The Undeniable Potential of Thermophiles in Industrial Processes
Abstract
:1. Introduction
2. Thermophilic Microbial Communities
2.1. Methane
2.2. Medium-Chain Fatty Acids: n-Caproate
2.3. Hydrogen
2.4. Biodegradable Plastics
Collection Site | Location | Biomolecule | Temperature (°C) | Application | Reference |
---|---|---|---|---|---|
Biogas plant | Eastern Bavaria, Germany | methane | 22–57 | Biofuel | [25] |
Waste beverage treatment plant | Shizuoka, Japan | methane | 55 | Biofuel | [26] |
High-solids pig manure | Chinese Academy of Agricultural Sciences | methane | 55 and 70 | Biofuel | [27] |
Recycling company | Jinan, China | n-caproate | 55 | Biofuel | [32] |
Compost and soil sediments | n.r. | H2 | 60 | Biofuel | [33] |
Biogas station | Tongzhou, Beijing | methane | 37 and 55 | Bioplastic degradation | [35] |
3. Thermophilic Bacteria
3.1. Hydrogen-Producing Bacteria
3.2. Biodegradable Plastics Production
3.3. Plastic Biodegradation
Strain | Collection Site | Biomolecule | Thermal Stability (°C) | Application | Reference |
---|---|---|---|---|---|
Caldicellulosiruptor saccharolyticus | Thermal spring, New Zealand | H2 | 70–75 | Hydrogen production | [40] |
Thermotoga neapolitana | Thermal spring, Italy | H2 | 50–95 | Hydrogen production | [41] |
Clostridium thermocellum | Agriculture residues and wastes, Thailand | H2 | 60 | Hydrogen production | [42] |
Cupriavidus cauae PHS1 | Thermal spring, Korea | PHAs | 45 | Biodegradable plastics production | [43] |
Geobacillus stearothermophilus K4E3_SPR_NPP | Kasol Hot Spring, India | PHAs | 70 | Biodegradable plastics production | [45] |
Aneurinibacillus sp. H1 | Compost, Czech Republic | PHAs | 45 | Biodegradable plastics production | [46] |
Schlegelella thermodepolymerans DSM 15344 | n.r. | PHAs | 55 | Biodegradable plastics production | [48] |
Weizmannia coagulans MA-13 | Bean waste | Lactic acid | 55 | Biodegradable plastics production | [49,50,51,52] |
Caldicellulosiruptor sp. strain DIB 104C | n.r. | Lactic acid | 55 | Biodegradable plastics production | [53] |
Clostridium thermocellum | n.r. | n.r. | 60 | PET degradation | [42] |
Bacillus vallismortis bt-dsce01 | Plastic-contaminated environments, India | n.r. | 55 | LDPE and HDPE degradation | [54] |
Pseudomonas protegens bt-dsce02 | Plastic-contaminated environments, India | n.r. | 55 | LDPE and HDPE degradation | [54] |
Stenotrophomonas sp. bt-dsce03 | Plastic-contaminated environments, India | n.r. | 55 | LDPE and HDPE degradation | [54] |
Paenibacillus sp. bt-dsce04 | Plastic-contaminated environments, India | n.r. | 55 | LDPE and HDPE degradation | [54] |
Brevibacillus thermoruber strain 7 | Hot spring, Bulgaria | n.r. | 55 | PCL degradation | [55] |
4. Thermophilic Microalgae and Cyanobacteria
4.1. Thermophilic Phycocyanin
4.2. Lipids
4.3. Exopolysaccharides
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Schröder, C.; Burkhardt, C.; Antranikian, G. What We Learn from Extremophiles. ChemTexts 2020, 6, 8. [Google Scholar] [CrossRef]
- Urbieta, M.S.; Donati, E.R.; Chan, K.G.; Shahar, S.; Sin, L.L.; Goh, K.M. Thermophiles in the Genomic Era: Biodiversity, Science, and Applications. Biotechnol. Adv. 2015, 33, 633–647. [Google Scholar] [CrossRef] [PubMed]
- Berezovsky, I.N.; Shakhnovich, E.I. Physics and Evolution of Thermophilic Adaptation. Proc. Natl. Acad. Sci. USA 2005, 102, 12742–12747. [Google Scholar] [CrossRef] [PubMed]
- Arbab, S.; Ullah, H.; Khan, M.I.U.; Khattak, M.N.K.; Zhang, J.; Li, K.; Hassan, I.U. Diversity and Distribution of Thermophilic Microorganisms and Their Applications in Biotechnology. J. Basic. Microbiol. 2022, 62, 95–108. [Google Scholar] [CrossRef]
