Lipoprotein Lipidomics as a Frontier in Non-Alcoholic Fatty Liver Disease Biomarker Discovery
Abstract
:1. Introduction
2. Human Cell Culture
3. Tissues and Solid Biopsies
4. Plasma
References | Sample Size, Sex (% Women), and Average Age | Diagnostic Method | Comparison | Lipidomic Approach (Number of Lipid Molecules) | Lipidomic Features |
---|---|---|---|---|---|
Seessle et al. (2020) [43] | (n = 74) 33% 50 years | Elastography | Hereditary hemochromatosis (HH) vs. healthy | LC-MS (n.a.) |
|
Xu et al. (2020) [44] | (n = 34) 44% 41 years | Biopsy | Polymorphisms of APOC3 | LC-MS (19) |
|
Sheridan et al. (2022) [48] | (n = 112) 28% 48 years | H-MRS | HCV-G3 vs. HCV-G1 | LC-MS (n.a.) |
|
Van der Heijden et al. (2020) [51] | (n = 302) - % - years | H-MRS | Levels of aldosterone and renin | NMR and LC-MS (231) |
|
Puri et al. (2009) [52] | (n = 125) - % - years | Biopsy proven (NAFLD and NASH) * | NAFLD and NASH vs. healthy | TLC and GS-MS (266) |
|
Jurado-Fasoli et al. (2023) [54] | (n = 72) 54% 54 years | Fatty liver index (blood biochemistry parameters) | Levels of n-6 FA, n-3 FA, and their derived oxylipins | LC-MS/MS (79) |
|
Imamura et al. (2017) [55] | (n = 27,296) - % - years | ALT plasma levels | FA pattern score ([↑↑] of FA_18:2, FA_18:0, OC-FA, and VLC-SFA and [↓↓] of FA_18:3, FA_16:0, and LC-MUFA) | GS-MS (27) |
|
Mocciaro et al. (2023) [56] | (n = 109) 43% 55 years | Biopsy * | NAFLD spectrum vs. controls | LC-MS (276) |
|
Ismail et al. (2020) [40] | (n = 53) 28% 44 years | Biopsy | HCC and CLD vs. healthy | LC-MS (604) |
|
McGlinchey et al. (2022) [61] | (n = 627) 46% 52 years | Biopsy | Steatosis vs. NASH vs. fibrosis | LC-MS and GC-MS (176) |
|
Mouskeftara (2024) [62] | (n = 37) 40% 54 years | Elastography | NASH vs. healthy | LC-MS/MS (359) |
|
NAFLD vs. healthy and NAFLD vs. NASH | LC-MS/MS (359) |
| |||
Velenosi et al. (2022) [63] | (n = 47) 51% 47 years | Elastography and biopsy | Postprandial response in NAFLD vs. healthy | LC-MS and-MS/MS (3469) |
|
5. Lipoproteins
6. Lipoprotein Lipidomics beyond NAFLD
7. Lipoprotein Lipidomics Methods and Related Technical Limitations
8. Statistical Analysis Techniques in Lipidomic Studies
9. Conclusions and Future Perspectives
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
|
|
References
- Rinella, M.E.; Lazarus, J.V.; Ratziu, V.; Francque, S.M.; Sanyal, A.J.; Kanwal, F.; Romero, D.; Abdelmalek, M.F.; Anstee, Q.M.; Arab, J.P.; et al. A multisociety Delphi consensus statement on new fatty liver disease nomenclature. Hepatology 2023, 78, 1966–1986. [Google Scholar] [CrossRef]
- Stefan, N.; Schick, F.; Birkenfeld, A.L.; Haring, H.U.; White, M.F. The role of hepatokines in NAFLD. Cell Metab. 2023, 35, 236–252. [Google Scholar] [CrossRef]
- Younossi, Z.M.; Koenig, A.B.; Abdelatif, D.; Fazel, Y.; Henry, L.; Wymer, M. Global epidemiology of nonalcoholic fatty liver disease-Meta-analytic assessment of prevalence, incidence, and outcomes. Hepatology 2016, 64, 73–84. [Google Scholar] [CrossRef]
- Mato, J.M.; Alonso, C.; Noureddin, M.; Lu, S.C. Biomarkers and subtypes of deranged lipid metabolism in non-alcoholic fatty liver disease. World J. Gastroenterol. 2019, 25, 3009–3020. [Google Scholar] [CrossRef]
- Loomba, R.; Friedman, S.L.; Shulman, G.I. Mechanisms and disease consequences of nonalcoholic fatty liver disease. Cell 2021, 184, 2537–2564. [Google Scholar] [CrossRef]
