In Silico Screening of Therapeutic Targets as a Tool to Optimize the Development of Drugs and Nutraceuticals in the Treatment of Diabetes mellitus: A Systematic Review
Abstract
:1. Introduction
2. Methods
2.1. Protocol and Registration
2.2. Research Question
2.3. Eligibility Criteria
2.3.1. Inclusion Criteria
2.3.2. Exclusion Criteria
2.4. Search Strategy
2.5. Study Selection
2.6. Data Extraction
2.7. Data Analysis and Synthesis
2.8. Risk of Bias
3. Results
3.1. Selection and Characteristics of the Studies
3.2. Bias Risk Assessment
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Conflicts of Interest
References
- Mitra, D.; Mitra, D.; Sabri Bensaad, M.; Sinha, S.; Pant, K.; Pant, M.; Priyadarshini, A.; Singh, P.; Dassamiour, S.; Hambaba, L.; et al. Evolution of Bioinformatics and Its Impact on Modern Bio-Science in the Twenty-First Century: Special Attention to Pharmacology, Plant Science and Drug Discovery. Comput. Toxicol. 2022, 24, 100248. [Google Scholar] [CrossRef]
- Akalın, P.K. Introduction to Bioinformatics. Mol. Nutr. Food Res. 2006, 50, 610–619. [Google Scholar] [CrossRef] [PubMed]
- Pappalardo, F.; Russo, G.; Tshinanu, F.M.; Viceconti, M. In Silico Clinical Trials: Concepts and Early Adoptions. Brief. Bioinform. 2019, 20, 1699–1708. [Google Scholar] [CrossRef]
- Sabe, V.T.; Ntombela, T.; Jhamba, L.A.; Maguire, G.E.M.; Govender, T.; Naicker, T.; Kruger, H.G. Current Trends in Computer Aided Drug Design and a Highlight of Drugs Discovered via Computational Techniques: A Review. Eur. J. Med. Chem. 2021, 224, 113705. [Google Scholar] [CrossRef] [PubMed]
- Wiesmeth, H.; Häckl, D. Integrated Environmental Policy: A Review of Economic Analysis. Waste Manag. Res. 2017, 35, 332–345. [Google Scholar] [CrossRef]
- Singh, J. The National Centre for the Replacement, Refinement, and Reduction of Animals in Research. J. Pharmacol. Pharmacother. 2012, 3, 87–89. [Google Scholar] [CrossRef]
- Borse, S.P.; Chhipa, A.S.; Sharma, V.; Singh, D.P.; Nivsarkar, M. Management of Type 2 Diabetes: Current Strategies, Unfocussed Aspects, Challenges, and Alternatives. Med. Princ. Pract. 2021, 30, 109–121. [Google Scholar] [CrossRef]
- Le, Y.; Wang, B.; Xue, M. Nutraceuticals use and type 2 diabetes mellitus. Curr. Opin. Pharmacol. 2022, 62, 168–176. [Google Scholar] [CrossRef]
- Dinesh, S.; Sharma, S.; Chourasiya, R. Therapeutic Applications of Plant and Nutraceutical-Based Compounds for the Management of Type 2 Diabetes mellitus: A Narrative Review. Curr. Diabetes Rev. 2024, 20, e050523216593. [Google Scholar] [CrossRef]
- Tu, M.; Cheng, S.; Lu, W.; Du, M. Advancement and Prospects of Bioinformatics Analysis for Studying Bioactive Peptides from Food-Derived Protein: Sequence, Structure, and Functions. TrAC Trends Anal. Chem. 2018, 105, 7–17. [Google Scholar] [CrossRef]