- Ranawat, P.; Rawat, S. Stress Response Physiology of Thermophiles. Arch. Microbiol. 2017, 199, 391–414. [Google Scholar] [CrossRef]
- Barik, S. Evolution of Protein Structure and Stability in Global Warming. Int. J. Mol. Sci. 2020, 21, 9662. [Google Scholar] [CrossRef] [PubMed]
- Wang, Q.; Cen, Z.; Zhao, J. The Survival Mechanisms of Thermophiles at High Temperatures: An Angle of Omics. Physiology 2015, 30, 97–106. [Google Scholar] [CrossRef]
- Ferraro, G.; Imbimbo, P.; Marseglia, A.; Illiano, A.; Fontanarosa, C.; Amoresano, A.; Olivieri, G.; Pollio, A.; Monti, D.M.; Merlino, A. A Thermophilic C-Phycocyanin with Unprecedented Biophysical and Biochemical Properties. Int. J. Biol. Macromol. 2020, 150, 38–51. [Google Scholar] [CrossRef]
- Patel, A.; Matsakas, L.; Rova, U.; Christakopoulos, P. A Perspective on Biotechnological Applications of Thermophilic Microalgae and Cyanobacteria. Bioresour. Technol. 2019, 278, 424–434. [Google Scholar] [CrossRef]
- Chand, S.; Mahajan, R.V.; Prasad, J.P.; Sahoo, D.K.; Mihooliya, K.N.; Dhar, M.S.; Sharma, G. A Comprehensive Review on Microbial L-Asparaginase: Bioprocessing, Characterization, and Industrial Applications. Biotechnol. Appl. Biochem. 2020, 67, 619–647. [Google Scholar] [CrossRef]
- Kumar, V.; Ahluwalia, V.; Saran, S.; Kumar, J.; Patel, A.K.; Singhania, R.R. Recent Developments on Solid-State Fermentation for Production of Microbial Secondary Metabolites: Challenges and Solutions. Bioresour. Technol. 2021, 323, 124566. [Google Scholar] [CrossRef]
- Bodbodak, S.; Nejatian, M.; Ghandehari Yazdi, A.P.; Kamali Rousta, L.; Rafiee, Z.; Jalali-Jivan, M.; Kharazmi, M.S.; Jafari, S.M. Improving the Thermal Stability of Natural Bioactive Ingredients via Encapsulation Technology. Crit. Rev. Food Sci. Nutr. 2022, 64, 2824–2846. [Google Scholar] [CrossRef]
- Armenante, P.M.; Akiti, O. Sterilization Processes in the Pharmaceutical Industry. In Chemical Engineering in the Pharmaceutical Industry: Drug Product Design, Development, and Modeling; John Wiley & Sons, Inc.: Hoboken, NJ, USA, 2019; pp. 311–379. [Google Scholar] [CrossRef]
- Oroian, M.; Escriche, I. Antioxidants: Characterization, Natural Sources, Extraction and Analysis. Food Res. Int. 2015, 74, 10–36. [Google Scholar] [CrossRef]
- Orellana, R.; Macaya, C.; Bravo, G.; Dorochesi, F.; Cumsille, A.; Valencia, R.; Rojas, C.; Seeger, M. Living at the Frontiers of Life: Extremophiles in Chile and Their Potential for Bioremediation. Front. Microbiol. 2018, 9, 2309. [Google Scholar] [CrossRef] [PubMed]
- Sayed, A.M.; Hassan, M.H.A.; Alhadrami, H.A.; Hassan, H.M.; Goodfellow, M.; Rateb, M.E. Extreme Environments: Microbiology Leading to Specialized Metabolites. J. Appl. Microbiol. 2020, 128, 630–657. [Google Scholar] [CrossRef] [PubMed]
- Obruča, S.; Dvořák, P.; Sedláček, P.; Koller, M.; Sedlář, K.; Pernicová, I.; Šafránek, D. Polyhydroxyalkanoates Synthesis by Halophiles and Thermophiles: Towards Sustainable Production of Microbial Bioplastics. Biotechnol. Adv. 2022, 58, 107906. [Google Scholar] [CrossRef] [PubMed]
- Tom, L.M.; Aulitto, M.; Wu, Y.-W.; Deng, K.; Gao, Y.; Xiao, N.; Rodriguez, B.G.; Louime, C.; Northen, T.R.; Eudes, A.; et al. Low-Abundance Populations Distinguish Microbiome Performance in Plant Cell Wall Deconstruction. Microbiome 2022, 10, 183. [Google Scholar] [CrossRef]
- Aulitto, M.; Tom, L.M.; Ceja-Navarro, J.A.; Simmons, B.A.; Singer, S.W. Whole-Genome Sequence of Brevibacillus Borstelensis SDM, Isolated from a Sorghum-Adapted Microbial Community. Microbiol. Resour. Announc. 2020, 9, e01046-20. [Google Scholar] [CrossRef]