- Harrison, S.A.; Allen, A.M.; Dubourg, J.; Noureddin, M.; Alkhouri, N. Challenges and opportunities in NASH drug development. Nat. Med. 2023, 29, 562–573. [Google Scholar] [CrossRef]
- Honda, Y.; Yoneda, M.; Imajo, K.; Nakajima, A. Elastography Techniques for the Assessment of Liver Fibrosis in Non-Alcoholic Fatty Liver Disease. Int. J. Mol. Sci. 2020, 21, 4039. [Google Scholar] [CrossRef]
- Dongiovanni, P.; Romeo, S.; Valenti, L. Genetic factors in the pathogenesis of nonalcoholic fatty liver and steatohepatitis. Biomed. Res. Int. 2015, 2015, 460190. [Google Scholar] [CrossRef]
- Luukkonen, P.K.; Zhou, Y.; Nidhina Haridas, P.A.; Dwivedi, O.P.; Hyotylainen, T.; Ali, A.; Juuti, A.; Leivonen, M.; Tukiainen, T.; Ahonen, L.; et al. Impaired hepatic lipid synthesis from polyunsaturated fatty acids in TM6SF2 E167K variant carriers with NAFLD. J. Hepatol. 2017, 67, 128–136. [Google Scholar] [CrossRef]
- Johnson, S.M.; Bao, H.; McMahon, C.E.; Chen, Y.; Burr, S.D.; Anderson, A.M.; Madeyski-Bengtson, K.; Lindén, D.; Han, X.; Liu, J. PNPLA3 is a triglyceride lipase that mobilizes polyunsaturated fatty acids to facilitate hepatic secretion of large-sized very low-density lipoprotein. Nat. Commun. 2024, 15, 4847. [Google Scholar] [CrossRef] [PubMed]
- Utzschneider, K.M.; Kahn, S.E. Review: The role of insulin resistance in nonalcoholic fatty liver disease. J. Clin. Endocrinol. Metab. 2006, 91, 4753–4761. [Google Scholar] [CrossRef]
- Wahlang, B.; Jin, J.; Beier, J.I.; Hardesty, J.E.; Daly, E.F.; Schnegelberger, R.D.; Falkner, K.C.; Prough, R.A.; Kirpich, I.A.; Cave, M.C. Mechanisms of environmental contributions to fatty liver disease. Curr. Environ. Health Rep. 2019, 6, 80–94. [Google Scholar] [CrossRef] [PubMed]
- Boursier, J.; Mueller, O.; Barret, M.; Machado, M.; Fizanne, L.; Araujo-Perez, F.; Guy, C.D.; Seed, P.C.; Rawls, J.F.; David, L.A.; et al. The severity of nonalcoholic fatty liver disease is associated with gut dysbiosis and shift in the metabolic function of the gut microbiota. Hepatology 2016, 63, 764–775. [Google Scholar] [CrossRef]
- Softic, S.; Cohen, D.E.; Kahn, C.R. Role of dietary fructose and hepatic de novo lipogenesis in fatty liver disease. Dig. Dis. Sci. 2016, 61, 1282–1293. [Google Scholar] [CrossRef] [PubMed]
- Ajmera, V.H.; Terrault, N.A.; Harrison, S.A. Is moderate alcohol use in nonalcoholic fatty liver disease good or bad? A critical review. Hepatology 2017, 65, 2090–2099. [Google Scholar] [CrossRef] [PubMed]
- Stine, J.G.; Long, M.T.; Corey, K.E.; Sallis, R.E.; Allen, A.M.; Armstrong, M.J.; Conroy, D.E.; Cuthbertson, D.J.; Duarte-Rojo, A.; Hallsworth, K.; et al. American College of Sports Medicine (ACSM) International Multidisciplinary Roundtable report on physical activity and nonalcoholic fatty liver disease. Hepatol. Commun. 2023, 7, e0108. [Google Scholar] [CrossRef] [PubMed]
- Mesarwi, O.A.; Loomba, R.; Malhotra, A. Obstructive sleep apnea, hypoxia, and nonalcoholic fatty liver disease. Am. J. Respir. Crit. Care Med. 2019, 199, 830–841. [Google Scholar] [CrossRef] [PubMed]
- Shea, S.; Lionis, C.; Atkinson, L.; Kite, C.; Lagojda, L.; Chaggar, S.S.; Kyrou, I.; Randeva, H.S. Support needs and coping strategies in non-alcoholic fatty liver disease (NAFLD): A multidisciplinary approach to potential unmet challenges beyond pharmacological treatment. Livers 2023, 3, 1–20. [Google Scholar] [CrossRef]
- Kneeman, J.M.; Misdraji, J.; Corey, K.E. Secondary causes of nonalcoholic fatty liver disease. Ther. Adv. Gastroenterol. 2012, 5, 199–207. [Google Scholar] [CrossRef] [PubMed]