- Lengauer, T.; Rarey, M. Computational methods for biomolecular docking. Curr. Opin. Struct. Biol. 1996, 6, 402–406. [Google Scholar] [CrossRef]
- Meng, X.-Y.; Zhang, H.-X.; Mezei, M.; Cui, M. Molecular Docking: A Powerful Approach for Structure-Based Drug Discovery. Curr. Comput. Aided Drug Des. 2011, 7, 146–157. [Google Scholar] [CrossRef] [PubMed]
- Pinzi, L.; Rastelli, G. Molecular Docking: Shifting Paradigms in Drug Discovery. Int. J. Mol. Sci. 2019, 4, 4331. [Google Scholar] [CrossRef]
- Romano, T.K. Structure-Based Drug Design: Docking and Scoring. Curr. Protein Pept. Sci. 2007, 8, 312–328. [Google Scholar] [CrossRef] [PubMed]
- Guedes, I.A.; de Magalhães, C.S.; Dardenne, L.E. Receptor–Ligand Molecular Docking. Biophys. Rev. 2014, 6, 75–87. [Google Scholar] [CrossRef]
- Hollingsworth, S.A.; Dror, R.O. Molecular Dynamics Simulation for All. Neuron 2018, 99, 1129–1143. [Google Scholar] [CrossRef] [PubMed]
- Durrant, J.D.; McCammon, J.A. Molecular dynamics simulations and drug discovery. BMC Biol. 2011, 9, 2–9. [Google Scholar] [CrossRef]
- Adediwura, V.A.; Koirala, K.; Do, H.N.; Wang, J.; Miao, Y. Understanding the impact of binding free energy and kinetics calculations in modern drug discovery. Expert. Opin. Drug Discov. 2024, 19, 671–682. [Google Scholar] [CrossRef]
- Wang, E.; Sun, H.; Wang, J.; Wang, Z.; Liu, H.; Zhang, J.Z.H.; Hou, T. End-Point Binding Free Energy Calculation with MM/PBSA and MM/GBSA: Strategies and Applications in Drug Design. Chem. Rev. 2019, 119, 9478–9508. [Google Scholar] [CrossRef]
- Vázquez, J.; López, M.; Gibert, E.; Herrero, E.; Luque, F.J. Merging Ligand-Based and Structure-Based Methods in Drug Discovery: An Overview of Combined Virtual Screening Approaches. Molecules 2020, 25, 4723. [Google Scholar] [CrossRef]
- Brogi, S.; Ramalho, T.C.; Kuca, K.; Medina-Franco, J.L.; Valko, M. Editorial: In Silico Methods for Drug Design and Discovery. Front. Chem. 2020, 8, 612. [Google Scholar] [CrossRef]
- Rifaioglu, A.S.; Atas, H.; Martin, M.J.; Cetin-Atalay, R.; Atalay, V.; Doğan, T. Recent Applications of Deep Learning and Machine Intelligence on in Silico Drug Discovery: Methods, Tools and Databases. Brief. Bioinform. 2019, 20, 1878–1912. [Google Scholar] [CrossRef]
- American Diabetes Association (ADA). Diagnosis and Classification of Diabetes Mellitus. Diabetes Care 2014, 37 (Suppl. S1), S81–S90. [Google Scholar] [CrossRef]
- International Diabetes Federation (IDF). IDF Diabetes Atlas, 10th ed.; International Diabetes Federation: Brussels, Belgium, 2021. [Google Scholar]
- Paul, R.K.; Ahmad, I.; Patel, H.; Kumar, V.; Raza, K. Phytochemicals from Amberboa ramosa as Potential DPP-IV Inhibitors for the Management of Type-II Diabetes mellitus: Inferences from in-Silico Investigations. J. Mol. Struct. 2023, 1271, 134045. [Google Scholar] [CrossRef]
