- Reed, S.M.; Quelle, D.E. p53 acetylation: Regulation and consequences. Cancers 2014, 7, 30–69. [Google Scholar] [CrossRef] [PubMed]
- Ellis, H.P.; McInerney, C.E.; Schrimpf, D.; Sahm, F.; Stupnikov, A.; Wadsley, M.; Wragg, C.; White, P.; Prise, K.M.; McArt, D.G.; et al. Clinically actionable insights into initial and matched recurrent glioblastomas to inform novel treatment approaches. J. Oncol. 2019, 2019, 4878547. [Google Scholar] [CrossRef] [PubMed]
- DiRenzo, J.; Shang, Y.; Phelan, M.; Sif, S.; Myers, M.; Kingston, R.; Brown, M. BRG-1 is recruited to estrogen-responsive promoters and cooperates with factors involved in histone acetylation. Mol. Cell. Biol. 2000, 20, 7541–7549. [Google Scholar] [CrossRef] [PubMed]
- Brastianos, P.K.; Nayyar, N.; Rosebrock, D.; Leshchiner, I.; Gill, C.M.; Livitz, D.; Bertalan, M.S.; D’Andrea, M.; Hoang, K.; Aquilanti, E.; et al. Resolving the phylogenetic origin of glioblastoma via multifocal genomic analysis of pre-treatment and treatment-resistant autopsy specimens. NPJ Precis. Oncol. 2017, 1, 33. [Google Scholar] [CrossRef] [PubMed]
- An, Z.; Aksoy, O.; Zheng, T.; Fan, Q.W.; Weiss, W.A. Epidermal growth factor receptor and EGFRvIII in glioblastoma: Signaling pathways and targeted therapies. Oncogene 2018, 37, 1561–1575. [Google Scholar] [CrossRef] [PubMed]
- Chkheidze, R.; Raisanen, J.; Gagan, J.; Richardson, T.E.; Pinho, M.C.; Raj, K. Alterations in the RB pathway with inactivation of RB1 characterize glioblastomas with a primitive neuronal component. J. Neuropathol. Exp. Neurol. 2021, 80, 1092–1098. [Google Scholar] [CrossRef]
- Yu, Y.; Villanueva-Meyer, J.; Grimmer, M.R.; Hilz, S.; A Solomon, D.; Choi, S.; Wahl, M.; Mazor, T.; Hong, C.; Shai, A.; et al. Temozolomide-induced hypermutation is associated with distant recurrence and reduced survival after high-grade transformation of low-grade IDH-mutant gliomas. Neuro-Oncology 2021, 23, 1872–1884. [Google Scholar] [CrossRef] [PubMed]
- Eskilsson, E.; Verhaak, R.G.W. Longitudinal genomic characterization of brain tumors for identification of therapeutic vulnerabilities. Neuro-Oncology 2016, 18, 1037–1039. [Google Scholar] [CrossRef] [PubMed]
- Liu, E.K.; Sulman, E.P.; Wen, P.Y.; Kurz, S.C. Novel therapies for glioblastoma. Curr. Neurol. Neurosci. Rep. 2020, 20, 19. [Google Scholar] [CrossRef] [PubMed]
- Kumar, A.; Chandna, S. Evidence for a radiation-responsive ‘p53 gateway’contributing significantly to the radioresistance of lepidopteran insect cells. Sci. Rep. 2018, 8, 2. [Google Scholar] [CrossRef] [PubMed]
- Hafezi, F.; Jaxel, L.; Lemaire, M.; Turner, J.D.; Perez-Bercoff, D. TERT promoter mutations increase sense and antisense transcription from the TERT promoter. Biomedicines 2021, 9, 1773. [Google Scholar] [CrossRef] [PubMed]
- bcl2 fastq (RRID:SCR_015058). Available online: http://www.bioinformatics.babraham.ac.uk/projects/fastqc (accessed on 27 June 2023).
- Andrews, S. FASTQC: A Quality Control Tool for High Throughput Sequence Data. 2010. Available online: http://www.bioinformatics.babraham.ac.uk/projects/fastqc (accessed on 27 June 2023).
- Chen, S.; Zhou, Y.; Chen, Y.; Gu, J. fastp: An ultra-fast all-in-one FASTQ preprocessor. Bioinformatics 2018, 34, i884–i890. [Google Scholar] [CrossRef] [PubMed]
- Li, H.; Durbin, R. Fast and accurate short read alignment with Burrows-Wheeler transform. Bioinformatics. Bioinformatics 2009, 25, 1754–1760. [Google Scholar] [CrossRef] [PubMed]
- Picard. Available online: http://broadinstitute.github.io/picard (accessed on 27 June 2023).
