Okinawa-Based Nordic Diet Decreases Plasma Levels of IAPP and IgA against IAPP Oligomers in Type 2 Diabetes Patients
Abstract
:1. Introduction
2. Results
2.1. Clinical Characteristics
2.2. The Okinawa-Based Nordic Diet Decreases Plasma Levels of IAPP
2.3. Plasma IAPP Levels Correlate with Metabolic and Inflammatory Markers
2.4. The Okinawa-Based Nordic Diet Decreases Plasma Levels of IgA against Oligomeric IAPP
2.5. Levels of IAPP Autoantibodies Correlate with Metabolic and Inflammatory Markers
2.6. Reduction in Plasma IAPPO-IgA Levels after 3 Months Is Selectively Seen in Non-APOE4 Carriers
2.7. Fecal IAPPO-IgA Levels Correlate with Gut Inflammation Markers
3. Discussion
4. Limitations
5. Materials and Methods
5.1. Individuals Included in the Study
5.2. APOE Genotyping
5.3. Stratification of the Cohort
5.4. Preparation of IAPP Monomers and Oligomers
5.5. Preparation of Fecal Homogenates
5.6. Detection of IAPP in Plasma and Fecal Samples
5.7. Detection of IAPP-IgA in Plasma and Fecal Samples
5.8. Detection of Total IgA in Plasma and Fecal Samples
5.9. Detection of Albumin in Faecal Samples
5.10. Statistical Analyses
6. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Wysham, C.; Shubrook, J. Beta-cell failure in type 2 diabetes: Mechanisms, markers, and clinical implications. Postgrad. Med. 2020, 132, 676–686. [Google Scholar] [CrossRef] [PubMed]
- Farmaki, P.; Damaskos, C.; Garmpis, N.; Garmpi, A.; Savvanis, S.; Diamantis, E. Complications of the Type 2 Diabetes Mellitus. Curr. Cardiol. Rev. 2020, 16, 249–251. [Google Scholar] [CrossRef]
- Zheng, B.; Su, B.; Price, G.; Tzoulaki, I.; Ahmadi-Abhari, S.; Middleton, L. Glycemic Control, Diabetic Complications, and Risk of Dementia in Patients with Diabetes: Results from a Large U.K. Cohort Study. Diabetes Care 2021, 44, 1556–1563. [Google Scholar] [CrossRef] [PubMed]
- Christ, A.; Lauterbach, M.; Latz, E. Western Diet and the Immune System: An Inflammatory Connection. Immunity 2019, 51, 794–811. [Google Scholar] [CrossRef] [PubMed]
- Karampatsi, D.; Zabala, A.; Wilhelmsson, U.; Dekens, D.; Vercalsteren, E.; Larsson, M.; Nyström, T.; Pekny, M.; Patrone, C.; Darsalia, V. Diet-induced weight loss in obese/diabetic mice normalizes glucose metabolism and promotes functional recovery after stroke. Cardiovasc. Diabetol. 2021, 20, 240. [Google Scholar] [CrossRef] [PubMed]
- Ohlsson, B. An Okinawan-based Nordic diet improves glucose and lipid metabolism in health and type 2 diabetes, in alignment with changes in the endocrine profile, whereas zonulin levels are elevated. Exp. Ther. Med. 2019, 17, 2883–2893. [Google Scholar] [CrossRef]
- Mitsukawa, T.; Takemura, J.; Asai, J.; Nakazato, M.; Kangawa, K.; Matsuo, H.; Matsukura, S. Islet Amyloid Polypeptide Response to Glucose, Insulin, and Somatostatin Analogue Administration. Diabetes 1990, 39, 639–642. [Google Scholar] [CrossRef] [PubMed]
- Raimundo, A.F.; Ferreira, S.; Martins, I.C.; Menezes, R. Islet Amyloid Polypeptide: A Partner in Crime with Aβ in the Pathology of Alzheimer’s Disease. Front. Mol. Neurosci. 2020, 13, 35. [Google Scholar] [CrossRef] [PubMed]