- Mahrosh, H.S.; Mehmood, R.; Bukhari, S.A.; Afzal, G.; Arif, R. Investigation of Hypoglycemic Peptides Derived from Conserved Regions of AdMc1 to Reveal Their Antidiabetic Activities. BioMed Res. Int. 2021, 2021, 5550180. [Google Scholar] [CrossRef]
- Arif, R.; Ahmad, S.; Mustafa, G.; Mahrosh, H.S.; Ali, M.; Tahir ul Qamar, M.; Dar, H.R. Molecular Docking and Simulation Studies of Antidiabetic Agents Devised from Hypoglycemic Polypeptide-P of Momordica Charantia. BioMed Res. Int. 2021, 2021, 5561129. [Google Scholar] [CrossRef] [PubMed]
- Costa, I.; Lima, M.; Medeiros, A.; Bezerra, L.; Santos, P.; Serquiz, A.; Lima, M.; Oliveira, G.; Santos, E.; Maciel, B.; et al. An Insulin Receptor-Binding Multifunctional Protein from Tamarindus Indica L. Presents a Hypoglycemic Effect in a Diet-Induced Type 2 Diabetes—Preclinical Study. Foods 2022, 11, 2207. [Google Scholar] [CrossRef] [PubMed]
- Timo, G.O.; dos Reis, R.S.S.V.; de Melo, A.F.; Costa, T.V.L.; de Oliveira Magalhães, P.; Homem-de-Mello, M. Predictive Power of In Silico Approach to Evaluate Chemicals against M. tuberculosis: A Systematic Review. Pharmaceuticals 2019, 12, 135. [Google Scholar] [CrossRef]
- Fadlalla, M.; Ahmed, M.; Ali, M.; Elshiekh, A.A.; Yousef, B.A. Molecular Docking as a Potential Approach in Repurposing Drugs Against COVID-19: A Systematic Review and Novel Pharmacophore Models. Curr. Pharmacol. Rep. 2022, 8, 212–226. [Google Scholar] [CrossRef]
- Taldaev, A.; Terekhov, R.; Nikitin, I.; Zhevlakova, A.; Selivanova, I. Insights into the Pharmacological Effects of Flavonoids: The Systematic Review of Computer Modeling. Int. J. Mol. Sci. 2022, 23, 6023. [Google Scholar] [CrossRef]
- American Diabetes Association Professional Practice Committee. 9. Pharmacologic Approaches to Glycemic Treatment: Standards of Care in Diabetes—2024. Diabetes Care 2024, 47, S158–S178. [Google Scholar] [CrossRef] [PubMed]
- Shamseer, L.; Moher, D.; Clarke, M.; Ghersi, D.; Liberati, A.; Petticrew, M.; Shekelle, P.; Stewart, L.A. Preferred Reporting Items for Systematic Review and Meta-Analysis Protocols (PRISMA-P) 2015: Elaboration and Explanation. BMJ 2015, 349, g7647. [Google Scholar] [CrossRef]
- Gomes, A.F.T.; de Medeiros, W.F.; de Oliveira, G.S.; Medeiros, I.; da S. Maia, J.K.; Bezerra, I.W.L.; Piuvezam, G.; de A. Morais, A.H. In Silico Structure-Based Designers of Therapeutic Targets for Diabetes mellitus or Obesity: A Protocol for Systematic Review. PLoS ONE 2022, 17, e0279039. [Google Scholar] [CrossRef]
- Ouzzani, M.; Hammady, H.; Fedorowicz, Z.; Elmagarmid, A. Rayyan—A Web and Mobile App for Systematic Reviews. Syst. Rev. 2016, 5, 210. [Google Scholar] [CrossRef] [PubMed]
- Page, M.J.; McKenzie, J.E.; Bossuyt, P.M.; Boutron, I.; Hoffmann, T.C.; Mulrow, C.D.; Shamseer, L.; Tetzlaff, J.M.; Akl, E.A.; Brennan, S.E.; et al. The PRISMA 2020 Statement: An Updated Guideline for Reporting Systematic Reviews. BMJ 2021, 372, n71. [Google Scholar] [CrossRef] [PubMed]