- Zhang, L.; Loh, K.-C.; Sarvanantharajah, S.; Tong, Y.W.; Wang, C.-H.; Dai, Y. Mesophilic and Thermophilic Anaerobic Digestion of Soybean Curd Residue for Methane Production: Characterizing Bacterial and Methanogen Communities and Their Correlations with Organic Loading Rate and Operating Temperature. Bioresour. Technol. 2019, 288, 121597. [Google Scholar] [CrossRef]
- Cazaudehore, G.; Monlau, F.; Gassie, C.; Lallement, A.; Guyoneaud, R. Methane Production and Active Microbial Communities during Anaerobic Digestion of Three Commercial Biodegradable Coffee Capsules under Mesophilic and Thermophilic Conditions. Sci. Total Environ. 2021, 784, 146972. [Google Scholar] [CrossRef]
- Ao, T.; Xie, Z.; Zhou, P.; Liu, X.; Wan, L.; Li, D. Comparison of Microbial Community Structures between Mesophilic and Thermophilic Anaerobic Digestion of Vegetable Waste. Bioprocess Biosyst. Eng. 2021, 44, 1201–1214. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Ni, J.; Cheng, H.; Zhu, A.; Guo, G.; Qin, Y.; Li, Y.-Y. Methanogenic Performance and Microbial Community during Thermophilic Digestion of Food Waste and Sewage Sludge in a High-Solid Anaerobic Membrane Bioreactor. Bioresour. Technol. 2021, 342, 125938. [Google Scholar] [CrossRef] [PubMed]
- Mutungwazi, A.; Ijoma, G.N.; Matambo, T.S. The Significance of Microbial Community Functions and Symbiosis in Enhancing Methane Production during Anaerobic Digestion: A Review. Symbiosis 2021, 83, 1–24. [Google Scholar] [CrossRef]
- Hassa, J.; Tubbesing, T.J.; Maus, I.; Heyer, R.; Benndorf, D.; Effenberger, M.; Henke, C.; Osterholz, B.; Beckstette, M.; Pühler, A.; et al. Uncovering Microbiome Adaptations in a Full-Scale Biogas Plant: Insights from MAG-Centric Metagenomics and Metaproteomics. Microorganisms 2023, 11, 2412. [Google Scholar] [CrossRef] [PubMed]
- Matsuda, S.; Yamato, T.; Mochizuki, Y.; Sekiguchi, Y.; Ohtsuki, T. Batch-Mode Analysis of Thermophilic Methanogenic Microbial Community Changes in the Overacidification Stage in Beverage Waste Treatment. Int. J. Environ. Res. Public Health 2020, 17, 7514. [Google Scholar] [CrossRef]
- Lin, M.; Qiao, W.; Ren, L.; Sun, Y.; Zhang, J.; Dong, R. Determination of Effects of Thermophilic and Hyperthermophilic Temperatures on Anaerobic Hydrolysis and Acidogenesis of Pig Manure through a One-Year Study. Bioresour. Technol. 2024, 391, 129890. [Google Scholar] [CrossRef]
- Marshall, C.W.; LaBelle, E.V.; May, H.D. Production of Fuels and Chemicals from Waste by Microbiomes. Curr. Opin. Biotechnol. 2013, 24, 391–397. [Google Scholar] [CrossRef]
- Agler, M.T.; Spirito, C.M.; Usack, J.G.; Werner, J.J.; Angenent, L.T. Chain Elongation with Reactor Microbiomes: Upgrading Dilute Ethanol to Medium-Chain Carboxylates. Energy Environ. Sci. 2012, 5, 8189–8192. [Google Scholar] [CrossRef]
- Xia, Q.; Zhou, C.; Pan, D.; Cao, J. Food Off-Odor Generation, Characterization and Recent Advances in Novel Mitigation Strategies. Adv. Food Nutr. Res. 2024, 108, 113–134. [Google Scholar] [CrossRef]
- Zentek, J.; Buchheit-Renko, S.; Ferrara, F.; Vahjen, W.; Van Kessel, A.G.; Pieper, R. Nutritional and Physiological Role of Medium-Chain Triglycerides and Medium-Chain Fatty Acids in Piglets. Anim. Health Res. Rev. 2011, 12, 83–93. [Google Scholar] [CrossRef]
- Zhang, Y.; Pan, X.; Zuo, J.; Hu, J. Production of N-Caproate Using Food Waste through Thermophilic Fermentation without Addition of External Electron Donors. Bioresour. Technol. 2022, 343, 126144. [Google Scholar] [CrossRef] [PubMed]
- Pason, P.; Tachaapaikoon, C.; Panichnumsin, P.; Ketbot, P.; Waeonukul, R.; Kosugi, A.; Ratanakhanokchai, K. One-Step Biohydrogen Production from Cassava Pulp Using Novel Enrichment of Anaerobic Thermophilic Bacteria Community. Biocatal. Agric. Biotechnol. 2020, 27, 101658. [Google Scholar] [CrossRef]