- Herrera-Marcos, L.V.; Martinez-Beamonte, R.; Macias-Herranz, M.; Arnal, C.; Barranquero, C.; Puente-Lanzarote, J.J.; Gascon, S.; Herrero-Continente, T.; Gonzalo-Romeo, G.; Alastrue-Vera, V.; et al. Hepatic galectin-3 is associated with lipid droplet area in non-alcoholic steatohepatitis in a new swine model. Sci. Rep. 2022, 12, 1024. [Google Scholar] [CrossRef]
- Hegele, R.A.; Boren, J.; Ginsberg, H.N.; Arca, M.; Averna, M.; Binder, C.J.; Calabresi, L.; Chapman, M.J.; Cuchel, M.; von Eckardstein, A.; et al. Rare dyslipidaemias, from phenotype to genotype to management: A European Atherosclerosis Society task force consensus statement. Lancet Diabetes Endocrinol. 2020, 8, 50–67. [Google Scholar] [CrossRef] [PubMed]
- Martinez-Beamonte, R.; Navarro, M.A.; Acin, S.; Guillen, N.; Barranquero, C.; Arnal, C.; Surra, J.; Osada, J. Postprandial changes in high density lipoproteins in rats subjected to gavage administration of virgin olive oil. PLoS ONE 2013, 8, e55231. [Google Scholar] [CrossRef] [PubMed]
- McCormick, S.P. Lipoprotein(a): Biology and clinical importance. Clin. Biochem. Rev. 2004, 25, 69–80. [Google Scholar] [PubMed]
- Kostara, C.E. Expanding the molecular disturbances of lipoproteins in cardiometabolic diseases: Lessons from lipidomics. Diagnostics 2023, 13, 721. [Google Scholar] [CrossRef] [PubMed]
- Meikle, P.J.; Christopher, M.J. Lipidomics is providing new insight into the metabolic syndrome and its sequelae. Curr. Opin. Lipidol. 2011, 22, 210–215. [Google Scholar] [CrossRef] [PubMed]
- Moher, D.; Liberati, A.; Tetzlaff, J.; Altman, D.G.; Group, P. Preferred reporting items for systematic reviews and meta-analyses: The PRISMA statement. PLoS Med. 2009, 6, e1000097. [Google Scholar] [CrossRef] [PubMed]
- PubMed. Available online: http://www.ncbi.nlm.nih.gov/pubmed (accessed on 4 July 2024).
- Ruhanen, H.; Haridas, P.A.N.; Minicocci, I.; Taskinen, J.H.; Palmas, F.; di Costanzo, A.; D’Erasmo, L.; Metso, J.; Partanen, J.; Dalli, J.; et al. ANGPTL3 deficiency alters the lipid profile and metabolism of cultured hepatocytes and human lipoproteins. Biochim. Biophys. Acta Mol. Cell Biol. Lipids. 2020, 1865, 158679. [Google Scholar] [CrossRef] [PubMed]
- Ruhanen, H.; Nidhina Haridas, P.A.; Eskelinen, E.L.; Eriksson, O.; Olkkonen, V.M.; Kakela, R. Depletion of TM6SF2 disturbs membrane lipid composition and dynamics in HuH7 hepatoma cells. Biochim. Biophys. Acta Mol. Cell Biol. Lipids. 2017, 1862, 676–685. [Google Scholar] [CrossRef] [PubMed]
- Burks, K.H.; Xie, Y.; Gildea, M.; Jung, I.H.; Mukherjee, S.; Lee, P.; Pudupakkam, U.; Wagoner, R.; Patel, V.; Santana, K.; et al. ANGPTL3 deficiency impairs lipoprotein production and produces adaptive changes in hepatic lipid metabolism. J. Lipid Res. 2024, 65, 100500. [Google Scholar] [CrossRef] [PubMed]
- Tomlinson, B.; Wu, Q.Y.; Zhong, Y.M.; Li, Y.H. Advances in dyslipidaemia treatments: Focusing on ApoC3 and ANGPTL3 inhibitors. J. Lipid Atheroscler. 2024, 13, 2–20. [Google Scholar] [CrossRef]
- Matilainen, J.; Mustonen, A.M.; Rilla, K.; Kakela, R.; Sihvo, S.P.; Nieminen, P. Orotic acid-treated hepatocellular carcinoma cells resist steatosis by modification of fatty acid metabolism. Lipids Health Dis. 2020, 19, 70. [Google Scholar] [CrossRef] [PubMed]
- Sazaki, I.; Sakurai, T.; Yamahata, A.; Mogi, S.; Inoue, N.; Ishida, K.; Kikkai, A.; Takeshita, H.; Sakurai, A.; Takahashi, Y.; et al. Oxidized low-density lipoproteins trigger hepatocellular oxidative stress with the formation of cholesteryl ester hydroperoxide-enriched lipid droplets. Int. J. Mol. Sci. 2023, 24, 4281. [Google Scholar] [CrossRef] [PubMed]