- Zaugg, H.; Tateishi, I.; Randall, D.L.; West, R.E. Mendeley: Creating Communities of Scholarly Inquiry through Research Collaboration. Tech Trends 2011, 55, 32–36. [Google Scholar] [CrossRef]
- Monks, T.; Currie, C.S.M.; Onggo, B.S.; Robinson, S.; Kunc, M.; Taylor, S.J.E. Strengthening the Reporting of Empirical Simulation Studies: Introducing the STRESS Guidelines. J. Simul. 2019, 13, 55–67. [Google Scholar] [CrossRef]
- Parmar, H.S.; Jain, P.; Chauhan, D.S.; Bhinchar, M.K.; Munjal, V.; Yusuf, M.; Choube, K.; Tawani, A.; Tiwari, V.; Manivannan, E.; et al. DPP-IV Inhibitory Potential of Naringin: An in Silico, in Vitro and in Vivo Study. Diabetes Res. Clin. Pract. 2012, 97, 105–111. [Google Scholar] [CrossRef]
- Badole, S.L.; Bagul, P.P.; Mahamuni, S.P.; Khose, R.D.; Joshi, A.C.; Jangam, G.B.; Ghule, A.E.; Raut, C.G.; Khedkar, V.M.; Coutinho, E.C. Oral L-Glutamine Increases Active GLP-1 (7-36) Amide Secretion and Improves Glycemic Control in Stretpozotocin–Nicotinamide Induced Diabetic Rats. Chem. Biol. Interact. 2013, 203, 530–541. [Google Scholar] [CrossRef] [PubMed]
- Gandhi, G.R.; Stalin, A.; Balakrishna, K.; Ignacimuthu, S.; Paulraj, M.G.; Vishal, R. Insulin Sensitization via Partial Agonism of PPARγ and Glucose Uptake through Translocation and Activation of GLUT4 in PI3K/p-Akt Signaling Pathway by Embelin in Type 2 Diabetic Rats. Biochim. Biophys. Acta Gen. Subj. 2013, 1830, 2243–2255. [Google Scholar] [CrossRef]
- Parmar, H.; Bhinchar, M.; Bhatia, M.; Chordia, N.; Raval, I.; Chauhan, D.; Manivannan, E.; Jatwa, R.; Kumar, A. Study on Gluco-Regulatory Potential of Glimepiride Sulfonamide Using In Silico, In Vitro and In Vivo Approaches. Curr. Pharm. Des. 2014, 20, 5212–5217. [Google Scholar] [CrossRef] [PubMed]
- Irudayaraj, S.S.; Stalin, A.; Sunil, C.; Duraipandiyan, V.; Al-Dhabi, N.A.; Ignacimuthu, S. Antioxidant, Antilipidemic and Antidiabetic Effects of Ficusin with Their Effects on GLUT4 Translocation and PPARγ Expression in Type 2 Diabetic Rats. Chem. Biol. Interact. 2016, 256, 85–93. [Google Scholar] [CrossRef]
- Stalin, A.; Stephen Irudayaraj, S.; Ramesh Kumar, D.; Balakrishna, K.; Ignacimuthu, S.; Al-Dhabi, N.A.; Duraipandiyan, V. Identifying Potential PPARγ Agonist/Partial Agonist from Plant Molecules to Control Type 2 Diabetes Using in Silico and in Vivo Models. Med. Chem. Res. 2016, 25, 1980–1992. [Google Scholar] [CrossRef]
- Stalin, A.; Irudayaraj, S.S.; Gandhi, G.R.; Balakrishna, K.; Ignacimuthu, S.; Al-Dhabi, N.A. Hypoglycemic Activity of 6-Bromoembelin and Vilangin in High-Fat Diet Fed-Streptozotocin-Induced Type 2 Diabetic Rats and Molecular Docking Studies. Life Sci. 2016, 153, 100–117. [Google Scholar] [CrossRef] [PubMed]
- Rehman, K.; Chohan, T.A.; Waheed, I.; Gilani, Z.; Akash, M.S.H. Taxifolin Prevents Postprandial Hyperglycemia by Regulating the Activity of A-amylase: Evidence from an in Vivo and in Silico Studies. J. Cell. Biochem. 2018, 120, 425–438. [Google Scholar] [CrossRef]
