The Structure–Antiproliferative Activity Relationship of Pyridine Derivatives
Abstract
:1. Introduction
2. Results
2.1. HeLa Cell Line
2.2. A549 Cell Line
2.3. MCF7 Cell Line
2.4. HepG2 Cell Line
2.5. Cell Lines Hep2 and PC3
2.6. Cell Lines SW1116 and BGC823
2.7. DLA Cell Line
2.8. MDA-MB-231 Cell Line
2.9. Analysis of Electrostatic Potential Maps in Most Promising Derivatives
3. Discussion
4. Materials and Methods
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
Abbreviations
HeLa | Cervical and uterine cell line |
HPV | Human papillomavirus |
WHO | World Health Organization |
SAR | Structure–activity relationship |
OMe | O-CH3 |
U937 | Myeloid leukemia cell line |
SKMEL-28, A375, M21, and M21L | Melanoma cell line |
N CIH | 460 and H358 lung cell line |
RKOP 27 | Colon cell line |
A549 | Lung cell line |
A431 | Epidermoid cell line |
U87 | Glioblastoma cell line |
Hek293 | Kidney cell line |
MCF7 | Breast cell line |
HepG2 | Liver cancer |
Hep2 | Epidermoid carcinoma cell line |
PC3 | Prostate carcinoma cell line |
SW1116 | Colon cancer cell line |
BGC823 | Gastric cancer cell line |
DLA | Dalton lymphoma ascites |
MDA-MB-231 | Breast cancer cell line |
EPM | Electrostatic potential map |
O-CH3 | Methoxyl groups |
COOEt | Carboxylic ethyl ester group |
(-CN) | Cyano group |
MMFF | Merck Molecular Force Field |
PM6 | Semi-empirical method parametric method number 6 |
CPKv | Total molecular volume |
CPKa | Total molecular area |
PSA | Polar surface area |
EHomo | Energy of the highest-energy occupied orbital |
ELumo | Energy of the lowest-energy unoccupied orbital |
References
- Liew, S.; Malagobadan, S.; Arshad, N.; Nagoor, N. A review of the structure-activity relationship of natural and synthetic antimestatic compounds. Biomolecules 2020, 10, 138. [Google Scholar] [CrossRef] [PubMed]
- Laiolo, J.; Lanza, P.; Parravicini, O.; Barbieri, C.; Insuasty, D.; Cobo, J.; Vera, M.; Enriz, R.; Carpinella, M. Structure-activity relationship and the binding mode of quinolinone-pyrimidine hybrids as reversal agents of multidrug resistance medisted by P-gp. Sci. Rep. 2021, 27, 16856. [Google Scholar] [CrossRef]
- Bhat, A.; Singh, I.; Tandon, N.; Tandon, R. Structure-activity relationship (SAR) and anticancer activity of pyrrolide derivatives: Recent developments and future prospects (a review). Eur. J. Med. Chem. 2023, 249, 114954. [Google Scholar] [CrossRef]
- Lamberti, M.; Rumie, N.; Rivarola, V. Breast cancer as photodynamic therapy target: Enhaced therapeutic efficiency by overview of tumor complexity. Word J. Clin. Oncol. 2014, 5, 911–917. [Google Scholar] [CrossRef]
- Zitvoge, L.; Apetoh, L.; Griringhelli, F.; Kroemer, G. Immunological aspects of cancer chemotherapy. Nat. Rev. Immunol. 2008, 8, 59–73. [Google Scholar] [CrossRef]
- Anand, U.; Dey, A.; Singh, A.; Sanyal, R.; Mishra, A.; Pandey, D.; de Falco, V.; Upadhyay, A.; Kandimalla, R.; Chaudhary, A.; et al. Cancer chemotherapy and beyond: Currents status, drug candidates, associated risks and progress in targeted therapeutics. Genes Dis. 2023, 10, 1367–1401. [Google Scholar] [CrossRef]
- Yakimova, L.; Kunafina, A.; Nugmanova, A.; Padnya, P.; Voloshina, A.; Petrov, K.; Stoikov, I. Structure-activity reñationship of the thiacalix[4]arenes family with sulfobetaine fragments: Self-assembly and cytotoxic effect against cancer cell lines. Molecules 2022, 27, 1364. [Google Scholar] [CrossRef] [PubMed]
- Bian, T.; Vijendra, C.; Wnag, Y.; Meacham, A.; Hati, S.; Cogle, C.; Sun, H.; Xing, C. Exploring the structure-activity relationship ad mechanism of a chromene scaffold (CXL series) for its selective antiproliferative activity toward multidrug-resistent cancer cells. J. Med. Chem. 2018, 61, 6892–6903. [Google Scholar] [CrossRef]
- Ling, Y.; Hao, Z.; Liang, D.; Zhang, C.; Liu, Y.; Wang, Y. The expanding role of pyridine and dihydropyridine scaffolds in drug design. Drug Des. Dev. Ther. Antibiot. 2021, 15, 4289–4338. [Google Scholar] [CrossRef]
- Pavlinac, I.; Zlatic, K.; Persoons, L.; Daelemans, D.; Banjanac, M.; Radovanovic, V.; Butkvic, K.K.; Hranjec, M. Biological activity of amidino-substituted imidazole (4,5-b) pyridines. Molecules 2023, 28, 34. [Google Scholar]