- Raleigh, D.; Zhang, X.; Hastoy, B.; Clark, A. The β-cell assassin: IAPP cytotoxicity. J. Mol. Endocrinol. 2017, 59, R121–R140. [Google Scholar] [CrossRef]
- de Koning, E.J.P.; Fleming, K.A.; Gray, D.W.R.; Clark, A. High prevalence of pancreatic islet amyloid in patients with end-stage renal failure on dialysis treatment. J. Pathol. 1995, 175, 253–258. [Google Scholar] [CrossRef]
- Gong, W.; Liu, Z.; Zeng, C.; Peng, A.; Chen, H.; Zhou, H.; Li, L. Amylin deposition in the kidney of patients with diabetic nephropathy. Kidney Int. 2007, 72, 213–218. [Google Scholar] [CrossRef] [PubMed]
- Liu, M.; Verma, N.; Peng, X.; Srodulski, S.; Morris, A.; Chow, M.; Hersh, L.B.; Chen, J.; Zhu, H.; Netea, M.G.; et al. Hyperamylinemia Increases IL-1β Synthesis in the Heart via Peroxidative Sarcolemmal Injury. Diabetes 2016, 65, 2772–2783. [Google Scholar] [CrossRef] [PubMed]
- Albariqi, M.M.; Versteeg, S.; Brakkee, E.M.; Coert, J.H.; Elenbaas, B.O.; Prado, J.; Hack, C.E.; Höppener, J.W.; Eijkelkamp, N. Human IAPP is a contributor to painful diabetic peripheral neuropathy. J. Clin. Investig. 2023, 133. [Google Scholar] [CrossRef]
- Jackson, K.; Barisone, G.A.; Diaz, E.; Jin, L.W.; DeCarli, C.; Despa, F. Amylin deposition in the brain: A second amyloid in Alzheimer disease? Ann. Neurol. 2013, 74, 517–526. [Google Scholar] [CrossRef] [PubMed]
- Nuñez-Diaz, C.; Pocevičiūtė, D.; Schultz, N.; Welinder, C.; Swärd, K.; Wennström, M.; Bank, T.N.B. Contraction of human brain vascular pericytes in response to islet amyloid polypeptide is reversed by pramlintide. Mol. Brain 2023, 16, 25. [Google Scholar] [CrossRef]
- Schultz, N.; Byman, E.; Fex, M.; Wennström, M. Amylin alters human brain pericyte viability and NG2 expression. J. Cereb. Blood Flow Metab. 2017, 37, 1470–1482. [Google Scholar] [CrossRef] [PubMed]
- Schultz, N.; Janelidze, S.; Byman, E.; Minthon, L.; Nägga, K.; Hansson, O.; Wennström, M. Levels of islet amyloid polypeptide in cerebrospinal fluid and plasma from patients with Alzheimer’s disease. PLoS ONE 2019, 14, e0218561. [Google Scholar] [CrossRef]
- Bhattacharya, D.; Mukhopadhyay, M.; Bhattacharyya, M.; Karmakar, P. Is autophagy associated with diabetes mellitus and its complications? A review. EXCLI J. 2018, 17, 709–720. [Google Scholar] [CrossRef]
- Clark, A.; Yon, S.; Koning, E.; Holman, R. Autoantibodies to islet amyloid polypeptide in diabetes. Diabet. Med. 1991, 8, 668–673. [Google Scholar] [CrossRef]
- Bram, Y.; Frydman-Marom, A.; Yanai, I.; Gilead, S.; Shaltiel-Karyo, R.; Amdursky, N.; Gazit, E. Apoptosis induced by islet amyloid polypeptide soluble oligomers is neutralized by diabetes-associated specific antibodies. Sci. Rep. 2014, 4, 4267. [Google Scholar] [CrossRef]
- Roesti, E.S.; Boyle, C.N.; Zeman, D.T.; Sande-Melon, M.; Storni, F.; Cabral-Miranda, G.; Knuth, A.; Lutz, T.A.; Vogel, M.; Bachmann, M.F. Vaccination Against Amyloidogenic Aggregates in Pancreatic Islets Prevents Development of Type 2 Diabetes Mellitus. Vaccines 2020, 8, 116. [Google Scholar] [CrossRef]
- Wirth, F.; Heitz, F.D.; Seeger, C.; Combaluzier, I.; Breu, K.; Denroche, H.C.; Thevenet, J.; Osto, M.; Arosio, P.; Kerr-Conte, J.; et al. A human antibody against pathologic IAPP aggregates protects beta cells in type 2 diabetes models. Nat. Commun. 2023, 14, 6294. [Google Scholar] [CrossRef]