- Castell, J.V.; Jover, R.; Martinez-Jimenez, C.P.; Gomez-Lechon, M.J. Hepatocyte cell lines: Their use, scope and limitations in drug metabolism studies. Expert. Opin. Drug Metab. Toxicol. 2006, 2, 183–212. [Google Scholar] [CrossRef] [PubMed]
- Kiamehr, M.; Alexanova, A.; Viiri, L.E.; Heiskanen, L.; Vihervaara, T.; Kauhanen, D.; Ekroos, K.; Laaksonen, R.; Kakela, R.; Aalto-Setala, K. hiPSC-derived hepatocytes closely mimic the lipid profile of primary hepatocytes: A future personalised cell model for studying the lipid metabolism of the liver. J. Cell Physiol. 2019, 234, 3744–3761. [Google Scholar] [CrossRef] [PubMed]
- Feaver, R.E.; Cole, B.K.; Lawson, M.J.; Hoang, S.A.; Marukian, S.; Blackman, B.R.; Figler, R.A.; Sanyal, A.J.; Wamhoff, B.R.; Dash, A. Development of an in vitro human liver system for interrogating nonalcoholic steatohepatitis. JCI Insight 2016, 1, e90954. [Google Scholar] [CrossRef] [PubMed]
- Kolak, M.; Westerbacka, J.; Velagapudi, V.R.; Wagsater, D.; Yetukuri, L.; Makkonen, J.; Rissanen, A.; Hakkinen, A.M.; Lindell, M.; Bergholm, R.; et al. Adipose tissue inflammation and increased ceramide content characterize subjects with high liver fat content independent of obesity. Diabetes 2007, 56, 1960–1968. [Google Scholar] [CrossRef] [PubMed]
- Puri, P.; Baillie, R.A.; Wiest, M.M.; Mirshahi, F.; Choudhury, J.; Cheung, O.; Sargeant, C.; Contos, M.J.; Sanyal, A.J. A lipidomic analysis of nonalcoholic fatty liver disease. Hepatology 2007, 46, 1081–1090. [Google Scholar] [CrossRef] [PubMed]
- Scupakova, K.; Soons, Z.; Ertaylan, G.; Pierzchalski, K.A.; Eijkel, G.B.; Ellis, S.R.; Greve, J.W.; Driessen, A.; Verheij, J.; De Kok, T.M.; et al. Spatial systems lipidomics reveals nonalcoholic fatty liver disease heterogeneity. Anal. Chem. 2018, 90, 5130–5138. [Google Scholar] [CrossRef] [PubMed]
- Ismail, I.T.; Elfert, A.; Helal, M.; Salama, I.; El-Said, H.; Fiehn, O. Remodeling lipids in the transition from chronic liver disease to hepatocellular carcinoma. Cancers 2020, 13, 88. [Google Scholar] [CrossRef]
- Notarnicola, M.; Caruso, M.G.; Tutino, V.; Bonfiglio, C.; Cozzolongo, R.; Giannuzzi, V.; De Nunzio, V.; De Leonardis, G.; Abbrescia, D.I.; Franco, I.; et al. Significant decrease of saturation index in erythrocytes membrane from subjects with non-alcoholic fatty liver disease (NAFLD). Lipids Health Dis. 2017, 16, 160. [Google Scholar]
- Coleman, M.J.; Espino, L.M.; Lebensohn, H.; Zimkute, M.V.; Yaghooti, N.; Ling, C.L.; Gross, J.M.; Listwan, N.; Cano, S.; Garcia, V.; et al. Individuals with metabolic syndrome show altered fecal lipidomic profiles with no signs of intestinal inflammation or increased intestinal permeability. Metabolites 2022, 12, 431. [Google Scholar] [CrossRef] [PubMed]
- Seessle, J.; Gan-Schreier, H.; Kirchner, M.; Stremmel, W.; Chamulitrat, W.; Merle, U. Plasma Lipidome, PNPLA3 polymorphism and hepatic steatosis in hereditary hemochromatosis. BMC Gastroenterol. 2020, 20, 230. [Google Scholar] [CrossRef]
- Xu, Q.Y.; Li, H.; Cao, H.X.; Pan, Q.; Fan, J.G. APOC3 rs2070667 associates with serum triglyceride profile and hepatic inflammation in nonalcoholic fatty liver disease. Biomed. Res. Int. 2020, 2020, 8869674. [Google Scholar] [CrossRef] [PubMed]