- Sanchez, J.; Hellstern, T.R.; King, L.A.; Jaramillo, T.F. Surface Engineering of 3D Gas Diffusion Electrodes for High-Performance H2 Production with Nonprecious Metal Catalysts. Adv. Energy Mater. 2019, 9, 1901824. [Google Scholar] [CrossRef]
- Yu, C.; Dongsu, B.; Tao, Z.; Xintong, J.; Ming, C.; Siqi, W.; Zheng, S.; Yalei, Z. Anaerobic Co-Digestion of Three Commercial Bio-Plastic Bags with Food Waste: Effects on Methane Production and Microbial Community Structure. Sci. Total Environ. 2023, 859, 159967. [Google Scholar] [CrossRef] [PubMed]
- Jin, Y.; Cai, F.; Song, C.; Liu, G.; Chen, C. Degradation of Biodegradable Plastics by Anaerobic Digestion: Morphological, Micro-Structural Changes and Microbial Community Dynamics. Sci. Total Environ. 2022, 834, 155167. [Google Scholar] [CrossRef] [PubMed]
- Counts, J.A.; Zeldes, B.M.; Lee, L.L.; Straub, C.T.; Adams, M.W.W.; Kelly, R.M. Physiological, Metabolic and Biotechnological Features of Extremely Thermophilic Microorganisms. Wiley Interdiscip. Rev. Syst. Biol. Med. 2017, 9, e1377. [Google Scholar] [CrossRef] [PubMed]
- Gallo, G.; Puopolo, R.; Carbonaro, M.; Maresca, E.; Fiorentino, G. Extremophiles, a Nifty Tool to Face Environmental Pollution: From Exploitation of Metabolism to Genome Engineering. Int. J. Environ. Res. Public Health 2021, 18, 5228. [Google Scholar] [CrossRef]
- Yun, E.J.; Oh, E.J.; Liu, J.J.; Yu, S.; Kim, D.H.; Kwak, S.; Kim, K.H.; Jin, Y.S. Promiscuous Activities of Heterologous Enzymes Lead to Unintended Metabolic Rerouting in Saccharomyces cerevisiae Engineered to Assimilate Various Sugars from Renewable Biomass. Biotechnol. Biofuels 2018, 11, 140. [Google Scholar] [CrossRef]
- Bielen, A.A.M.; Verhaart, M.R.A.; van der Oost, J.; Kengen, S.W.M. Biohydrogen Production by the Thermophilic Bacterium Caldicellulosiruptor saccharolyticus: Current Status and Perspectives. Life 2013, 3, 52–85. [Google Scholar] [CrossRef] [PubMed]
- Pradhan, N.; Dipasquale, L.; D’Ippolito, G.; Panico, A.; Lens, P.N.L.; Esposito, G.; Fontana, A. Hydrogen Production by the Thermophilic Bacterium Thermotoga neapolitana. Int. J. Mol. Sci. 2015, 16, 12578–12600. [Google Scholar] [CrossRef]
- Singer, S.; Magnusson, L.; Hou, D.; Lo, J.; Maness, P.C.; Ren, Z.J. Anaerobic Membrane Gas Extraction Facilitates Thermophilic Hydrogen Production from Clostridium thermocellum. Environ. Sci 2018, 4, 1771–1782. [Google Scholar] [CrossRef]
- An, J.; Ha, B.; Lee, S.K. Production of Polyhydroxyalkanoates by the Thermophile Cupriavidus cauae PHS1. Bioresour. Technol. 2023, 371, 128627. [Google Scholar] [CrossRef] [PubMed]
- Możejko-Ciesielska, J.; Ray, S.; Sankhyan, S. Recent Challenges and Trends of Polyhydroxyalkanoate Production by Extremophilic Bacteria Using Renewable Feedstocks. Polymers 2023, 15, 4385. [Google Scholar] [CrossRef] [PubMed]
- Rodge, S.P.; Shende, K.S.; Patil, N.P. Polyhydroxyalkanoate Biosynthesis and Optimisation of Thermophilic Geobacillus stearothermophilus Strain K4E3_SPR_NPP. Extremophiles 2023, 27, 13. [Google Scholar] [CrossRef] [PubMed]
- Pernicova, I.; Novackova, I.; Sedlacek, P.; Kourilova, X.; Kalina, M.; Kovalcik, A.; Koller, M.; Nebesarova, J.; Krzyzanek, V.; Hrubanova, K.; et al. Introducing the Newly Isolated Bacterium Aneurinibacillus sp. H1 as an Auspicious Thermophilic Producer of Various Polyhydroxyalkanoates (PHA) Copolymers–1. Isolation and Characterization of the Bacterium. Polymers 2020, 12, 1235. [Google Scholar] [CrossRef] [PubMed]
- Xiao, Z.; Zhang, Y.; Xi, L.; Huo, F.; Zhao, J.Y.; Li, J. Thermophilic Production of Polyhydroxyalkanoates by a Novel Aneurinibacillus Strain Isolated from Gudao Oilfield, China. J. Basic Microbiol. 2015, 55, 1125–1133. [Google Scholar] [CrossRef] [PubMed]