- Pocevičiūtė, D.; Roth, B.; Schultz, N.; Nuñez-Diaz, C.; Janelidze, S.; Bank, T.N.B.; Olofsson, A.; Hansson, O.; Wennström, M. Plasma IAPP-Autoantibody Levels in Alzheimer’s Disease Patients Are Affected by APOE4 Status. Int. J. Mol. Sci. 2023, 24, 3776. [Google Scholar] [CrossRef]
- Miyazato, M.; Nakazato, M.; Shiomi, K.; Aburaya, J.; Toshimori, H.; Kangawa, K.; Matsuo, H.; Matsukura, S. Identification and characterization of islet amyloid polypeptide in mammalian gastrointestinal tract. Biochem. Biophys. Res. Commun. 1991, 181, 293–300. [Google Scholar] [CrossRef]
- Kautzky-Willer, A.; Leutner, M.; Harreiter, J. Sex differences in type 2 diabetes. Diabetologia 2023, 66, 986–1002. [Google Scholar] [CrossRef]
- Liu, S.; Liu, J.; Weng, R.; Gu, X.; Zhong, Z. Apolipoprotein E gene polymorphism and the risk of cardiovascular disease and type 2 diabetes. BMC Cardiovasc. Disord. 2019, 19, 213. [Google Scholar] [CrossRef] [PubMed]
- Pocevičiūtė, D.; Nuñez-Diaz, C.; Roth, B.; Janelidze, S.; Giannisis, A.; Hansson, O.; Wennström, M.; Bank, T.N.B. Increased plasma and brain immunoglobulin A in Alzheimer’s disease is lost in apolipoprotein E ε4 carriers. Alzheimer’s Res. Ther. 2022, 14, 117. [Google Scholar] [CrossRef] [PubMed]
- Wang, L.; Llorente, C.; Hartmann, P.; Yang, A.-M.; Chen, P.; Schnabl, B. Methods to determine intestinal permeability and bacterial translocation during liver disease. J. Immunol. Methods 2015, 421, 44–53. [Google Scholar] [CrossRef] [PubMed]
- Hou, X.; Sun, L.; Li, Z.; Mou, H.; Yu, Z.; Li, H.; Jiang, P.; Yu, D.; Wu, H.; Ye, X.; et al. Associations of amylin with inflammatory markers and metabolic syndrome in apparently healthy Chinese. PLoS ONE 2011, 6, e24815. [Google Scholar] [CrossRef]
- de Luca, C.; Olefsky, J.M. Inflammation and insulin resistance. FEBS Lett. 2008, 582, 97–105. [Google Scholar] [CrossRef]
- Calder, P.C.; Ahluwalia, N.; Brouns, F.; Buetler, T.; Clement, K.; Cunningham, K.; Esposito, K.; Jönsson, L.S.; Kolb, H.; Lansink, M.; et al. Dietary factors and low-grade inflammation in relation to overweight and obesity. Br. J. Nutr. 2011, 106, S1–S78. [Google Scholar] [CrossRef] [PubMed]
- Ma, H.; Murphy, C.; Loscher, C.E.; O’Kennedy, R. Autoantibodies—Enemies, and/or potential allies? Front. Immunol. 2022, 13, 953726. [Google Scholar] [CrossRef]
- Garcia, K.; Ferreira, G.; Reis, F.; Viana, S. Impact of Dietary Sugars on Gut Microbiota and Metabolic Health. Diabetology 2022, 3, 549–560. [Google Scholar] [CrossRef]
- Willcox, D.C.; Scapagnini, G.; Willcox, B.J. Healthy aging diets other than the Mediterranean: A focus on the Okinawan diet. Mech. Ageing Dev. 2014, 136–137, 148–162. [Google Scholar] [CrossRef] [PubMed]
- Martín-Peláez, S.; Fito, M.; Castaner, O. Mediterranean Diet Effects on Type 2 Diabetes Prevention, Disease Progression, and Related Mechanisms. A Review. Nutrients 2020, 12, 2236. [Google Scholar] [CrossRef] [PubMed]