- Bollinger, J.; Oberholzer, M.; Frech, C. Access to 2-aminopyridines-compounds of great biological and chemical significance. Adv. Synth. Catal. 2011, 353, 945–954. [Google Scholar] [CrossRef]
- Patel, S.; Burns, N. Conversion of aryl azides to aminopyridines. ACS 2022, 144, 17797–17802. [Google Scholar] [CrossRef] [PubMed]
- Sunhee, K.; Ryang, Y.K.; Min, J.S.; Saeyeon Lee, Y.M.K.; Mooyoung, S.; Jeong, J.S.; Yoonae, K.; Inhee, C.; Jichan, J.; Jiyoun, N.; et al. Lead Optimization of a Novel Series of Imidazo[1,2-a]pyridine Amides Leading to a Clinical Candidate (Q203) as a Multi- and Extensively-Drug-Resistant Anti-tuberculosis Agent. J. Med. Chem. 2014, 57, 5293–5305. [Google Scholar] [CrossRef]
- Subramanyam, J.; Tantry, S.D.; Markad, V.S.; Jyothi, B.; Gayathri, B.; Amit, K.G.; Anisha, A.; Anandkumar-Raichurkar, C.K.; Sreevalli-Sharma, N.V.; Ashwini-Narayan, C.N.; et al. Discovery of Imidazo[1,2-a]pyridine Ethers and Squaramides as Selective and Potent Inhibitors of Mycobacterial Adenosine Triphosphate (ATP) Synthesis. J. Med. Chem. 2017, 60, 1379–1399. [Google Scholar] [CrossRef]
- Lu, X.; Williams, Z.; Hards, K.; Tang, J.; Cheung, C.; Aung, H.; Wang, B.; Liu, Z.; Hu, Z.; Lenaerts, A.; et al. Pyrazolo[1,5-a]pyridine Inhibitor of the Respiratory Cytochrome bcc Complex for the Treatment of Drug-Resistant Tuberculosis. ACS Infect. Dis. 2019, 5, 239–249. [Google Scholar] [CrossRef]
- Gangjee, A.; Namjoshi, O.; Yu, J.; Ihnat, M.A.; Thorpe, J.E.; Bailey-Downs, L.C. N2-Trimethylacetyl substituted and unsubstituted-N4-phenylsubstituted-6-(2-pyridin-2-ylethyl)-7H-pyrrolo[2,3-d] pyrimidine-2,4-diamines: Design, cellular receptor tyrosine kinase inhibitory activities and in vivo evaluation as antiangiogenic, antimetastatic and antitumor agents. Bioorg. Med. Chem. 2013, 21, 1312–1323. [Google Scholar] [CrossRef] [PubMed]
- Chand, K.; Prasad, S.; Tiwari, R.K.; Shirazi, A.N.; Kumar, S.; Parang, K.; Sharma, S.K. Synthesis and evaluation of c-Src kinase inhibitory activity of pyridine-2 (1H)-one derivative. Bioorg. Chem. 2014, 53, 75–82. [Google Scholar] [CrossRef]
- Hirayama, T.; Okaniwa, M.; Banno, H.; Kakei, H.; Ohashi, A.; Iwai, K.; Ohori, M.; Mori, K.; Gotou, M.; Kawamoto, T.; et al. Synthetic Studies on Centromere-Associated Protein-E (CENP-E) Inhibitors: 2. Application of Electrostatic Potential Map (EPM) and Structure-Based Modeling to Imidazo[1,2-a]pyridine Derivatives as Anti-Tumor Agents. J. Med. Chem. 2015, 58, 8036–8053. [Google Scholar] [CrossRef]
- Yu, Y.; Han, Y.; Zhang, F.; Gao, Z.; Zhu, T.; Dong, S.; Ma, M. Design, Synthesis, and Biological Evaluation of Imidazo[1,2-a]pyridine Derivatives as Novel PI3K/mTOR Dual Inhibitors. J. Med. Chem. 2020, 63, 3028–3046. [Google Scholar] [CrossRef]
- Hu, H.; Wu, J.; Ao, M.; Zhou, X.; Li, B.; Cui, Z.; Wu, T.; Wang, L.; Xue, Y.; Wu, Z.; et al. Design, synthesis and biological evaluation of methylenehydrazine-1-carboxamide derivatives with (5-((4-(pyridin-3-yl)pyrimidin-2-yl)amino)-1H-indole scaffold: Novel potential CDK9 inhibitors. Bioorg. Chem. 2020, 102, 104064. [Google Scholar] [CrossRef]
- Yang, H.; Li, Q.; Su, M.; Luo, F.; Liu, Y.; Wang, D.; Fan, Y. Design, synthesis, and biological evaluation of novel 6-(pyridin-3-yl) quinazolin-4(3H)-one derivatives as potential anticancer agents via PI3K inhibition. Bioorg. Med. Chem. 2021, 46, 116346. [Google Scholar] [CrossRef]
- Ye, Q.; Fu, C.; Li, J. Studying the Binding Modes of Novel 2-Aminopyridine Derivatives as Effective and Selective c-Met Kinase Type 1 Inhibitors Using Molecular Modeling Approaches. Molecules 2021, 26, 52. [Google Scholar] [CrossRef]
- Wang, W.; Li, C.; Chen, Z.; Zhang, J.; Ma, L.; Tian, Y.; Ma, Y.; Guo, L.; Wang, X.; Ye, J.; et al. Novel diosgenin–amino acid–benzoic acid mustard trihybrids exert antitumor effects via cell cycle arrest and apoptosis. J. Steroid Biochem. Mol. Biol. 2022, 216, 106038. [Google Scholar] [CrossRef]
- Zhou, W.; Tang, W.; Sun, Z. Discovery and Optimization of N-Substituted 2-(4-pyridinyl)thiazole carboxamides against Tumor Growth through Regulating Angiogenesis Signaling Pathways. Sci. Rep. 2016, 6, 33434. [Google Scholar] [CrossRef]