- Musilova, J.; Kourilova, X.; Bezdicek, M.; Lengerova, M.; Obruca, S.; Skutkova, H.; Sedlar, K. First Complete Genome of the Thermophilic Polyhydroxyalkanoates-Producing Bacterium Schlegelella thermodepolymerans DSM 15344. Genome Biol. Evol. 2021, 13, evab007. [Google Scholar] [CrossRef] [PubMed]
- Aulitto, M.; Martinez-Alvarez, L.; Fiorentino, G.; Limauro, D.; Peng, X.; Contursi, P. A Comparative Analysis of Weizmannia coagulans Genomes Unravels the Genetic Potential for Biotechnological Applications. Int. J. Mol. Sci. 2022, 23, 3135. [Google Scholar] [CrossRef] [PubMed]
- Aulitto, M.; Alfano, A.; Maresca, E.; Avolio, R.; Errico, M.E.; Gentile, G.; Cozzolino, F.; Monti, M.; Pirozzi, A.; Donsì, F.; et al. Thermophilic Biocatalysts for One-Step Conversion of Citrus Waste into Lactic Acid. Appl. Microbiol. Biotechnol. 2024, 108, 155. [Google Scholar] [CrossRef]
- Aulitto, M.; Fusco, S.; Bartolucci, S.; Franzén, C.J.; Contursi, P. Bacillus coagulans MA-13: A Promising Thermophilic and Cellulolytic Strain for the Production of Lactic Acid from Lignocellulosic Hydrolysate. Biotechnol. Biofuels 2017, 10, 210. [Google Scholar] [CrossRef]
- Maresca, E.; Aulitto, M.; Contursi, P. Harnessing the Dual Nature of W. Coagulans for Sustainable Production of Biomaterials and Development of Functional Food. Microb. Biotechnol. 2024, 17, e14449. [Google Scholar] [CrossRef]
- Svetlitchnyi, V.A.; Svetlichnaya, T.P.; Falkenhan, D.A.; Swinnen, S.; Knopp, D.; Läufer, A. Direct Conversion of Cellulose to L-Lactic Acid by a Novel Thermophilic Caldicellulosiruptor Strain. Biotechnol. Biofuels Bioprod. 2022, 15, 44. [Google Scholar] [CrossRef]
- Skariyachan, S.; Setlur, A.S.; Naik, S.Y.; Naik, A.A.; Usharani, M.; Vasist, K.S. Enhanced Biodegradation of Low and High-Density Polyethylene by Novel Bacterial Consortia Formulated from Plastic-Contaminated Cow Dung under Thermophilic Conditions. Environ. Sci. Pollut. Res. 2017, 24, 8443–8457. [Google Scholar] [CrossRef]
- Atanasova, N.; Paunova-Krasteva, T.; Stoitsova, S.; Radchenkova, N.; Boyadzhieva, I.; Petrov, K.; Kambourova, M. Degradation of Poly(ε-Caprolactone) by A Thermophilic Community and Brevibacillus thermoruber Strain 7 Isolated from Bulgarian Hot Spring. Biomolecules 2021, 11, 1488. [Google Scholar] [CrossRef] [PubMed]
- Aulitto, M.; Fusco, S.; Nickel, D.B.; Bartolucci, S.; Contursi, P.; Franzén, C.J. Seed Culture Pre-Adaptation of Bacillus coagulans MA-13 Improves Lactic Acid Production in Simultaneous Saccharification and Fermentation. Biotechnol. Biofuels 2019, 12, 45. [Google Scholar] [CrossRef] [PubMed]
- Parmar, A.; Singh, N.K.; Pandey, A.; Gnansounou, E.; Madamwar, D. Cyanobacteria and Microalgae: A Positive Prospect for Biofuels. Bioresour. Technol. 2011, 102, 10163–10172. [Google Scholar] [CrossRef] [PubMed]
- Bule, M.H.; Ahmed, I.; Maqbool, F.; Bilal, M.; Iqbal, H.M.N. Microalgae as a Source of High-Value Bioactive Compounds. Front. Biosci. 2018, 10, 197–216. [Google Scholar]
- Liberti, D.; Imbimbo, P.; Giustino, E.; D’Elia, L.; Silva, M.; Barreira, L.; Monti, D.M. Shedding Light on the Hidden Benefit of Porphyridium cruentum Culture. Antioxidants 2023, 12, 337. [Google Scholar] [CrossRef] [PubMed]
- Wong, J.F.; Hong, H.J.; Foo, S.C.; Yap, M.K.K.; Tan, J.W. A Review on Current and Future Advancements for Commercialized Microalgae Species. Food Sci. Hum. Wellness 2022, 11, 1156–1170. [Google Scholar] [CrossRef]
- Hernández-Urcera, J.; Romero, A.; Cruz, P.; Vasconcelos, V.; Figueras, A.; Novoa, B.; Rodríguez, F. Screening of Microalgae for Bioactivity with Antiviral, Antibacterial, Anti-Inflammatory and Anti-Cancer Assays. Biology 2024, 13, 255. [Google Scholar] [CrossRef]