- Lamaziere, A.; Wolf, C.; Quinn, P.J. Perturbations of lipid metabolism indexed by lipidomic biomarkers. Metabolites 2012, 2, 1–18. [Google Scholar] [CrossRef] [PubMed]
- Bartenschlager, R.; Penin, F.; Lohmann, V.; Andre, P. Assembly of infectious hepatitis C virus particles. Trends Microbiol. 2011, 19, 95–103. [Google Scholar] [CrossRef] [PubMed]
- Stepanova, M.; Rafiq, N.; Younossi, Z.M. Components of metabolic syndrome are independent predictors of mortality in patients with chronic liver disease: A population-based study. Gut 2010, 59, 1410–1415. [Google Scholar] [CrossRef] [PubMed]
- Sheridan, D.A.; Shawa, I.T.; Thomas, E.L.; Felmlee, D.J.; Bridge, S.H.; Neely, D.; Cobbold, J.F.; Holmes, E.; Bassendine, M.F.; Taylor-Robinson, S.D. Infection with the hepatitis C virus causes viral genotype-specific differences in cholesterol metabolism and hepatic steatosis. Sci. Rep. 2022, 12, 5562. [Google Scholar] [CrossRef] [PubMed]
- Casas-Deza, D.; Espina, S.; Martinez-Sapina, A.; Del Moral-Bergos, R.; Garcia-Sobreviela, M.P.; Lopez-Yus, M.; Calmarza, P.; Bernal-Monterde, V.; Arbones-Mainar, J.M. Triglyceride-rich lipoproteins and insulin resistance in patients with chronic hepatitis C receiving direct-acting antivirals. Atherosclerosis 2023, 375, 59–66. [Google Scholar] [CrossRef] [PubMed]
- Lotta, L.A.; Gulati, P.; Day, F.R.; Payne, F.; Ongen, H.; van de Bunt, M.; Gaulton, K.J.; Eicher, J.D.; Sharp, S.J.; Luan, J.; et al. Integrative genomic analysis implicates limited peripheral adipose storage capacity in the pathogenesis of human insulin resistance. Nat. Genet. 2017, 49, 17–26. [Google Scholar] [CrossRef] [PubMed]
- Van der Heijden, C.; Ter Horst, R.; van den Munckhof, I.C.L.; Schraa, K.; de Graaf, J.; Joosten, L.A.B.; Danser, A.H.J.; Netea, M.G.; Deinum, J.; Rutten, J.; et al. Vasculometabolic and Inflammatory Effects of Aldosterone in Obesity. J. Clin. Endocrinol. Metab. 2020, 105, 2719–2731. [Google Scholar] [CrossRef]
- Puri, P.; Wiest, M.M.; Cheung, O.; Mirshahi, F.; Sargeant, C.; Min, H.K.; Contos, M.J.; Sterling, R.K.; Fuchs, M.; Zhou, H.; et al. The plasma lipidomic signature of nonalcoholic steatohepatitis. Hepatology 2009, 50, 1827–1838. [Google Scholar] [CrossRef] [PubMed]
- Kontush, A.; Chapman, M.J. Lipidomics as a tool for the study of lipoprotein metabolism. Curr. Atheroscler. Rep. 2010, 12, 194–201. [Google Scholar] [CrossRef] [PubMed]
- Jurado-Fasoli, L.; Osuna-Prieto, F.J.; Yang, W.; Kohler, I.; Di, X.; Rensen, P.C.N.; Castillo, M.J.; Martinez-Tellez, B.; Amaro-Gahete, F.J. High omega-6/omega-3 fatty acid and oxylipin ratio in plasma is linked to an adverse cardiometabolic profile in middle-aged adults. J. Nutr. Biochem. 2023, 117, 109331. [Google Scholar] [CrossRef] [PubMed]
- Imamura, F.; Sharp, S.J.; Koulman, A.; Schulze, M.B.; Kroger, J.; Griffin, J.L.; Huerta, J.M.; Guevara, M.; Sluijs, I.; Agudo, A.; et al. A combination of plasma phospholipid fatty acids and its association with incidence of type 2 diabetes: The EPIC-InterAct case-cohort study. PLoS Med. 2017, 14, e1002409. [Google Scholar] [CrossRef] [PubMed]
- Mocciaro, G.; Allison, M.; Jenkins, B.; Azzu, V.; Huang-Doran, I.; Herrera-Marcos, L.V.; Hall, Z.; Murgia, A.; Susan, D.; Frontini, M.; et al. Non-alcoholic fatty liver disease is characterised by a reduced polyunsaturated fatty acid transport via free fatty acids and high-density lipoproteins (HDL). Mol. Metab. 2023, 73, 101728. [Google Scholar] [CrossRef] [PubMed]