- De Candia, M.; Fiorella, F.; Lopopolo, G.; Carotti, A.; Romano, M.R.; Lograno, M.D.; Martel, S.; Carrupt, P.-A.; Belviso, B.D.; Caliandro, R.; et al. Synthesis and Biological Evaluation of Direct Thrombin Inhibitors Bearing 4-(Piperidin-1-yl) pyridine at the P1 Position with Potent Anticoagulant Activity. J. Med. Chem. 2013, 56, 8696–8711. [Google Scholar] [CrossRef] [PubMed]
- Wang, G.; Wan, J.; Hu, Y.; Wu, X.; Prhavc, M.; Dyatkina, N.; Rajwanshi, V.K.; Smith, D.B.; Jekle, A.; Kinkade, A.; et al. Synthesis and Anti-Influenza Activity of Pyridine, Pyridazine, and Pyrimidine C-Nucleosides as Favipiravir (T-705) Analogues. J. Med. Chem. 2016, 59, 4611–4624. [Google Scholar] [CrossRef] [PubMed]
- Miranda, P.O.; Cubitt, B.; Jacob, N.T.; Janda, K.D.; De la Torre, J.C. Mining a Kröhnke Pyridine Library for Anti-Arenavirus Activity. ACS Infect. Dis. 2018, 4, 815–824. [Google Scholar] [CrossRef] [PubMed]
- Pu, S.; Wouters, R.; Schor, S.; Rozenski, J.; Barouch-Bentov, R.; Prugar, L.I.; O’Brien, C.M.; Brannan, J.M.; Dye, J.M.; Herdewijn, P.; et al. Optimization of Isothiazolo[4,3-b]pyridine-Based Inhibitors of Cyclin G Associated Kinase (GAK) with Broad-Spectrum Antiviral Activity. J. Med. Chem. 2018, 61, 6178–6192. [Google Scholar] [CrossRef]
- Xue, J.; Diao, J.; Cai, G.; Deng, L.; Zheng, B.; Yao, Y.; Song, Y. Antimalarial and Structural Studies of Pyridine-Containing Inhibitors of 1-Deoxyxylulose-5-phosphate Reductoisomerase. ACS Med. Chem. Lett. 2013, 4, 278–282. [Google Scholar] [CrossRef]
- Anand, D.; Yadav, P.K.; Patel, O.; Parmar, N.; Maurya, R.K.; Vishwakarma, P.; Raju, K.; Taneja, I.; Wahajuddin, M.; Kar, S.; et al. Antileishmanial Activity of Pyrazolopyridine Derivatives and Their Potential as an Adjunct Therapy with Miltefosine. J. Med. Chem. 2017, 60, 1041–1059. [Google Scholar] [CrossRef]
- Park, E.; Lee, S.J.; Moon, H.; Park, J.; Jeon, H.; Hwang, J.S.; Hwang, H.; Hong, K.B.; Han, S.; Choi, S.; et al. Discovery and Biological Evaluation of N-Methyl-pyrrolo[2,3-b]pyridine-5-carboxamide Derivatives as JAK1-Selective Inhibitors. J. Med. Chem. 2021, 64, 958–979. [Google Scholar] [CrossRef] [PubMed]
- Sagar, S.R.; Singh, D.P.; Das, R.D.; Panchal, N.B.; Sudarsanam, V.; Nivsarkar, M.; Vasu, K.K. Investigations on substituted (2-aminothiazol-5-yl)(imidazo[1,2-a]pyridin-3-yl)methanones for the treatment of Alzheimer’s disease. Bioorg. Med. Chem. 2021, 36, 116091. [Google Scholar] [CrossRef] [PubMed]
- Zarei, S.; Shafiei, M.; Firouzi, M.; Firoozpour, L.; Divsalar, K.; Asadipour, A.; Akbarzadeh, T.; Foroumadi, A. Design, synthesis and biological assessment of new 1-benzyl-4-((4-oxoquinazolin-3(4H)-yl)methyl) pyridin-1-ium derivatives (BOPs) as potential dual inhibitors of acetylcholinesterase and butyrylcholinesterase. Heliyon 2021, 7, e06683. [Google Scholar] [CrossRef] [PubMed]
- Balfour, M.N.; Franco, C.H.; Moraes, C.B.; Freitas-Junior, L.H.; Stefani, H.A. Synthesis and trypanocidal activity of a library of 4-substituted 2-(1H-pyrrolo[3,2-c]pyridin-2-yl)propan-2-ols. Eur. J. Med. Chem. 2017, 128, 202–212. [Google Scholar] [CrossRef] [PubMed]
- Lin, C.; Hulpia, F.; da Silva, C.F.; Batista, D.d.G.J.; Van Hecke, K.; Maes, L.; Caljón, G.; Soeiro, M.d.C.d.N.; Van Calenbergh, S. Discovery of Pyrrolo[2,3-b]pyridine (1,7-Dideazapurine) Nucleoside Analogues as Anti-Trypanosoma cruzi Agents. J. Med. Chem. 2019, 62, 8847–8865. [Google Scholar] [CrossRef] [PubMed]
- Robinson, W.; Taylor, A.; Lauga-Cami, S.; Weaver, G.; Arroo, R.; Kaiser, M.; Gul, S.; Kuzikov, M.; Ellinger, B.; Singh, K.; et al. The discovery of novel antitrypanosomal 4-phenyl-6-(pyridine-3-yl)pyrimidines. Eur. J. Med. Chem. 2021, 209, 112871. [Google Scholar] [CrossRef] [PubMed]
- Girgis, A.; Saleh, D.; George, R.; Srour, M.; Pillai, G.; Panda, C.; Katritzky, A. Synthesis, bioassay, and QSAR study of bronchodilatory active 4H-pyrano[3,2-c]pyridine-3-carbonitriles. Eur. J. Med. Chem. 2015, 89, 835–843. [Google Scholar] [CrossRef] [PubMed]
- El-Gammal, O.A.; Abu El-Reash, G.M.; Ghazy, S.E.; Radwan, A.H. Synthesis, characterization, molecular modeling and antioxidant activity of (1E,5E)-1,5-bis(1-(pyridine-2-yl)ethylidene)carbonohydrazide (H2APC) and its zinc(II), cadmium(II) and mercury(II) complexes. J. Mol. Struct. 2012, 1020, 6–15. [Google Scholar] [CrossRef]