- Srivastava, S.; Shree, P.; Pandey, H.; Tripathi, Y.B. Incretin Hormones Receptor Signaling Plays the Key Role in Antidiabetic Potential of PTY-2 against STZ-Induced Pancreatitis. Biomed. Pharmacother. 2018, 97, 330–338. [Google Scholar] [CrossRef]
- Ponnulakshmi, R.; Shyamaladevi, B.; Vijayalakshmi, P.; Selvaraj, J. In Silico and in Vivo Analysis to Identify the Antidiabetic Activity of Beta Sitosterol in Adipose Tissue of High Fat Diet and Sucrose Induced Type-2 Diabetic Experimental Rats. Toxicol. Mech. Methods 2019, 29, 276–290. [Google Scholar] [CrossRef]
- Babu, S.; Krishnan, M.; Rajagopal, P.; Periyasamy, V.; Veeraraghavan, V.; Govindan, R.; Jayaraman, S. Beta-Sitosterol Attenuates Insulin Resistance in Adipose Tissue via IRS-1/Akt Mediated Insulin Signaling in High Fat Diet and Sucrose Induced Type-2 Diabetic Rats. Eur. J. Pharmacol. 2020, 873, 173004. [Google Scholar] [CrossRef]
- Alshahrani, S.; Anwer, T.; Alam, M.F.; Ahmed, R.A.; Khan, G.; Sivakumar, S.M.; Shoaib, A.; Alam, P.; Azam, F. Effect of Thymoquinone on High Fat Diet and STZ-induced Experimental Type 2 Diabetes: A Mechanistic Insight by in Vivo and in Silico Studies. J. Food Biochem. 2021, 45, e13807. [Google Scholar] [CrossRef]
- Deenadayalan, A.; Subramanian, V.; Paramasivan, V.; Veeraraghavan, V.P.; Rengasamy, G.; Coiambatore Sadagopan, J.; Rajagopal, P.; Jayaraman, S. Stevioside Attenuates Insulin Resistance in Skeletal Muscle by Facilitating IR/IRS-1/Akt/GLUT 4 Signaling Pathways: An In Vivo and In Silico Approach. Molecules 2021, 26, 7689. [Google Scholar] [CrossRef]
- Dound, Y.A.; Chaudhary, S.; Chaudhary, S.S.; Rawat, S.; Alqarni, M.H.; Ahmad, M.M.; Geesi, M.H.; Alam, P. Mechanistic Understanding of PtyroneTM: A Plant Based Natural Anti Diabetic Product. J. King Saud Univ. Sci. 2021, 33, 101454. [Google Scholar] [CrossRef]
- Ram, H.; Kumar, P.; Purohit, A.; Kashyap, P.; Kumar, S.; Kumar, S.; Singh, G.; Alqarawi, A.A.; Hashem, A.; Abd-Allah, E.F.; et al. Improvements in HOMA Indices and Pancreatic Endocrinal Tissues in Type 2-Diabetic Rats by DPP-4 Inhibition and Antioxidant Potential of an Ethanol Fruit Extract of Withania Coagulans. Nutr. Metab. 2021, 18, 43. [Google Scholar] [CrossRef]
- Xia, T.; Liu, C.-S.; Hu, Y.-N.; Luo, Z.-Y.; Chen, F.-L.; Yuan, L.-X.; Tan, X.-M. Coix Seed Polysaccharides Alleviate Type 2 Diabetes mellitus via Gut Microbiota-Derived Short-Chain Fatty Acids Activation of IGF1/PI3K/AKT Signaling. Food Res. Int. 2021, 150, 110717. [Google Scholar] [CrossRef] [PubMed]
- Kumar, P.; Ram, H.; Kala, C.; Kashyap, P.; Singh, G.; Agnihotri, C.; Singh, B.P.; Kumar, A.; Panwar, A. DPP-4 Inhibition Mediated Antidiabetic Potential of Phytoconstituents of an Aqueous Fruit Extract of Withania Coagulans (Stocks) Dunal: In-Silico, in-Vitro and in-Vivo Assessments. J. Biomol. Struct. Dyn. 2022, 41, 6145–6167. [Google Scholar] [CrossRef]