- Sekiya, M.; Yahagi, N.; Matsuzaka, T.; Najima, Y.; Nakakuki, M.; Nagai, R.; Ishibashi, S.; Osuga, J.; Yamada, N.; Shimano, H. Polyunsaturated fatty acids ameliorate hepatic steatosis in obese mice by SREBP-1 suppression. Hepatology 2003, 38, 1529–1539. [Google Scholar] [CrossRef] [PubMed]
- Dentin, R.; Benhamed, F.; Pegorier, J.P.; Foufelle, F.; Viollet, B.; Vaulont, S.; Girard, J.; Postic, C. Polyunsaturated fatty acids suppress glycolytic and lipogenic genes through the inhibition of ChREBP nuclear protein translocation. J. Clin. Investig. 2005, 115, 2843–2854. [Google Scholar] [CrossRef] [PubMed]
- Neschen, S.; Morino, K.; Dong, J.; Wang-Fischer, Y.; Cline, G.W.; Romanelli, A.J.; Rossbacher, J.C.; Moore, I.K.; Regittnig, W.; Munoz, D.S.; et al. n-3 Fatty acids preserve insulin sensitivity in vivo in a peroxisome proliferator-activated receptor-alpha-dependent manner. Diabetes 2007, 56, 1034–1041. [Google Scholar] [CrossRef] [PubMed]
- Donnelly, K.L.; Smith, C.I.; Schwarzenberg, S.J.; Jessurun, J.; Boldt, M.D.; Parks, E.J. Sources of fatty acids stored in liver and secreted via lipoproteins in patients with nonalcoholic fatty liver disease. J. Clin. Investig. 2005, 115, 1343–1351. [Google Scholar] [CrossRef]
- McGlinchey, A.J.; Govaere, O.; Geng, D.; Ratziu, V.; Allison, M.; Bousier, J.; Petta, S.; de Oliviera, C.; Bugianesi, E.; Schattenberg, J.M.; et al. Metabolic signatures across the full spectrum of non-alcoholic fatty liver disease. JHEP Rep. 2022, 4, 100477. [Google Scholar] [CrossRef]
- Mouskeftara, T.; Kalopitas, G.; Liapikos, T.; Arvanitakis, K.; Germanidis, G.; Gika, H. Predicting non-alcoholic steatohepatitis: A lipidomics-driven machine learning approach. Int. J. Mol. Sci. 2024, 25, 5965. [Google Scholar] [CrossRef] [PubMed]
- Velenosi, T.J.; Ben-Yakov, G.; Podszun, M.C.; Hercun, J.; Etzion, O.; Yang, S.; Nadal, C.; Haynes-Williams, V.; Huang, W.A.; Gonzalez-Hodar, L.; et al. Postprandial Plasma Lipidomics Reveal Specific Alteration of Hepatic-derived Diacylglycerols in Nonalcoholic Fatty Liver Disease. Gastroenterology 2022, 162, 1990–2003. [Google Scholar] [CrossRef] [PubMed]
- Calzada, C.; Vors, C.; Penhoat, A.; Cheillan, D.; Michalski, M.C. Role of circulating sphingolipids in lipid metabolism: Why dietary lipids matter. Front. Nutr. 2022, 9, 1108098. [Google Scholar] [CrossRef] [PubMed]
- Wiesner, P.; Leidl, K.; Boettcher, A.; Schmitz, G.; Liebisch, G. Lipid profiling of FPLC-separated lipoprotein fractions by electrospray ionization tandem mass spectrometry. J. Lipid Res. 2009, 50, 574–585. [Google Scholar] [CrossRef] [PubMed]
- Martinez-Beamonte, R.; Lou-Bonafonte, J.M.; Martinez-Gracia, M.V.; Osada, J. Sphingomyelin in high-density lipoproteins: Structural role and biological function. Int. J. Mol. Sci. 2013, 14, 7716–7741. [Google Scholar] [CrossRef] [PubMed]
- Luukkonen, P.K.; Qadri, S.; Lehtimaki, T.E.; Juuti, A.; Sammalkorpi, H.; Penttila, A.K.; Hakkarainen, A.; Orho-Melander, M.; Arola, J.; Yki-Jarvinen, H. The PNPLA3-I148M variant confers an antiatherogenic lipid profile in insulin-resistant patients. J. Clin. Endocrinol. Metab. 2021, 106, e300–e315. [Google Scholar] [CrossRef] [PubMed]
- Alfadda, A.A.; Almaghamsi, A.M.; Sherbeeni, S.M.; Alqutub, A.N.; Aldosary, A.S.; Isnani, A.C.; Al-Daghri, N.; Taylor-Robinson, S.D.; Gul, R. Alterations in circulating lipidomic profile in patients with type 2 diabetes with or without non-alcoholic fatty liver disease. Front. Mol. Biosci. 2023, 10, 1030661. [Google Scholar] [CrossRef] [PubMed]