- Abdel-Monem, Y.K.; Abou El-Enein, S.A.; El-Sheikh-Amer, M.M. Design of new metal complexes of 2-(3-amino-4,6-dimethyl-1H-pyrazolo[3,4-b]pyridin-1-yl)aceto-hydrazide: Synthesis, characterization, modeling, and antioxidant activity. J. Mol. Struct. 2017, 1127, 386–396. [Google Scholar] [CrossRef]
- Abdel-Megeed, M.; Badr, B.E.; Azaam, M.M.; El-Hiti, G.A. Synthesis, antimicrobial and anticancer activities of a novel series of diphenyl 1-(pyridin-3-yl)ethylphosphonates. Bioorg. Med. Chem. 2012, 20, 2252–2258. [Google Scholar] [CrossRef]
- Shukla, N.M.; Salunke, D.B.; Yoo, E.; Mutz, C.A.; Balakrishna, R.; David, S.A. Antibacterial activities of Groebke–Blackburn–Bienaymé-derived imidazo[1,2-a]pyridin-3-amines. Bioorg. Med. Chem. 2012, 20, 5850–5863. [Google Scholar] [CrossRef] [PubMed]
- Jardosh, H.H.; Patel, M.M. Design and synthesis of biquinolone–isoniazid hybrids as a new class of antitubercular and antimicrobial agents. Eur. J. Med. Chem. 2013, 65, 348–359. [Google Scholar] [CrossRef]
- Kim, H.S.; Jadhav, J.R.; Jung, S.J.; Kwak, J.H. Synthesis and antimicrobial activity of imidazole and pyridine appended cholestane-based conjugates. Bioorg. Med. Chem. Lett. 2013, 23, 4315–4318. [Google Scholar] [CrossRef]
- Jose, G.; Suresha Kumara, T.H.; Nagendrappa, G.; Sowmya, H.B.V.; Jasinski, J.P.; Millikan, S.P.; More, S.S.; Harish, B.G.; Chandrika, N. New polyfunctional imidazo[4,5-C]pyridine motifs: Synthesis, crystal studies, docking studies, and antimicrobial evaluation. Eur. J. Med. Chem. 2014, 77, 288–297. [Google Scholar] [CrossRef]
- Jose, G.; Suresha Kumara, T.H.; Nagendrappa, G.; Sowmya, H.B.V.; Jasinski, J.P.; Millikan, S.P.; More, S.S.; Janardhan, B.; Harish, B.G.; Chandrika, N. Synthesis, crystal structure, molecular docking and antimicrobial evaluation of new pyrrolo[3,2-c]pyridine derivatives. J. Mol. Struct. 2015, 1081, 85–95. [Google Scholar] [CrossRef]
- Kumar, S.; Sharma, N.; Maurya, I.K.; Bhasin, A.K.K.; Wangoo, N.; Brandão, P.; Félix, V.; Bhasin, K.K.; Sharma, R.K. Facile synthesis, structural evaluation, antimicrobial activity and synergistic effects of novel imidazo[1,2-a]pyridine based organoselenium compounds. Eur. J. Med. Chem. 2016, 123, 916–924. [Google Scholar] [CrossRef]
- El-Gohary, N.S.; Gabr, M.T.; Shaaban, M.I. Synthesis, molecular modeling and biological evaluation of new pyrazolo[3,4-b]pyridine analogs as potential antimicrobial, anti-quorum-sensing and anticancer agents. Bioorg. Chem. 2019, 89, 102976. [Google Scholar] [CrossRef] [PubMed]
- Azzam, R.A.; Elsayed, R.E.; Elgemeie, G.H. Design and Synthesis of a New Class of Pyridine-Based N-Sulfonamides Exhibiting Antiviral, Antimicrobial, and Enzyme Inhibition Characteristics. ACS Omega 2020, 5, 26182–26194. [Google Scholar] [CrossRef]
- Milošević, M.D.; Marinković, A.D.; Petrović, P.; Klaus, A.; Nikolić, M.G.; Prlainović, N.Z.; Cvijetić, I.N. Synthesis, characterization and SAR studies of bis(imino)pyridines as antioxidants, acetylcholinesterase inhibitors and antimicrobial agents. Bioorg. Chem. 2020, 102, 104073. [Google Scholar] [CrossRef]
- Kamat, V.; Santosh, R.; Poojary, B.; Nayak, S.P.; Kumar, B.K.; Sankaranarayanan, M.; Khanapure, S.; Barretto, D.A.; Votla, S.K. Pyridine- and Thiazole-Based Hydrazides with Promising Anti-inflammatory and Antimicrobial Activities along with Their In Silico Studies. ACS Omega 2020, 5, 25228–25239. [Google Scholar] [CrossRef]
- Ali, I.; Burki, S.; El-Haj, B.M.; Parveen, S.; Nadeem, H.Ş.; Nadeem, S.; Shah, M.R. Synthesis and characterization of pyridine-based organic salts: Their antibacterial, antibiofilm and wound healing activities. Bioorg. Chem. 2020, 100, 103937. [Google Scholar] [CrossRef] [PubMed]
- Ragab, A.; Fouad, S.A.; Ali, O.A.A.; Ahmed, E.M.; Ali, A.M.; Askar, A.A.; Ammar, Y.A. Sulfaguanidine Hybrid with Some New Pyridine-2-One Derivatives: Design, Synthesis, and Antimicrobial Activity against Multidrug-Resistant Bacteria as Dual DNA Gyrase and DHFR Inhibitors. Antibiotics 2021, 10, 162. [Google Scholar] [CrossRef] [PubMed]
- Radwan, M.A.A.; Alshubramy, M.A.; Abdel-Motaal, M.; Hemdan, B.A.; El-Kady, D.S. Synthesis, molecular docking and antimicrobial activity of new fused pyrimidine and pyridine derivatives. Bioorg. Chem. 2020, 96, 103516. [Google Scholar] [CrossRef] [PubMed]