- Oyebode, O.A.; Erukainure, O.L.; Chuturgoon, A.A.; Ghazi, T.; Naidoo, P.; Chukwuma, C.I.; Islam, M.S. Bridelia Ferruginea Benth. (Euphorbiaceae) Mitigates Oxidative Imbalance and Lipotoxicity, with Concomitant Modulation of Insulin Signaling Pathways via GLUT4 Upregulation in Hepatic Tissues of Diabetic Rats. J. Ethnopharmacol. 2022, 284, 114816. [Google Scholar] [CrossRef]
- Zhang, L.; Han, L.; Ma, J.; Wu, T.; Wei, Y.; Zhao, L.; Tong, X. Exploring the Synergistic and Complementary Effects of Berberine and Paeoniflorin in the Treatment of Type 2 Diabetes mellitus by Network Pharmacology. Eur. J. Pharmacol. 2022, 919, 174769. [Google Scholar] [CrossRef]
- Lin, M.; Wang, L.; Wan, L.; Xu, J.; Li, Y.; Cao, L.; Lin, S. The Antidiabetic Effect and Mechanism of JinXiaoXiaoKe Decoction in Type 2 Diabetic Goto–Kakizaki Rats. Clin. Complementary Med. Pharmacol. 2023, 3, 100049. [Google Scholar] [CrossRef]
- Deacon, C.F. Physiology and Pharmacology of DPP-4 in Glucose Homeostasis and the Treatment of Type 2 Diabetes. Front. Endocrinol. 2019, 10, 80. [Google Scholar] [CrossRef]
- Liu, R.; Cheng, J.; Wu, H. Discovery of Food-Derived Dipeptidyl Peptidase IV Inhibitory Peptides: A Review. Int. J. Mol. Sci. 2019, 20, 463. [Google Scholar] [CrossRef]
- Schröder, D.; Zühlke, H. Gene Technology, Characterization of Insulin Gene and the Relationship to Diabetes Research. Endokrinologie 1982, 2, 197–209. [Google Scholar]
- Lemmon, M.A.; Schlessinger, J. Cell Signaling by Receptor Tyrosine Kinases. Cell 2010, 141, 1117–1134. [Google Scholar] [CrossRef] [PubMed]
- White, M.F. Regulating Insulin Signaling and β-Cell Function through IRS Proteins. Can. J. Physiol. Pharmacol. 2006, 84, 725–737. [Google Scholar] [CrossRef] [PubMed]
- Sun, X.J.; Crimmins, D.L.; Myers, M.G.; Miralpeix, M.; White, M.F. Pleiotropic Insulin Signals Are Engaged by Multisite Phosphorylation of IRS-1. Mol. Cell. Biol. 1993, 13, 7418–7428. [Google Scholar] [CrossRef] [PubMed]
- Boucher, J.; Kleinridders, A.; Kahn, C.R. Insulin Receptor Signaling in Normal and Insulin-Resistant States. Cold Spring Harb. Perspect. Biol. 2014, 6, a009191. [Google Scholar] [CrossRef]
- Gonzalez, E.; McGraw, T.E. Insulin-Modulated Akt Subcellular Localization Determines Akt Isoform-Specific Signaling. Proc. Nat. Acad. Sci. USA 2009, 106, 7004–7009. [Google Scholar] [CrossRef]
- Alessi, D.R.; James, S.R.; Downes, C.P.; Holmes, A.B.; Gaffney, P.R.J.; Reese, C.B.; Cohen, P. Characterization of a 3-Phosphoinositide-Dependent Protein Kinase Which Phosphorylates and Activates Protein Kinase Bα. Curr. Biol. 1997, 7, 261–269. [Google Scholar] [CrossRef]
- Mirza, A.Z.; Althagafi, I.I.; Shamshad, H. Role of PPAR Receptor in Different Diseases and Their Ligands: Physiological Importance and Clinical Implications. Eur. J. Med. Chem. 2019, 166, 502–513. [Google Scholar] [CrossRef]