- Mucinski, J.M.; Manrique-Acevedo, C.; Kasumov, T.; Garrett, T.J.; Gaballah, A.; Parks, E.J. Relationships between very low-density lipoproteins-ceramides, -diacylglycerols, and -triacylglycerols in insulin-resistant men. Lipids 2020, 55, 387–393. [Google Scholar] [CrossRef] [PubMed]
- Lemes, R.M.R.; Silva, C.; Marques, M.A.M.; Atella, G.C.; Nery, J.; Nogueira, M.R.S.; Rosa, P.S.; Soares, C.T.; De, P.; Chatterjee, D.; et al. Altered composition and functional profile of high-density lipoprotein in leprosy patients. PLoS Negl. Trop. Dis. 2020, 14, e0008138. [Google Scholar] [CrossRef]
- Mocciaro, G.; D’Amore, S.; Jenkins, B.; Kay, R.; Murgia, A.; Herrera-Marcos, L.V.; Neun, S.; Sowton, A.P.; Hall, Z.; Palma-Duran, S.A.; et al. Lipidomic approaches to study HDL metabolism in patients with central obesity diagnosed with metabolic syndrome. Int. J. Mol. Sci. 2022, 23, 6786. [Google Scholar] [CrossRef]
- Denimal, D.; Benanaya, S.; Monier, S.; Simoneau, I.; Pais de Barros, J.P.; Le Goff, W.; Bouillet, B.; Verges, B.; Duvillard, L. Normal HDL cholesterol efflux and anti-inflammatory capacities in type 2 diabetes despite lipidomic abnormalities. J. Clin. Endocrinol. Metab. 2022, 107, e3816–e3823. [Google Scholar] [CrossRef] [PubMed]
- Dan, W.; Wang, X.; Wu, J.; Gu, Y.; Liu, S.; Zhang, H.; Chang, X.; Shi, C.; Yan, H.; Xia, M.; et al. The early effects of sleeve gastrectomy on postprandial chylomicron triglycerides during the progression of type 2 diabetes. Clin. Chim. Acta. 2023, 549, 117558. [Google Scholar] [CrossRef] [PubMed]
- Herrera-Marcos, L.V.; Sahali, D.; Ollero, M. 9-O Acetylated gangliosides in health and disease. Biomolecules 2023, 13, 827. [Google Scholar] [CrossRef] [PubMed]
- Ikegami, T.; Hyogo, H.; Honda, A.; Miyazaki, T.; Tokushige, K.; Hashimoto, E.; Inui, K.; Matsuzaki, Y.; Tazuma, S. Increased serum liver X receptor ligand oxysterols in patients with non-alcoholic fatty liver disease. J. Gastroenterol. 2012, 47, 1257–1266. [Google Scholar] [CrossRef]
- Sanyal, A.J.; Shankar, S.S.; Calle, R.A.; Samir, A.E.; Sirlin, C.B.; Sherlock, S.P.; Loomba, R.; Fowler, K.J.; Dehn, C.A.; Heymann, H.; et al. Non-Invasive Biomarkers of Nonalcoholic Steatohepatitis: The FNIH NIMBLE project. Nat. Med. 2022, 28, 430–432. [Google Scholar] [CrossRef]
Keyword Combinations | Number of References |
---|---|
Lipoprotein + NAFLD + lipidomic | 42 |
HDL + NAFLD + lipidomic | 11 |
LDL + NAFLD + lipidomic | 22 |
VLDL + NAFLD + lipidomic | 12 |
Lipoprotein + steatosis + lipidomic | 123 |
HDL + steatosis + lipidomic | 36 |
LDL + steatosis + lipidomic | 50 |
VLDL + steatosis + lipidomic | 27 |
Lipoprotein + MAFLD + lipidomic | 1 |
HDL + MAFLD + lipidomic | 1 |
LDL + MAFLD + lipidomic | 1 |
VLDL + MAFLD + lipidomic | 0 |
References | Experimental Model | Treatment | Lipidomic Approach (Number of Lipid Molecules) | Lipidomic Features |
---|---|---|---|---|
Luukkonen et al. (2017) [9] | HuH7 hepatome cells | TM6SF KD | LC-MS (186) |
|
Ruhanen et al. (2020) [28] | Immortalized human hepatocytes (IHH) | ANGPTL3 KD | DI-MS/MS and GC-MS (168) |
|
Ruhanen et al. (2017) [29] | HuH7 hepatome cells | TM6SF KD | DI-MS/MS and GC-MS (144) |
|
Burks et al. (2024) [30] | HepG2 | ANGPTL3 KO | LC-MS (73) |
|
Matilainen et al. (2020) [32] | HepG2 | Orotic acid [500 μM] 5 days | GC-MS (45) |
|
Sazaki et al. (2023) [33] | Human liver-derived C3A cell line | incubation with nLDLs or oxLDLs | LC-MS/MS (56) |
|