- Mamedov, I.; Naghiyev, F.; Maharramov, A.; Uwangue, O.; Farewell, A.; Sunnerhagen, P.; Erdelyi, M. Antibacterial activity of 2-amino-3-cyanopyridine derivatives. Mendeleev Commun. 2020, 30, 498–499. [Google Scholar] [CrossRef]
- Mashood-Ahamed, F.M.; Ali, A.M.; Velusamy, V.; Manikandan, M. Aminopyridine derived azomethines as potent antimicrobial agents. Mater. Today Proc. 2021, 47, 2053–2061. [Google Scholar] [CrossRef]
- Sangani, C.; Makawana, J.A.; Zhang, X.; Teraiya, S.B.; Lin, L.; Zhu, H.L. Design, synthesis and molecular modeling of pyrazole–quinoline–pyridine hybrids as a new class of antimicrobial and anticancer agents. Eur. J. Med. Chem. 2014, 76, 549–557. [Google Scholar] [CrossRef] [PubMed]
- Zhang, F.; Wang, X.L.; Shi, J.; Wang, S.F.; Yin, Y.; Yang, Y.S.; Zhang, W.M.; Zhu, H.L. Synthesis, molecular modeling and biological evaluation of N-benzylidene-2-((5-(pyridin-4-yl)-1,3,4-oxadiazol-2-yl)thio)acetohydrazide derivatives as potential anticancer agents. Bioorg. Med. Chem. 2014, 22, 468–477. [Google Scholar] [CrossRef] [PubMed]
- Zheng, S.; Zhong, Q.; Mottamal, M.; Zhang, Q.; Zhang, C.; Lemelle, E.; McFerrin, H.; Wang, G. Design, Synthesis, and Biological Evaluation of Novel Pyridine-Bridged Analogues of Combretastatin-A4 as Anticancer Agents. J. Med. Chem. 2014, 57, 3369–3381. [Google Scholar] [CrossRef] [PubMed]
- Agonigi, G.; Riedel, T.; Zacchini, S.; Păunescu, E.; Pampaloni, G.; Bartalucci, N.; Dyson, P.J.; Marchetti, F. Synthesis and Antiproliferative Activity of New Ruthenium Complexes with Ethacrynic-Acid-Modified Pyridine and Triphenylphosphine Ligands. Inorg. Chem. 2015, 54, 6504–6512. [Google Scholar] [CrossRef]
- Al-Ghorbani, M.; Thirusangu, P.; Gurupadaswamy, H.D.; Girish, V.; Shamanth-Neralagundi, H.G.; Prabhakar, B.T.; Khanum, S.A. Synthesis and antiproliferative activity of benzophenone-tagged pyridine analogs towards the activation of caspase-activated DNase-mediated nuclear fragmentation in Dalton’s lymphoma. Bioorg. Chem. 2016, 65, 73–81. [Google Scholar] [CrossRef]
- Verga, D.; N’Guyen, C.; Dakir, M.; Coll, J.L.; Teulade-Fichou, M.P.; Molla, A. Polyheteroaryl Oxazole/Pyridine-Based Compounds Selected in Vitro as G-Quadruplex Ligands Inhibit Rock Kinase and Exhibit Antiproliferative Activity. J. Med. Chem. 2018, 61, 10502–10518. [Google Scholar] [CrossRef] [PubMed]
- Sinthiya, A.; Koperuncholan, M. Synthesis and characterization of L-amino acid doped 2Aminopyridine co-crystals for anticancer activity. Life Sci. Inform. Publ.-Res. J. Life Sci. Bioinform. Pharm. Chem. Sci. 2019, 5, 754–762. [Google Scholar] [CrossRef]
- Chen, H.; Deng, S.; Wang, Y.; Albadari, N.; Kumar, G.; Ma, D.; Li, W.; White, S.W.; Miller, D.D.; Li, W. Structure–Activity Relationship Study of Novel 6-Aryl-2-benzoyl-pyridines as Tubulin Polymerization Inhibitors with Potent Antiproliferative Properties. J. Med. Chem. 2020, 63, 827–846. [Google Scholar] [CrossRef] [PubMed]
- Quattrini, L.; Gelardi, E.L.M.; Coviello, V.; Sartini, S.; Ferraris, D.M.; Mori, M.; Nakano, I.; Garavaglia, S.; La Motta, C. Imidazo[1,2-a]pyridine Derivatives as Aldehyde Dehydrogenase Inhibitors: Novel Chemotypes to Target Glioblastoma Stem Cells. J. Med. Chem. 2020, 63, 4603–4616. [Google Scholar] [CrossRef] [PubMed]
- Alqahtani, A.M.; Bayazeed, A.A. Synthesis and antiproliferative activity studies of new functionalized pyridine linked thiazole derivatives. Arab. J. Chem. 2021, 14, 102914. [Google Scholar] [CrossRef]
- El-Sayed, A.A.; Elsayed, E.A.; Amr, A.E.-G.E. Antiproliferative Activity of Some Newly Synthesized Substituted Pyridine Candidates Using 4-(Aaryl)-6-(naphthalene-1-yl)-2-oxo-1,2-dihydropyridine-3-carbonitrile as Synthon. ACS Omega 2021, 6, 7147–7156. [Google Scholar] [CrossRef] [PubMed]
- Hassan, G.S.; Georget, H.H.; Mohammed, E.Z.; Geroge, R.F.; Mahmoud, W.R.; Omar, F.A. Mechanistic selectivity investigation and 2D-QSAR study of some new antiproliferative pyrazoles and pyrazolopyridines as potential CDK2 inhibitors. Eur. J. Med. Chem. 2021, 218, 113389. [Google Scholar] [CrossRef]
- La Célula Inmortal. Med. (Buenos Aires) 2016, 76, 40–41. Available online: http://www.scielo.org.ar/scielo.php?script=sci_arttext&pid=S0025-76802016000100008&lng=es&tlng=es (accessed on 3 January 2024).