- Brown, J.D.; Plutzky, J. Peroxisome Proliferator–Activated Receptors as Transcriptional Nodal Points and Therapeutic Targets. Circulation 2007, 115, 518–533. [Google Scholar] [CrossRef]
- Chandra, A.; Kaur, P.; Sahu, S.K.; Mittal, A. A New Insight into the Treatment of Diabetes by Means of Pan PPAR Agonists. Chem. Biol. Drug Des. 2022, 100, 947–967. [Google Scholar] [CrossRef]
- Cheng, H.S.; Tan, W.R.; Low, Z.S.; Marvalim, C.; Lee, J.Y.H.; Tan, N.S. Exploration and Development of PPAR Modulators in Health and Disease: An Update of Clinical Evidence. Int. J. Mol. Sci. 2019, 20, 5055. [Google Scholar] [CrossRef]
- Lamichane, S.; Dahal Lamichane, B.; Kwon, S.-M. Pivotal Roles of Peroxisome Proliferator-Activated Receptors (PPARs) and Their Signal Cascade for Cellular and Whole-Body Energy Homeostasis. Int. J. Mol. Sci. 2018, 19, 949. [Google Scholar] [CrossRef] [PubMed]
- Farooq, M.A.; Ali, S.; Hassan, A.; Tahir, H.M.; Mumtaz, S.; Mumtaz, S. Biosynthesis and Industrial Applications of α-Amylase: A Review. Arch. Microbiol. 2021, 203, 1281–1292. [Google Scholar] [CrossRef] [PubMed]
- Bhandari, M.R.; Jong-Anurakkun, N.; Hong, G.; Kawabata, J. α-Glucosidase and α-Amylase Inhibitory Activities of Nepalese Medicinal Herb Pakhanbhed (Bergenia Ciliata, Haw.). Food Chem. 2008, 106, 247–252. [Google Scholar] [CrossRef]
- Nelson, D.L.; Cox, M.M. Princípios de Bioquímica de Lehninger. In Glicólise, Gliconeogênese e a Via Das Pentoses-Fosfato; Nelson, D.L., Cox, M.M., Eds.; Artmed: Porto Alegre, Brazil, 2019; pp. 544–587. [Google Scholar]
- Ezcurra, M.; Reimann, F.; Gribble, F.M.; Emery, E. Molecular Mechanisms of Incretin Hormone Secretion. Curr. Opin. Pharmacol. 2013, 13, 922–927. [Google Scholar] [CrossRef]
- Nauck, M.A.; Vardarli, I.; Deacon, C.F.; Holst, J.J.; Meier, J.J. Secretion of Glucagon-like Peptide-1 (GLP-1) in Type 2 Diabetes: What Is up, What Is Down? Diabetologia 2011, 54, 10–18. [Google Scholar] [CrossRef]
- Lee, J.; Kim, M.-S. The Role of GSK3 in Glucose Homeostasis and the Development of Insulin Resistance. Diabetes Res. Clin. Pract. 2007, 77, S49–S57. [Google Scholar] [CrossRef]
- Henriksen, E.; Dokken, B. Role of Glycogen Synthase Kinase-3 in Insulin Resistance and Type 2 Diabetes. Curr. Drug Targets 2006, 7, 1435–1441. [Google Scholar] [CrossRef]
- Ahmad, S.S.; Ahmad, K.; Lee, E.J.; Lee, Y.-H.; Choi, I. Implications of Insulin-Like Growth Factor-1 in Skeletal Muscle and Various Diseases. Cells 2020, 9, 1773. [Google Scholar] [CrossRef]
- Cubbon, R.M.; Kearney, M.T.; Wheatcroft, S.B. Endothelial IGF-1 Receptor Signalling in Diabetes and Insulin Resistance. Trends Endocrinol. Metab. 2016, 27, 96–104. [Google Scholar] [CrossRef]
- Li, J.; Fu, A.; Zhang, L. An Overview of Scoring Functions Used for Protein–Ligand Interactions in Molecular Docking. Interdiscip. Sci. 2019, 11, 320–328. [Google Scholar] [CrossRef]