- Xiao, Y.; Zhang, Q.; Liao, X.; Elbelt, U.; Weylandt, K.H. The effects of omega-3 fatty acids in type 2 diabetes: A systematic review and meta-analysis. Prostaglandins Leukot. Essent. Fat. Acids 2022, 182, 102456. [Google Scholar] [CrossRef] [PubMed]
- Marini, H.R. Mediterranean Diet and Soy Isoflavones for Integrated Management of the Menopausal Metabolic Syndrome. Nutrients 2022, 14, 1550. [Google Scholar] [CrossRef] [PubMed]
- Squadrito, F.; Marini, H.; Bitto, A.; Altavilla, D.; Polito, F.; Adamo, E.B.; D’Anna, R.; Arcoraci, V.; Burnett, B.P.; Minutoli, L.; et al. Genistein in the Metabolic Syndrome: Results of a Randomized Clinical Trial. J. Clin. Endocrinol. Metab. 2013, 98, 3366–3374. [Google Scholar] [CrossRef] [PubMed]
- Manoharan, L.; Roth, B.; Bang, C.; Stenlund, H.; Ohlsson, B. An Okinawan-Based Nordic Diet Leads to Profound Effects on Gut Microbiota and Plasma Metabolites Linked to Glucose and Lipid Metabolism. Nutrients 2023, 15, 3273. [Google Scholar] [CrossRef]
- Antony, M.A.; Chowdhury, A.; Edem, D.; Raj, R.; Nain, P.; Joglekar, M.; Verma, V.; Kant, R. Gut microbiome supplementation as therapy for metabolic syndrome. World J. Diabetes 2023, 14, 1502–1513. [Google Scholar] [CrossRef]
- Gharibyan, A.L.; Islam, T.; Pettersson, N.; Golchin, S.A.; Lundgren, J.; Johansson, G.; Genot, M.; Schultz, N.; Wennström, M.; Olofsson, A. Apolipoprotein E Interferes with IAPP Aggregation and Protects Pericytes from IAPP-Induced Toxicity. Biomolecules 2020, 10, 134. [Google Scholar] [CrossRef]
- El-Lebedy, D.; Raslan, H.M.; Mohammed, A.M. Apolipoprotein E gene polymorphism and risk of type 2 diabetes and cardiovascular disease. Cardiovasc. Diabetol. 2016, 15, 12. [Google Scholar] [CrossRef]
- Comley, L.H.; Fuller, H.R.; Wishart, T.M.; Mutsaers, C.A.; Thomson, D.; Wright, A.K.; Ribchester, R.R.; Morris, G.E.; Parson, S.H.; Horsburgh, K.; et al. ApoE isoform-specific regulation of regeneration in the peripheral nervous system. Hum. Mol. Genet. 2011, 20, 2406–2421. [Google Scholar] [CrossRef]
- Bedlack, R.S.; Edelman, D.; Gibbs, J.W., III; Kelling, D.; Strittmatter, W.; Saunders, A.M.; Morgenlander, J. APOE genotype is a risk factor for neuropathy severity in diabetic patients. Neurology 2003, 60, 1022. [Google Scholar] [CrossRef] [PubMed]
- Tsuzuki, S.; Murano, T.; Watanabe, H.; Itoh, Y.; Miyashita, Y.; Shirai, K. The examination of apoE phenotypes in diabetic patients with peripheral neuropathy. Rinsho Byori 1998, 46, 829–833. [Google Scholar] [PubMed]
- Huang, F.; Nilholm, C.; Roth, B.; Linninge, C.; Höglund, P.; Nyman, M.; Ohlsson, B. Anthropometric and metabolic improvements in human type 2 diabetes after introduction of an Okinawan-based Nordic diet are not associated with changes in microbial diversity or SCFA concentrations. Int. J. Food Sci. Nutr. 2018, 69, 729–740. [Google Scholar] [CrossRef]
- Nilholm, C.; Roth, B.; Höglund, P.; Blennow, K.; Englund, E.; Hansson, O.; Zetterberg, H.; Ohlsson, B. Dietary intervention with an Okinawan-based Nordic diet in type 2 diabetes renders decreased interleukin-18 concentrations and increased neurofilament light concentrations in plasma. Nutr. Res. 2018, 60, 13–25. [Google Scholar] [CrossRef] [PubMed]