- World Health Organization. Available online: https://www.who.int/health-topics/cervical-cancer#tab=tab_1 (accessed on 3 January 2024).
- World Health Organization. Available online: https://www.who.int/es/news-room/fact-sheets/detail/lung-cancer (accessed on 3 January 2024).
- Gobierno de México; Instituto Nacional de Salud Pública. Available online: https://www.insp.mx/avisos/mexico-frente-al-cancer-de-pulmon (accessed on 3 January 2024).
- American Cancer Society. Available online: https://www.cancer.org/es/cancer/tipos/cancer-de-pulmon/acerca/estadisticas-clave.html#:~:text=Se%20diagnosticar%C3%A1n%20alrededor%20de%20238%2C340,67%2C160%20hombres%20y%2059%2C910%20mujeres (accessed on 3 January 2024).
- World Health Organization. Available online: https://www.who.int/es/news-room/fact-sheets/detail/breast-cancer (accessed on 3 January 2024).
- Available online: https://es.linkedin.com/pulse/el-c%C3%A1ncer-de-h%C3%ADgado-en-m%C3%A9xico-antonio-fernandes-teixeira:ElcancerdehígadoenMéxico (accessed on 3 January 2024).
- American Cancer Society. Available online: https://www.cancer.org/es/cancer/tipos/cancer-de-higado/acerca/que-es-estadisticas-clave.html#:~:text=M%C3%A1s%20de%20800%2C000%20personas%20son,de%20700%2C000%20muertes%20cada%20a%C3%B1o (accessed on 3 January 2024).
- Academia Española de Dermatología y Verenología. Available online: https://www.actasdermo.org/es-factores-riesgo-mortalidad-del-carcinoma-articulo-S0001731020300065 (accessed on 4 January 2024).
- American Cancer Society. Available online: https://www.cancer.org/es/cancer/tipos/cancer-de-prostata/acerca/estadisticas-clave.html (accessed on 4 January 2024).
- World Health Organization. Available online: https://www.who.int/es/news-room/fact-sheets/detail/colorectal-cancer (accessed on 4 January 2024).
- American Cancer Society. Available online: https://www.cancer.org/es/cancer/tipos/cancer-de-estomago/acerca/estadisticas-clave.html (accessed on 4 January 2024).
- Huerta-García, C.; Pérez, D.; Velázquez-Martínez, C.; Tabatabaei, S.; Romo-Macillas, A.; Castillo, R.; Hernández-Campos, A. Structure-activity relationship of N-phenylthieno[2,3-b]pyridine-2-carboxamide derivatives designed as forkhead box M1 inhibitors: The effect of electron-withdrawing and donating substituents on the phenyl ring. Pharmaceuticals 2022, 15, 283. [Google Scholar] [CrossRef]
- Masoudinia, S.; Samadizadeh, M.; Safavi, M.; Bikanzadeh, H.; Foroumadi, A. Novel quinazolines bearing 1,3,4-thiadiazole-aryl urea derivative as anticancer agents; sesing, synthesis, molecular docking, DFT and bioactivity evaluations. BMC Chem. 2024, 18, 30. [Google Scholar] [CrossRef]
- Miladiyah, I.; Jumina, J.; Haryana, S.; Mustofa, M. Biological activity, quantitative structure-activity relationship analysis, and molecular docking of xanthone derivatives as anticancer drugs. Drug Des. Dev. Ther. 2018, 12, 149–158. [Google Scholar] [CrossRef] [PubMed]
- Saito, Y.; Kishimoto, M.; Yoshizawa, Y.; Kawaii, S. Synthesis and structure-activity relationship studies of furan-ring fused chalcones as antiproliferative agents. Anticancer Res. 2015, 35, 811–818. [Google Scholar] [PubMed]
- Cedrón, J.; Ravelo, A.; León, L.; Padrón, J.; Estévez-Braun, A. Antiproliferative and structure activity relationship of Amaryllidaceae alkaloids. Molecules 2015, 20, 13854–13863. [Google Scholar] [CrossRef] [PubMed]
Derivative | Cell Line | IC50 Value | Molecular Descriptors | ||||
---|---|---|---|---|---|---|---|
EHomo | ELumo | CPKárea | CPKvolumen | PSA | |||
HeLa | >50 μM | −8.99 | −0.65 | 272.34 | 249.43 | 21.099 | |