- Ferreira, L.; Dos Santos, R.N.; Oliva, G.; Andricopulo, A.D. Molecular Docking and Structure-Based Drug Design Strategies. Molecules 2015, 20, 13384–13421. [Google Scholar] [CrossRef] [PubMed]
- Vidal-Limon, A.; Aguilar-Toalá, J.E.; Liceaga, A.M. Integration of Molecular Docking Analysis and Molecular Dynamics Simulations for Studying Food Proteins and Bioactive Peptides. J. Agric. Food Chem. 2022, 70, 934–943. [Google Scholar] [CrossRef]
- Bernardi, R.C.; Melo, M.C.R.; Schulten, K. Enhanced sampling techniques in molecular dynamics simulations of biological systems. Biochim. Biophys. Acta 2015, 1850, 872–877. [Google Scholar] [CrossRef] [PubMed]
- Rodriguez-Bussey, I.G.; Doshi, U.; Hamelberg, D. Enhanced molecular dynamics sampling of drug target conformations. Biopolymers 2016, 105, 35–42. [Google Scholar] [CrossRef] [PubMed]
- Lazim, R.; Suh, D.; Choi, S. Advances in Molecular Dynamics Simulations and Enhanced Sampling Methods for the Study of Protein Systems. Int. J. Mol. Sci. 2020, 21, 6339. [Google Scholar] [CrossRef]
- Goodsell, D.S.; Morris, G.M.; Olson, A.J. Automated docking of flexible ligands: Applications of autodock. J. Mol. Recognit. 1996, 9, 1–5. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gomes, A.F.T.; de Medeiros, W.F.; Medeiros, I.; Piuvezam, G.; da Silva-Maia, J.K.; Bezerra, I.W.L.; Morais, A.H.d.A. In Silico Screening of Therapeutic Targets as a Tool to Optimize the Development of Drugs and Nutraceuticals in the Treatment of Diabetes mellitus: A Systematic Review. Int. J. Mol. Sci. 2024, 25, 9213. https://doi.org/10.3390/ijms25179213
Gomes AFT, de Medeiros WF, Medeiros I, Piuvezam G, da Silva-Maia JK, Bezerra IWL, Morais AHdA. In Silico Screening of Therapeutic Targets as a Tool to Optimize the Development of Drugs and Nutraceuticals in the Treatment of Diabetes mellitus: A Systematic Review. International Journal of Molecular Sciences. 2024; 25(17):9213. https://doi.org/10.3390/ijms25179213
Chicago/Turabian StyleGomes, Ana Francisca T., Wendjilla F. de Medeiros, Isaiane Medeiros, Grasiela Piuvezam, Juliana Kelly da Silva-Maia, Ingrid Wilza L. Bezerra, and Ana Heloneida de A. Morais. 2024. "In Silico Screening of Therapeutic Targets as a Tool to Optimize the Development of Drugs and Nutraceuticals in the Treatment of Diabetes mellitus: A Systematic Review" International Journal of Molecular Sciences 25, no. 17: 9213. https://doi.org/10.3390/ijms25179213
APA StyleGomes, A. F. T., de Medeiros, W. F., Medeiros, I., Piuvezam, G., da Silva-Maia, J. K., Bezerra, I. W. L., & Morais, A. H. d. A. (2024). In Silico Screening of Therapeutic Targets as a Tool to Optimize the Development of Drugs and Nutraceuticals in the Treatment of Diabetes mellitus: A Systematic Review. International Journal of Molecular Sciences, 25(17), 9213. https://doi.org/10.3390/ijms25179213