- Rasul, F.; You, D.; Jiang, Y.; Liu, X.; Daroch, M. Thermophilic Cyanobacteria—Exciting, yet Challenging Biotechnological Chassis. Appl. Microbiol. Biotechnol. 2024, 108, 270. [Google Scholar] [CrossRef] [PubMed]
- Mehetre, G.T.; Zothanpuia; Deka, P.; Carrie, W.; Lalrokimi; Singh, B.P. Chapter6—Thermophilic and Thermotolerant Cyanobacteria: Environmental and Biotechnological Perspectives; Singh, P., Fillat, M., Kumar, A.B.T.-C.L., Eds.; Academic Press: Cambridge, MA, USA, 2022; pp. 159–178. ISBN 978-0-323-90634-0. [Google Scholar]
- Yoshida, C.; Murakami, M.; Niwa, A.; Takeya, M.; Osanai, T. Efficient Extraction and Preservation of Thermotolerant Phycocyanins from Red Alga Cyanidioschyzon merolae. J. Biosci. Bioeng. 2021, 131, 161–167. [Google Scholar] [CrossRef] [PubMed]
- Rahman, D.Y.; Sarian, F.D.; van der Maarel, M.J.E.C. Biomass and Phycocyanin Content of Heterotrophic Galdieria sulphuraria 074G under Maltodextrin and Granular Starches–Feeding Conditions. J. Appl. Phycol. 2020, 32, 51–57. [Google Scholar] [CrossRef]
- Singh, P.; Kumar, D. Biomass and Lipid Production Potential of Cyanobacteria and Microalgae Isolated from the Diverse Habitats of Garhwal Himalaya, Uttarakhand, India. Biomass Bioenergy 2022, 162, 106469. [Google Scholar] [CrossRef]
- Singh, P.; Kumar, D. Biomass and Lipid Productivities of Cyanobacteria-Leptolyngbya foveolarum HNBGU001. Bioenergy Res. 2021, 14, 278–291. [Google Scholar] [CrossRef]
- Boutarfa, S.; Senoussi, M.M.; González-Silvera, D.; López-Jiménez, J.Á.; Aboal, M. Fatty Acids Profile of Mastigocladus laminosus Cohn Ex Kichner Isolated from Algerian Hot Springs as a Biofuel Feedstock. Biocatal. Agric. Biotechnol. 2022, 42, 102373. [Google Scholar] [CrossRef]
- Gudmundsdottir, A.B.; Brynjolfsdottir, A.; Olafsdottir, E.S.; Hardardottir, I.; Freysdottir, J. Exopolysaccharides from Cyanobacterium aponinum Induce a Regulatory Dendritic Cell Phenotype and Inhibit SYK and CLEC7A Expression in Dendritic Cells, T Cells and Keratinocytes. Int. Immunopharmacol. 2019, 69, 328–336. [Google Scholar] [CrossRef]
- Gongi, W.; Pinchetti, J.L.G.; Cordeiro, N.; Ouada, H.B. Extracellular Polymeric Substances Produced by the Thermophilic Cyanobacterium Gloeocapsa gelatinosa: Characterization and Assessment of Their Antioxidant and Metal-Chelating Activities. Mar. Drugs 2022, 20, 227. [Google Scholar] [CrossRef]
- Gongi, W.; Cordeiro, N.; Pinchetti, J.L.G.; Ouada, H.B. Functional, rheological, and antioxidant properties of extracellular polymeric substances produced by a thermophilic cyanobacterium Leptolyngbya sp. J. Appl. Phycol. 2022, 34, 1423–1434. [Google Scholar] [CrossRef]
- Dagnino-Leone, J.; Figueroa, C.P.; Castañeda, M.L.; Youlton, A.D.; Vallejos-Almirall, A.; Agurto-Muñoz, A.; Pavón Pérez, J.; Agurto-Muñoz, C. Phycobiliproteins: Structural Aspects, Functional Characteristics, and Biotechnological Perspectives. Comput. Struct. Biotechnol. J. 2022, 20, 1506–1527. [Google Scholar] [CrossRef]
- Imbimbo, P.; Romanucci, V.; Pollio, A.; Fontanarosa, C.; Amoresano, A.; Zarrelli, A.; Olivieri, G.; Monti, D.M. A Cascade Extraction of Active Phycocyanin and Fatty Acids from Galdieria phlegrea. Appl. Microbiol. Biotechnol. 2019, 103, 9455–9464. [Google Scholar] [CrossRef] [PubMed]
- Ismail, M.M.; El-Fakharany, E.M.; Hegazy, G.E. Purification and Fractionation of Phycobiliproteins from Arthrospira Platensis and Corallina Officinalis with Evaluating Their Biological Activities. Sci. Rep. 2023, 13, 14270. [Google Scholar] [CrossRef] [PubMed]