- Ohlsson, B.; Darwiche, G.; Roth, B.; Höglund, P. Alignments of endocrine, anthropometric, and metabolic parameters in type 2 diabetes after intervention with an Okinawa-based Nordic diet. Food Nutr. Res. 2018, 62. [Google Scholar] [CrossRef] [PubMed]
- Darwiche, G.; Höglund, P.; Roth, B.; Larsson, E.; Sjöberg, T.; Wohlfart, B.; Steen, S.; Ohlsson, B. An Okinawan-based Nordic diet improves anthropometry, metabolic control, and health-related quality of life in Scandinavian patients with type 2 diabetes: A pilot trial. Food Nutr. Res. 2016, 60, 32594. [Google Scholar] [CrossRef]
- Ohlsson, B.; Roth, B.; Larsson, E.; Höglund, P. Calprotectin in serum and zonulin in serum and feces are elevated after introduction of a diet with lower carbohydrate content and higher fiber, fat and protein contents. Biomed. Rep. 2017, 6, 411–422. [Google Scholar] [CrossRef]
- Watt, K.A.; Nussey, D.H.; Maclellan, R.; Pilkington, J.G.; McNeilly, T.N. Fecal antibody levels as a noninvasive method for measuring immunity to gastrointestinal nematodes in ecological studies. Ecol. Evol. 2016, 6, 56–67. [Google Scholar] [CrossRef] [PubMed]
Variables: | T2D (n = 30) |
---|---|
Age (mean years ± SD) | 58 ± 8 |
Sex (M/F) | 13/17 |
BMI (mean kg/m2 ± SD) | 29.8 ± 4.2 |
APOE genotype, no (%) | |
APOE23 | 5 (17%) |
APOE24 | 3 (10%) |
APOE33 | 14 (47%) |
APOE34 | 8 (27%) |
Diabetic complications, no (%) | 19 (63%) |
Retinopathy | 10 (33%) |
Microalbuminuria | 5 (17%) |
Peripheral neuropathy | 4 (13%) |
Macroangiopathy | 5 (17%) |
Autonomous neuropathy | 7 (23%) |
GI dysmotility | 1 (3%) |
T2D management, no (%) | |
Diet alone | 3 (10%) |
Insulin | 4 (13%) |
Metformin | 15 (50%) |
Insulin + metformin | 8 (27%) |
IAPP a | ||
---|---|---|
Baseline (c/d) | Changes (e/f) b | |
Metabolic markers | ||
BMI | 0.465 */na | 0.416 */na |
Glucose | ns/ns | 0.549 **/ns |
C-peptide | ns/ns | 0.449 */ns |
Insulin | 0.465 */ns | 0.669 ***/ns |
HOMA-IR | 0.490 **/ns | 0.704 ***/ns |
GIP | ns/ns | 0.407 */ns |
Butyric acid | −0.460 */ns | ns/ns |
Cholesterol | ns/0.419 * | ns/ns |
LDL | ns/0.440 * | ns/ns |
Albumin | ns/ns | ns/0.415 * |
Peripheral inflammation markers | ||
Total IgA | ns/0.454 * | ns/ns |
CRP | 0.657 ***/ns | ns/ns |
IFNγ | 0.378 */0.784 *** | ns/ns |
IL1α | ns/0.716 *** | ns/ns |
IL1β | ns/0.516 * | 0.398 */ns |
IL2 | ns/0.648 *** | 0.416 */0.491 * |
IL4 | ns/0.648 *** | 0.377 */ns |
IL12p70 | ns/0.633 *** | 0.398 */ns |
IL18 | ns/0.569 ** | ns/ns |
TNFα | ns/0.726 *** | ns/ns |
Resistin | ns/ns | −0.426 */ns |
Markers of liver damage | ||
GGT | 0.535 **/ns | ns/ns |
Markers of brain changes | ||
NfL | ns/ns | −0.481 **/ns |
IAPPM-IgA | IAPPO-IgA | |||
---|---|---|---|---|
Baseline (c/d) | Changes (e/f) b | Baseline (c/d) | Changes (e/f) b | |
Metabolic markers | ||||
IAPP a | ns/0.431 * | 0.394 */ns | ns/ns | ns/ns |
Glucose | 0.464 **/ns | ns/ns | 0.455 */ns | ns/ns |
HbA1c | 0.383 */ns | ns/ns | ns/ns | ns/ns |
Insulin | ns/ns | ns/ns | ns/ns | 0.485 **/ns |
HOMA-IR | ns/ns | ns/0.407 * | ns/ns | 0.523 **/ns |
Glucagon | ns/ns | 0.387 */ns | 0.429 */ns | 0.389 */ns |
GIP | ns/ns | 0.565 ***/ns | 0.365 */ns | ns/ns |