HeLa | 12 μM | −9.15 | −0.77 | 303.82 | 277.07 | 23.394 | |
HeLa | <25 μM | −8.91 | −0.073 | 392.96 | 396.66 | 34.545 | |
HeLa | 1 μM | −8.95 | −0.88 | 455.43 | 424.88 | 49.309 | |
HeLa | 8 μM | −8.32 | −0.52 | 340.33 | 323.4 | 37.418 | |
HeLa | 0.86 μM | −8.32 | −0.52 | 340.33 | 323.4 | 37.418 | |
A549 | 0.18 μM | −8.59 | −0.71 | 554.04 | 543.31 | 69.085 | |
A549 | 21.05 μM | −8.81 | −1.26 | 444.81 | 444.33 | 67.838 | |
A549 | 0.044 μM | −8.4 | −0.29 | 369.20 | 350.40 | 42.760 | |
A549 | 4.22 μM | −8.51 | −0.27 | 339.73 | 322.94 | 37.286 |
Derivative | Cell Line | IC50 Value | Molecular Descriptors | ||||
---|---|---|---|---|---|---|---|
EHomo | ELumo | CPK área | CPK volumen | PSA | |||
HeLa | 257 nM | −8.90 | −1.34 | 500.95 | 477.20 | 83.998 | |
A549 | 2708 μM | ||||||
HeLa | 134 nM | −9.02 | −1.30 | 578.77 | 554.38 | 88.353 | |
A549 | 3950 μM |
Derivate | Cell Line | IC50 | Molecular Descriptors | ||||
---|---|---|---|---|---|---|---|
EHomo | ELumo | CPK área | CPK volumen | PSA | |||
HeLa | 1391 nM | −8.68 | −1.17 | 481.18 | 467.14 | 57.748 | |
HeLa | 127 nM | −8.76 | −1.17 | 507.85 | 493.35 | 58.011 | |
U937 | 422 nM | ||||||
SKMEL-28 | 255 nM | ||||||
N CIH 460 | 25 nM | ||||||
RKOP 27 | 16 nM | ||||||
HeLa | 211 nM | −8.88 | −1.02 | 391.45 | 378.41 | 58.958 | |
HeLa | 1159 nM | −8.95 | −1.01 | 417.96 | 404.59 | 58.993 | |
HeLa | 1265 nM | −9.02 | −1.21 | 352.62 | 341.04 | 61.868 | |
HeLa | 255 nM | −9.05 | −1.22 | 380.14 | 367.45 | 62.783 |
Derivative | Cell Line | IC50 Value | Molecular Descriptors | ||||
---|---|---|---|---|---|---|---|
EHomo | ELumo | CPK área | CPK volumen | PSA | |||
MCF7 | 4.75 μM | −9.18 | −1.60 | 340.00 | 329.32 | 86.166 | |
HepG2 | 3.51 μM | ||||||
SW1116 | 7.38 μM | ||||||
BGC823 | 6.16 μM | ||||||
MCF7 | 0.91 μM | −8.84 | −1.54 | 358.47 | 338.01 | 103.73 | |
HepG2 | 0.76 μM | ||||||
SW1116 | 1.54 μM | ||||||
BGC823 | 4.32 μM | ||||||
MCF7 | 3.78 μM | −8.73 | −1.52 | 378.62 | 357.9 | 93.305 | |
SW1116 | 3.59 μM | ||||||
BGC823 | 1.26 μM | ||||||
MCF7 | 5.83 μM | −9.24 | −1.69 | 351.33 | 342.49 | 86.284 | |
HepG2 | 3.97 μM | ||||||
MCF7 | 7.77 μM | −8.75 | −1.15 | 372.06 | 345.85 | 84.591 | |
MCF7 | 17.63 μM | −9.85 | −1.43 | 372.20 | 350.78 | 76.033 | |
MCF7 | 24.89 μM | −9.55 | −1.53 | 348.70 | 328.07 | 68.727 | |
MCF7 | 35.5 μM | −9.75 | −1.72 | 364.39 | 344.42 | 104.106 | |
MCF7 | 23.54 μM | −7.74 | −1.59 | 410.63 | 400.06 | 69.399 | |
MCF7 | 28.2 μM | −8.61 | 0.62 | 371.98 | 371.93 | 16.836 | |
MCF7 | 10.6 μM | −8.11 | −0.99 | 570.61 | 578.85 | 32.696 | |
MCF7 | 0.93 μM | −8.21 | −0.89 | 577.72 | 584.21 | 47.340 | |
HepG2 | 12.3 μM | −9.43 | −1.51 | 351.69 | 328.26 | 68.847 | |
HepG2 | 24.7 μM | −9.75 | −1.72 | 364.39 | 344.42 | 104.106 | |
HepG2 | 15.84 μM | −8.85 | −1.43 | 372.20 | 330.78 | 76.033 | |
HepG2 | 10.02 μM | −9.11 | −1.42 | 362.07 | 341.54 | 69.231 | |
HepG2 | 5.51 μM | −9.07 | −1.58 | 339.66 | 329.06 | 89.252 | |
SW1116 | 17.02 μM | −9.41 | −1.48 | 355.95 | 336.57 | 68.587 | |
BGC823 | 20.52 μM | ||||||
SW1116 | 21.32 μM | −8.81 | −1.04 | 377.86 | 342.17 | 71.378 | |
BGC823 | 24.51 μM | ||||||
MDA-MB-231 | 9.0 μM | −8.57 | −0.38 | 333.63 | 316.35 | 20.438 | |
MDA-MB-231 | 0.075 μM | −8.85 | −0.17 | 391.38 | 369.01 | 33.722 | |
MDA-MB-231 | 0.069 μM | −8.57 | −0.57 | 398.15 | 377.90 | 48.693 | |
MDA-MB-231 | 0.0046 μM | −8.40 | −0.29 | 369.20 | 350.40 | 42.758 |
Derivative | IC50 Value vs. HepG2 | Molecular Descriptors | ||||
---|---|---|---|---|---|---|
EHomo | ELumo | CPK área | CPK volumen | PSA | ||