- Konstantin, O.; Ana, C.; Fernando, G.A. Qualimap 2: Advanced multi-sample quality control for high-throughput sequencing data. Bioinformatics 2016, 32, 292–294. [Google Scholar] [CrossRef]
- Van der Auwera, G.A.; Carneiro, M.O.; Hartl, C.; Poplin, R.; del Angel, G.; Levy-Moonshine, A.; Jordan, T.; Shakir, K.; Roazen, D.; Thibault, J.; et al. From FastQ Data to High-Confidence Variant Calls: The Genome Analysis Toolkit Best Practices Pipeline. Curr. Protoc. Bioinform. 2013, 43, 11.10.1–11.10.33. [Google Scholar] [CrossRef] [PubMed]
- Mroz, E.A.; Rocco, J.W. MATH, a novel measure of intratumor genetic heterogeneity, is high in poor-outcome classes of head and neck squamous cell carcinoma. Oral Oncol. 2013, 49, 211–215. [Google Scholar] [CrossRef] [PubMed]
- Rocco, J.W. Mutant allele tumor heterogeneity (MATH) and head and neck squamous cell carcinoma. Head. Neck Pathol. 2015, 9, 1–5. [Google Scholar] [CrossRef] [PubMed]
- Mayakonda, A.; Lin, D.-C.; Assenov, Y.; Plass, C.; Koeffler, H.P. Maftools: Efficient and comprehensive analysis of somatic variants in cancer. Genome Res. 2018, 28, 1747–1756. [Google Scholar] [CrossRef] [PubMed]
GBM Pairs | GBM-P | GBM-R | GBM-S | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
SUM | O | LO | VUS | SUM | O | LO | VUS | SUM | O | LO | VUS | |
1 | 29 | 3 | 3 | 23 | 27 | 0 | 2 | 25 | 9 | 2 | 1 | 6 |
2 | 12 | 0 | 3 | 9 | 26 | 1 | 0 | 25 | 4 | 2 | 0 | 2 |
3 | 13 | 0 | 5 | 8 | 55 | 3 | 5 | 47 | 3 | 0 | 1 | 2 |
4 | 12 | 1 | 0 | 11 | 24 | 3 | 4 | 17 | 2 | 0 | 0 | 2 |
5 | 61 | 1 | 5 | 55 | 61 | 5 | 2 | 54 | 5 | 1 | 0 | 4 |
6 | 13 | 1 | 1 | 11 | 35 | 3 | 4 | 28 | 7 | 1 | 2 | 4 |
7 | 36 | 2 | 5 | 29 | 17 | 0 | 0 | 17 | 1 | 0 | 0 | 1 |
8 | 34 | 3 | 2 | 29 | 34 | 2 | 8 | 24 | 6 | 3 | 0 | 3 |
9 | 10 | 0 | 1 | 9 | 14 | 1 | 0 | 13 | 4 | 1 | 1 | 2 |
10 | 16 | 1 | 1 | 14 | 41 | 3 | 2 | 36 | 6 | 1 | 1 | 4 |
Mean | 24 | 1 | 3 | 20 | 34 | 2 | 3 | 29 | 5 | 1 | 1 | 3 |
Variant Info | Gene | Cancer Classifier | COSMIC Mutations 96 | ||||||
---|---|---|---|---|---|---|---|---|---|
Chr:Pos | Ref/Alt | Gene Name | HGVS cDot | HGVS pDot | Seq. Ont. | Score | Class. | Mutation ID | Count |
17:7578205 | C/T | TP53 | NM_000546.6:c.644 G>A | NP_000537.3:p. Ser215 Asn | M | 9 | O | COSM44093 | 29 |
17:7578262 | C/G | TP53 | NM_000546.6:c.587 G>C | NP_000537.3:p. Arg196 Pro | M | 9 | O | COSM43814 | 36 |
17:7577539 | G/A | TP53 | NM_000546.6:c.742 C>T | NP_000537.3:p. Arg248 Trp | M | 9 | O | COSM10656 | 1044 |
17:7578291 | T/A | TP53 | NM_000546.6:c.560–2 A>T | p.? | SV | 4 | LO | COSM45026 | 15 |
17:7578550 | G/T | TP53 | NM_000546.6:c.380 C>A | NP_000537.3:p. Ser127 Tyr | M | 8 | O | COSM43970 | 37 |
21:36171607 | G/A | RUNX1 | NM_001754.5:c.958 C>T | NP_001745.2:p. Arg320 Ter | F | 7 | O | COSM41699 | 21 |
1:27087503 | C/T | ARID1 A | NM_006015.6:c.2077 C>T | NP_006006.3:p. Arg693 Ter | F | 6 | O | COSM184236 | 37 |
5:112164616 | C/T | APC | NM_000038.6:c.1690 C>T | NP_000029.2:p. Arg564 Ter | F | 9 | O | COSM18848 | 82 |
17:7577548 | C/T | TP53 | NM_000546.6:c.733 G>A | NP_000537.3:p. Gly245 Ser | M | 9 | O | COSM6932 | 670 |
Sample | Total Mutations | Total Mutations per Mb | Total Mutations per Mb (log10) |
---|---|---|---|
1. GBM-P | 15,227 | 362.55 | 2.56 |
1. GBM-R | 25,619 | 609.99 | 2.79 |
2. GBM-P | 11,898 | 283.29 | 2.45 |
2. GBM-R | 16,759 | 399.02 | 2.6 |
3. GBM-P | 6281 | 149.55 | 2.17 |
3. GBM-R | 39,456 | 939.43 | 2.97 |
4. GBM-P | 11,858 | 282.33 | 2.45 |
4. GBM-R | 22,414 | 533.67 | 2.73 |
5. GBM-P | 35,395 | 842.74 | 2.93 |
5. GBM-R | 45,060 | 1072.86 | 3.03 |
6. GBM-P | 9111 | 216.93 | 2.34 |