Isobutyric acid | ns/ns | ns/ns | ns/ns | ns/0.806 *** |
Triglycerides | ns/ns | 0.559 ***/0.465 * | ns/ns | 0.455 */ns |
Peripheral inflammation markers | ||||
Total IgA | 0.779 ***/0.618 *** | ns/ns | 0.530 **/ns | ns/ns |
CRP | ns/ns | ns/ns | 0.376 */ns | ns/ns |
IL1α | ns/0.427 * | ns/ns | ns/ns | ns/ns |
IL1β | ns/0.470 * | ns/ns | ns/ns | ns/ns |
IL2 | ns/0.481 * | ns/ns | ns/ns | ns/ns |
IL18 | ns/0.416 * | ns/ns | ns/ns | ns/ns |
IFNγ | ns/0.392 * | ns/ns | ns/ns | ns/ns |
TNFα | ns/0.453 * | ns/ns | ns/ns | ns/ns |
Markers of liver damage | ||||
GGT | 0.418 */ns | ns/ns | 0.550 **/ns | ns/ns |
ALT | 0.508 **/ns | ns/ns | ns/ns | ns/ns |
Markers of brain changes | ||||
NfL | ns/ns | ns/ns | ns/0.506 ** | ns/ns |
Nutritional Value | Unit | Calculated Value | E% | Recommended (NNR 2012) |
---|---|---|---|---|
Total Energy | kcal | 1866.0 | ||
Energy (excluding beverages) | kcal | 1629.0 | ||
Carbohydrates | g | 168.4 | 42 E% | 45–60 E% |
Sucrose | g | 23.5 | 6 E% | <10 E% |
Dietary fiber | g | 35.9 | 4 E% | 25–35 g |
Fat | g | 63.9 | 35 E% | 25–40 E% |
Saturated fatty acids | g | 18.7 | 10 E% | <10 E% |
Polyunsaturated fatty acids | g | 14.9 | 8 E% | 5–10 E% |
Monounsaturated fatty acids | g | 17.8 | 10 E% | 10–20 E% |
Protein | g | 95.0 | 23 E% | 10–20 E% |
Alpha-Tocopherol | mg | 1.9 | ||
Beta-Carotene | µg | 9902.1 | ||
Retinol | µg | 259.7 | ||
Vitamin A | µg | 139.9 | 700 | |
Vitamin D | µg | 8.8 | 10 | |
Vitamin E | mg | 11.4 | 8 | |
Thiamine | mg | 1.1 | 1.1 | |
Riboflavin | mg | 1.2 | 1.2 | |
Niacin equivalent | mg | 34.5 | 14 | |
Niacin | mg | 19.7 | 14 | |
Vitamin B6 | mg | 2.1 | 1.2 | |
Folate | µg | 386.1 | 300 | |
Vitamin B12 | µg | 10.4 | 2 | |
Vitamin C | mg | 303.0 | 75 | |
Sodium | mg | 2401.1 | 2300 | |
Potassium | mg | 3385.6 | 3100 | |
Phosphorous | mg | 1446.7 | 600 | |
Calcium | mg | 840.4 | 800 | |
Iron | mg | 10.7 | 15 | |
Magnesium | mg | 317.4 | 280 | |
Zinc | mg | 9.7 | 7 | |
Iodine | µg | 34.9 | 150 | |
Selenium | µg | 61.0 | 50 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pocevičiūtė, D.; Roth, B.; Ohlsson, B.; Wennström, M. Okinawa-Based Nordic Diet Decreases Plasma Levels of IAPP and IgA against IAPP Oligomers in Type 2 Diabetes Patients. Int. J. Mol. Sci. 2024, 25, 7665. https://doi.org/10.3390/ijms25147665
Pocevičiūtė D, Roth B, Ohlsson B, Wennström M. Okinawa-Based Nordic Diet Decreases Plasma Levels of IAPP and IgA against IAPP Oligomers in Type 2 Diabetes Patients. International Journal of Molecular Sciences. 2024; 25(14):7665. https://doi.org/10.3390/ijms25147665
Chicago/Turabian StylePocevičiūtė, Dovilė, Bodil Roth, Bodil Ohlsson, and Malin Wennström. 2024. "Okinawa-Based Nordic Diet Decreases Plasma Levels of IAPP and IgA against IAPP Oligomers in Type 2 Diabetes Patients" International Journal of Molecular Sciences 25, no. 14: 7665. https://doi.org/10.3390/ijms25147665
APA StylePocevičiūtė, D., Roth, B., Ohlsson, B., & Wennström, M. (2024). Okinawa-Based Nordic Diet Decreases Plasma Levels of IAPP and IgA against IAPP Oligomers in Type 2 Diabetes Patients. International Journal of Molecular Sciences, 25(14), 7665. https://doi.org/10.3390/ijms25147665