- Chen, H.; Qi, H.; Xiong, P. Phycobiliproteins—A Family of Algae-Derived Biliproteins: Productions, Characterization and Pharmaceutical Potentials. Mar. Drugs 2022, 20, 450. [Google Scholar] [CrossRef] [PubMed]
- Kovaleski, G.; Kholany, M.; Dias, L.M.S.; Correia, S.F.H.; Ferreira, R.A.S.; Coutinho, J.A.P.; Ventura, S.P.M. Extraction and Purification of Phycobiliproteins from Algae and Their Applications. Front. Chem. 2022, 10, 1065355. [Google Scholar] [CrossRef] [PubMed]
- Shkolnikov Lozober, H.; Okun, Z.; Parvari, G.; Shpigelman, A. The Effect of Storage and Pasteurization (Thermal and High-Pressure) Conditions on the Stability of Phycocyanobilin and Phycobiliproteins. Antioxidants 2023, 12, 568. [Google Scholar] [CrossRef] [PubMed]
- Wan, M.; Zhao, H.; Guo, J.; Yan, L.; Zhang, D.; Bai, W.; Li, Y. Comparison of C-Phycocyanin from Extremophilic Galdieria sulphuraria and Spirulina platensis on Stability and Antioxidant Capacity. Algal Res. 2021, 58, 102391. [Google Scholar] [CrossRef]
- Roy, D.; Verma, S.; Das, S.; Chakdar, H.; Pabbi, S. Production and Applications of Cyanobacterial Phycocyanin: Trends and Prospects. Indian J. Microbiol. 2024, 1–19. [Google Scholar] [CrossRef]
- Sydney, E.B.; Schafranski, K.; Barretti, B.R.V.; Sydney, A.C.N.; Zimmerman, J.F.D.; Cerri, M.L.; Mottin Demiate, I. Biomolecules from Extremophile Microalgae: From Genetics to Bioprocessing of a New Candidate for Large-Scale Production. Process Biochem. 2019, 87, 37–44. [Google Scholar] [CrossRef]
- Ciniglia, C.; Yoon, H.S.; Pollio, A.; Pinto, G.; Bhattacharya, D. Hidden Biodiversity of the Extremophilic Cyanidiales Red Algae. Mol. Ecol. 2004, 13, 1827–1838. [Google Scholar] [CrossRef]
- Ferraro, G.; Imbimbo, P.; Marseglia, A.; Lucignano, R.; Monti, D.M.; Merlino, A. X-ray Structure of C-Phycocyanin from Galdieria phlegrea: Determinants of Thermostability and Comparison with a C-Phycocyanin in the Entire Phycobilisome. Biochim. Biophys. Acta (BBA)-Bioenerg. 2020, 1861, 148236. [Google Scholar] [CrossRef]
- Callegari, A.; Bolognesi, S.; Cecconet, D.; Capodaglio, A.G. Production Technologies, Current Role, and Future Prospects of Biofuels Feedstocks: A State-of-the-Art Review. Crit. Rev. Environ. Sci. Technol. 2020, 50, 384–436. [Google Scholar] [CrossRef]
- Al-Zuhair, S. Production of Biodiesel: Possibilities and Challenges. Biofuels Bioprod. Biorefin. 2007, 1, 57–66. [Google Scholar] [CrossRef]
- Udayan, A.; Pandey, A.K.; Sirohi, R.; Sreekumar, N.; Sang, B.I.; Sim, S.J.; Kim, S.H.; Pandey, A. Production of Microalgae with High Lipid Content and Their Potential as Sources of Nutraceuticals. Phytochem. Rev. 2023, 22, 833–860. [Google Scholar] [CrossRef]
- Mutale-Joan, C.; Sbabou, L.; Hicham, E.A. Microalgae and Cyanobacteria: How Exploiting These Microbial Resources Can Address the Underlying Challenges Related to Food Sources and Sustainable Agriculture: A Review. J. Plant Growth Regul. 2023, 42, 1–20. [Google Scholar] [CrossRef]
- Karatay, S.E.; Dönmez, G. Microbial Oil Production from Thermophile Cyanobacteria for Biodiesel Production. Appl. Energy 2011, 88, 3632–3635. [Google Scholar] [CrossRef]
- Onay, M.; Sonmez, C.; Oktem, H.A.; Yucel, A.M. Thermo-Resistant Green Microalgae for Effective Biodiesel Production: Isolation and Characterization of Unialgal Species from Geothermal Flora of Central Anatolia. Bioresour. Technol. 2014, 169, 62–71. [Google Scholar] [CrossRef] [PubMed]
- Nicolaus, B.; Kambourova, M.; Oner, E.T. Exopolysaccharides from Extremophiles: From Fundamentals to Biotechnology. Environ. Technol. 2010, 31, 1145–1158. [Google Scholar] [CrossRef]