Kiamehr et al. (2019) [35] | Hepatocyte-like cells (HLCs) from iPSC | HLC vs. HepG2 and Primary Human Hepatocytes (PHH) | LC-MS and GC-MS (145) |
|
Feaver et al. (2016) [36] | In vitro liver model of hepatocytes, HSCs and macrophages | 10 days combination of (glucose [24 μM], insulin [6.9 nM], NEFA (OA [65 μM] + PA [45 μM]) | LC-MS (767) |
|
References | Tissue | Sample Size, Sex (♀%) and Average Age | Diagnostic Method | Comparison | Lipidomic Approach (Number of Lipid Molecules) | Lipidomic Features |
---|---|---|---|---|---|---|
Kolak et al. (2007) [37] | scWAT of obese women | (n = 20) 100% no age | H-MRS | Normal vs. high liver fat (LFAT) | LC-MS (154) |
|
Puri et al. (2007) [38] | Liver | (n = 27) 70% 47 years | Biopsy | NAFLD and NASH vs. healthy | TLC and GS-MS (n.a.) |
|
Puri et al. (2007) [38] | Liver | (n = 27) 70% 47 years | Biopsy | NASH vs. NAFLD and healthy | TLC and GS-MS (n.a.) |
|
Scupakova et al. (2018) [39] | Liver from obese patients | (n = 23) 70% 43 years | Biopsy | Steatotic areas vs. non-steatotic areas | MALDI-MSI (84) |
|
Luukkonen et al. (2017) [9] | Liver | (n = 94) 71% 46 years | Biopsy | EK/KK vs. EE genotype | LC-MS and GC-MS (n.a.) |
|
Ismail et al. (2020) [40] | Liver | (n = 53) 28% 44 years | Biopsy | Human HCC vs. paired non-tumor hepatic tissue | LC-MS (604) |
|
Notarnicola et al. (2017) [41] | Erythrocyte membranes | (n = 101) 46% no age | Elastography | NAFLD spectrum vs. controls | GC-MS (n.a.) |
|
Coleman et al. (2022) [42] | Feces | (n = 18) 61% 46 years | - | MetS patients vs. healthy | LC-MS (7453 *) |
|
References | Sample Size | Diagnostic Method | Comparison | Lipidomic Approach (Number of Lipid Molecules) | Lipidomic Features |
---|---|---|---|---|---|
Wiesner et al. (2009) [65] | (n = 21) | - | Composition of healthy lipoproteins | FPLC and LC-MS (88) |
|
Ruhanen et al. (2020) [28] | (n = 15) | - | ANGPTL3-LOF vs. control lipoproteins | Ultracentrifugation, DI-MS/MS, and GC-MS (168) |
|
Luukkonen et al. (2021) [67] | (n = 643) | Biopsy and H-MRS | PNPLA3-I148M variant vs. noncarriers | NMR (n.a.) |
|
Alfadda et al. (2023) [68] | (n = 434) | Elastography | T2DM patients: NAFLD vs. non-NAFLD lipoproteins | NMR (na) |
|
Mucinski et al. (2020) [69] | (n = 12) | H-MRS | VLDL: Composition and correlation with IHTG | Ultracentrifugation and LC-MS (242) |
|
Mocciaro et al. (2023) [71] | (n = 109) | Biopsy | HDL: NAFLD spectrum vs. healthy donors | LC-MS (276) |
|
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Herrera-Marcos, L.V.; Arbones-Mainar, J.M.; Osada, J. Lipoprotein Lipidomics as a Frontier in Non-Alcoholic Fatty Liver Disease Biomarker Discovery. Int. J. Mol. Sci. 2024, 25, 8285. https://doi.org/10.3390/ijms25158285
Herrera-Marcos LV, Arbones-Mainar JM, Osada J. Lipoprotein Lipidomics as a Frontier in Non-Alcoholic Fatty Liver Disease Biomarker Discovery. International Journal of Molecular Sciences. 2024; 25(15):8285. https://doi.org/10.3390/ijms25158285
Chicago/Turabian StyleHerrera-Marcos, Luis V., Jose M. Arbones-Mainar, and Jesús Osada. 2024. "Lipoprotein Lipidomics as a Frontier in Non-Alcoholic Fatty Liver Disease Biomarker Discovery" International Journal of Molecular Sciences 25, no. 15: 8285. https://doi.org/10.3390/ijms25158285
APA StyleHerrera-Marcos, L. V., Arbones-Mainar, J. M., & Osada, J. (2024). Lipoprotein Lipidomics as a Frontier in Non-Alcoholic Fatty Liver Disease Biomarker Discovery. International Journal of Molecular Sciences, 25(15), 8285. https://doi.org/10.3390/ijms25158285