6. GBM-R | 20,473 | 487.45 | 2.69 |
7. GBM-P | 20,877 | 497.07 | 2.70 |
7. GBM-R | 10,648 | 253.52 | 2.40 |
8. GBM-P | 17,404 | 414.38 | 2.62 |
8. GBM-R | 22,285 | 530.6 | 2.72 |
9. GBM-P | 6119 | 145.69 | 2.16 |
9. GBM-R | 7341 | 174.79 | 2.24 |
10. GBM-P | 11,005 | 262.02 | 2.42 |
10. GBM-R | 29,776 | 708.95 | 2.85 |
GBM-P Samples | GBM-R Samples | Gender | Age at Onset | Treatment | Time to Relapse (Weeks) |
---|---|---|---|---|---|
UPL22–003804 | UPL22–003816 | man | 61 | Surgery + radio + TMZ | 49 |
UPL22–003805 | UPL22–003817 | man | 39 | Surgery + radio + TMZ | 40 |
UPL22–003806 | UPL22–003818 | man | 62 | Surgery + radio + TMZ | 58 |
UPL22–003807 | UPL22–003819 | woman | 61 | Surgery + radio + TMZ | 31 |
UPL22–003810 | UPL22–003822 | man | 66 | Surgery + radio + TMZ | 56 |
UPL22–003811 | UPL22–003823 | woman | 53 | Surgery + radio + TMZ | 55 |
UPL22–003812 | UPL22–003824 | woman | 63 | Surgery+ irradiation | 30 |
UPL22–003813 | UPL22–003825 | woman | 45 | Surgery + radio + TMZ | 143 |
UPL22–003814 | UPL22–003826 | man | 43 | Surgery + radio + TMZ | 135 |
UPL22–003815 | UPL22–003827 | woman | 56 | Surgery + radio + TMZ | 199 |
Filter Cards and Databases | Settings | |
---|---|---|
First level of filtering | GATK Mutect2 hard filters | Fragment and SB variants were filtered out |
Read Depth (DP) | ≥50 | |
Variant Allele Frequency (VAF) | ≥15% | |
Alternative Read Count | ≥20 | |
Allele Freq (1 kG Phase3) | ≥2% or missing | |
Alternative Allele Freq | ≥2% or missing | |
(gnomAD Exome Variant frequencies 2.1.1) | ||
All Minor Allele Frequency (NHLBI 0.0.30) | ≥5% or missing | |
dbSNP Common 155 (NCBI) | False | |
Second level of filtering | Sequence Ontology (RefSeq Genes 105.20220307, NCBI) | Initiation codon, intragenic and synonymous variants were filtered out |
dbNSFP Functional Prediction Voting | Functional interpretation of variants | |
Cancer Classifier | Benign, Likely Benign, VUS/Weak benign and missing variants were filtered out | |
Effect (RefSeq Genes 105.20220307, NCBI) | LoF, missense, other and missing variants were retained | |
COSMIC (Cosmic Mutations 96, GHI) | True | |
VarSeq built-in flag system | Technically hard to detect variant extraction | |
Third level of filtering | GeneID (Aux Fields RefSeq Genes 105.20220307, NCBI) | 553 gene glioma-specific panel |
Fourth level of filtering | VSClinical, AMP | Manual variant interpretation |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tompa, M.; Galik, B.; Urban, P.; Kajtar, B.I.; Kraboth, Z.; Gyenesei, A.; Miseta, A.; Kalman, B. On the Boundary of Exploratory Genomics and Translation in Sequential Glioblastoma. Int. J. Mol. Sci. 2024, 25, 7564. https://doi.org/10.3390/ijms25147564
Tompa M, Galik B, Urban P, Kajtar BI, Kraboth Z, Gyenesei A, Miseta A, Kalman B. On the Boundary of Exploratory Genomics and Translation in Sequential Glioblastoma. International Journal of Molecular Sciences. 2024; 25(14):7564. https://doi.org/10.3390/ijms25147564
Chicago/Turabian StyleTompa, Marton, Bence Galik, Peter Urban, Bela Istvan Kajtar, Zoltan Kraboth, Attila Gyenesei, Attila Miseta, and Bernadette Kalman. 2024. "On the Boundary of Exploratory Genomics and Translation in Sequential Glioblastoma" International Journal of Molecular Sciences 25, no. 14: 7564. https://doi.org/10.3390/ijms25147564
APA StyleTompa, M., Galik, B., Urban, P., Kajtar, B. I., Kraboth, Z., Gyenesei, A., Miseta, A., & Kalman, B. (2024). On the Boundary of Exploratory Genomics and Translation in Sequential Glioblastoma. International Journal of Molecular Sciences, 25(14), 7564. https://doi.org/10.3390/ijms25147564