- Trabelsi, L.; Chaieb, O.; Mnari, A.; Abid-Essafi, S.; Aleya, L. Partial Characterization and Antioxidant and Antiproliferative Activities of the Aqueous Extracellular Polysaccharides from the Thermophilic Microalgae Graesiella sp. BMC Complement. Altern. Med. 2016, 16, 210. [Google Scholar] [CrossRef]
- Morais, M.G.; Santos, T.D.; Moraes, L.; Vaz, B.S.; Morais, E.G.; Costa, J.A.V. Exopolysaccharides from Microalgae: Production in a Biorefinery Framework and Potential Applications. Bioresour. Technol. Rep. 2022, 18, 101006. [Google Scholar] [CrossRef]
- Banerjee, A.; Breig, S.J.M.; Gómez, A.; Sánchez-Arévalo, I.; González-Faune, P.; Sarkar, S.; Bandopadhyay, R.; Vuree, S.; Cornejo, J.; Tapia, J.; et al. Optimization and Characterization of a Novel Exopolysaccharide from Bacillus Haynesii CamB6 for Food Applications. Biomolecules 2022, 12, 834. [Google Scholar] [CrossRef]
- Tounsi, L.; Hentati, F.; Ben Hlima, H.; Barkallah, M.; Smaoui, S.; Fendri, I.; Michaud, P.; Abdelkafi, S. Microalgae as Feedstock for Bioactive Polysaccharides. Int. J. Biol. Macromol. 2022, 221, 1238–1250. [Google Scholar] [CrossRef] [PubMed]
- Babiak, W.; Krzemińska, I. Extracellular Polymeric Substances (EPS) as Microalgal Bioproducts: A Review of Factors Affecting EPS Synthesis and Application in Flocculation Processes. Energies 2021, 14, 7. [Google Scholar] [CrossRef]
- Gudmundsdottir, A.B.; Omarsdottir, S.; Brynjolfsdottir, A.; Paulsen, B.S.; Olafsdottir, E.S.; Freysdottir, J. Exopolysaccharides from Cyanobacterium aponinum from the Blue Lagoon in Iceland Increase IL-10 Secretion by Human Dendritic Cells and Their Ability to Reduce the IL-17+RORγt+/IL-10+FoxP3+ Ratio in CD4+ T Cells. Immunol. Lett. 2015, 163, 157–162. [Google Scholar] [CrossRef] [PubMed]
Strain | Collection Site | Biomolecule | Thermal Stability (°C) | Application | Reference |
---|---|---|---|---|---|
Galdieria phlegrea | Sulphur spring, Italy | PC | 87 | Antioxidant, anticancer, natural dye/additive | [8] |
Cyanidioschyzon merolae | n.r. | PC | 83 | Natural dye | [64] |
Galdieria sulphuraria 074G | n.r. | PC | 55 | Large-scale cultivation | [65] |
Pseudobohilina sp. PbS–BHS | Badrinath hot spring, Chamoli, Garhwal | Lipids | n.r. | Biodiesel | [66] |
Leptolyngbya foveolarum LlF-RHS | Ringigad hot spring, Chamoli, Garhwal | Lipids | n.r. | Biodiesel | [66] |
Leptolyngbya foveolarum HNBGU001 | Thermal springs, Garhwal, Himalaya | Lipids | n.r. | Biodiesel | [67] |
Mastigocladus laminosus Cohn ex Kichner | Hot spring, Algeria | Lipids | n.r. | Biodiesel | [68] |
Cyanobacterium aponinum | Geothermal pool, Blue Lagoon, Iceland | EPSs | n.r. | Anti-inflammatory | [69] |
Gloeocapsa gelatinosa | Hot source, Ain Echfa, Tunisia | EPSs | 100 | Antioxidant; fat adsorber; flavor retention; wastewater treatment | [70] |
Leptolyngbya sp. IkmLPT16 | Hot water, Ain Echfa, Tunisia | EPSs | 60 | Antioxidant | [71] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gallo, G.; Imbimbo, P.; Aulitto, M. The Undeniable Potential of Thermophiles in Industrial Processes. Int. J. Mol. Sci. 2024, 25, 7685. https://doi.org/10.3390/ijms25147685
Gallo G, Imbimbo P, Aulitto M. The Undeniable Potential of Thermophiles in Industrial Processes. International Journal of Molecular Sciences. 2024; 25(14):7685. https://doi.org/10.3390/ijms25147685
Chicago/Turabian StyleGallo, Giovanni, Paola Imbimbo, and Martina Aulitto. 2024. "The Undeniable Potential of Thermophiles in Industrial Processes" International Journal of Molecular Sciences 25, no. 14: 7685. https://doi.org/10.3390/ijms25147685
APA StyleGallo, G., Imbimbo, P., & Aulitto, M. (2024). The Undeniable Potential of Thermophiles in Industrial Processes. International Journal of Molecular Sciences, 25(14), 7685. https://doi.org/10.3390/ijms25147685