1.30 μM | −8.54 | −1.15 | 511.35 | 508.92 | 69.141 | |
5.84 μM | −8.77 | −1.23 | 506.67 | 504.23 | 68.821 | |
7.15 μM | −8.75 | −1.18 | 493.95 | 491.02 | 68.259 | |
4.04 μM | −8.60 | −1.11 | 544.09 | 544.11 | 60.389 | |
6.21 μM | −8.78 | −1.20 | 539.72 | 539.43 | 68.181 | |
24.4 μM | −8.73 | −1.15 | 520.56 | 526.33 | 68.213 | |
1.02 μM | −8.86 | −1.29 | 495.25 | 493.4 | 67.811 | |
4.83 μM | −8.75 | −1.21 | 499.42 | 498.03 | 67.889 | |
15.17 μM | −8.79 | −1.23 | 479.68 | 479.89 | 67.852 |
Derivative | Cell Line | IC50 Value | Molecular Descriptors | ||||
---|---|---|---|---|---|---|---|
EHomo | ELumo | CPK área | CPK volumen | PSA | |||
Hep2 | 17.71 μM | −9.17 | −1.28 | 452.82 | 416.95 | 99.324 | |
PC3 | 18.36 μM | ||||||
Hep2 | 43.36 μM | −9.09 | −1.14 | 378.85 | 349.72 | 78.567 | |
PC3 | 37.17 μM | ||||||
Hep2 | 37.44 μM | −8.53 | −0.81 | 392.65 | 358.72 | 54.54 | |
PC3 | 42.31 μM |
Derivative | IC50 Value vs. DLA | Molecular Descriptors | ||||
---|---|---|---|---|---|---|
EHomo | ELumo | CPKárea | CPKvolumen | PSA | ||
9 μM | −9.73 | −1.13 | 429.81 | 405.89 | 98.197 | |
8 μM | −9.73 | −1.14 | 440.28 | 414.83 | 98.623 | |
40 μM | −9.22 | −0.86 | 450.64 | 424.48 | 101.257 | |
−9.73 | −1.14 | 440.28 | 414.83 | 98.623 | 56.513 | |
−9.22 | −0.86 | 450.64 | 424.48 | 101.257 | 97.061 |
Derivative | IC50 vs. MDA-MB-231 | Molecular Descriptors | ||||
---|---|---|---|---|---|---|
EHomo | ELumo | CPKárea | CPKvolumen | PSA | ||
4.9 nM | −8.77 | −0.70 | 402.53 | 382.49 | 37.457 | |
9.0 nM | −8.81 | −0.78 | 391.97 | 371.67 | 57.353 | |
91.9 nM | −8.81 | −0.70 | 399.51 | 382.07 | 37.217 | |
82.4 nM | −8.77 | −0.75 | 402.40 | 382.46 | 37.27 | |
27.7 nM | −8.81 | −0.78 | 391.97 | 371.67 | 57.335 | |
41.4 nM | −8.87 | −1.07 | 387.97 | 371.32 | 58.033 | |
27.1 nM | −8.61 | −0.68 | 396.19 | 374.84 | 61.932 | |
50.7 nM | −8.53 | −0.76 | 14.77 | 312.87 | 61.049 | |
1.7 nM | −8.87 | −0.83 | 410.22 | 389.39 | 56.513 | |
2.8 nM | −8.53 | −0.76 | 414.77 | 392.87 | 61.049 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Villa-Reyna, A.-L.; Perez-Velazquez, M.; González-Félix, M.L.; Gálvez-Ruiz, J.-C.; Gonzalez-Mosquera, D.M.; Valencia, D.; Ballesteros-Monreal, M.G.; Aguilar-Martínez, M.; Leyva-Peralta, M.-A. The Structure–Antiproliferative Activity Relationship of Pyridine Derivatives. Int. J. Mol. Sci. 2024, 25, 7640. https://doi.org/10.3390/ijms25147640
Villa-Reyna A-L, Perez-Velazquez M, González-Félix ML, Gálvez-Ruiz J-C, Gonzalez-Mosquera DM, Valencia D, Ballesteros-Monreal MG, Aguilar-Martínez M, Leyva-Peralta M-A. The Structure–Antiproliferative Activity Relationship of Pyridine Derivatives. International Journal of Molecular Sciences. 2024; 25(14):7640. https://doi.org/10.3390/ijms25147640
Chicago/Turabian StyleVilla-Reyna, Ana-Laura, Martin Perez-Velazquez, Mayra Lizett González-Félix, Juan-Carlos Gálvez-Ruiz, Dulce María Gonzalez-Mosquera, Dora Valencia, Manuel G. Ballesteros-Monreal, Milagros Aguilar-Martínez, and Mario-Alberto Leyva-Peralta. 2024. "The Structure–Antiproliferative Activity Relationship of Pyridine Derivatives" International Journal of Molecular Sciences 25, no. 14: 7640. https://doi.org/10.3390/ijms25147640
APA StyleVilla-Reyna, A. -L., Perez-Velazquez, M., González-Félix, M. L., Gálvez-Ruiz, J. -C., Gonzalez-Mosquera, D. M., Valencia, D., Ballesteros-Monreal, M. G., Aguilar-Martínez, M., & Leyva-Peralta, M. -A. (2024). The Structure–Antiproliferative Activity Relationship of Pyridine Derivatives. International Journal of Molecular Sciences, 25(14), 7640. https://doi.org/10.3390/ijms25147640