Effects of Age and MPTP-Induced Parkinson’s Disease on the Expression of Genes Associated with the Regulation of the Sleep–Wake Cycle in Mice
Abstract
:1. Introduction
2. Results
3. Discussion
3.1. Age-Dependent Changes in the Expression of Genes Associated with the Regulation of the Sleep–Wake Cycle in Normal Mice
3.2. Changes in the Expression of Genes Associated with the Regulation of the Sleep–Wake Cycle in Young and Adult Mice with the MPTP-Induced Model of the ESS of PD
4. Materials and Methods
4.1. Modeling PD
4.2. RNA Isolation and Expression Analysis of Individual Candidate Genes
4.3. Statistical Processing of Data
5. Limitations of the Study
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
References
- Balestrino, R.; Schapira, A.H.V. Parkinson disease. Eur. J. Neurol. 2020, 27, 27–42. [Google Scholar] [CrossRef] [PubMed]
- Kalia, L.V.; Lang, A.E. Parkinson’s disease. Lancet 2015, 386, 896–912. [Google Scholar] [CrossRef] [PubMed]
- Zeng, X.S.; Geng, W.S.; Jia, J.J.; Chen, L.; Zhang, P.P. Cellular and Molecular Basis of Neurodegeneration in Parkinson Disease. Front. Aging Neurosci. 2018, 10, 109. [Google Scholar] [CrossRef] [PubMed]
- De Cock, V.C.; Vidailhet, M.; Arnulf, I. Sleep disturbances in patients with parkinsonism. Nat. Clin. Pract. Neurol. 2008, 4, 254–266. [Google Scholar] [CrossRef] [PubMed]
- Schrempf, W.; Brandt, M.D.; Storch, A.; Reichmann, H. Sleep disorders in Parkinson’s disease. J. Parkinsons Dis. 2014, 4, 211–221. [Google Scholar] [CrossRef] [PubMed]
- Scammell, T.E.; Arrigoni, E.; Lipton, J.O. Neural Circuitry of Wakefulness and Sleep. Neuron 2017, 93, 747–765. [Google Scholar] [CrossRef]
- Lin, J.S.; Sergeeva, O.A.; Haas, H.L. Histamine H3 receptors and sleep-wake regulation. J. Pharmacol. Exp. Ther. 2011, 336, 17–23. [Google Scholar] [CrossRef] [PubMed]
- Williams, R.H.; Chee, M.J.; Kroeger, D.; Ferrari, L.L.; Maratos-Flier, E.; Scammell, T.E.; Arrigoni, E. Optogenetic-mediated release of histamine reveals distal and autoregulatory mechanisms for controlling arousal. J. Neurosci. 2014, 34, 6023–6029. [Google Scholar] [CrossRef] [PubMed]
- Scammell, T.E.; Jackson, A.C.; Franks, N.P.; Wisden, W.; Dauvilliers, Y. Histamine: Neural circuits and new medications. Sleep 2019, 42, zsy183. [Google Scholar] [CrossRef]
- Parmentier, R.; Zhao, Y.; Perier, M.; Akaoka, H.; Lintunen, M.; Hou, Y.; Panula, P.; Watanabe, T.; Franco, P.; Lin, J.S. Role of histamine H1-receptor on behavioral states and wake maintenance during deficiency of a brain activating system: A study using a knockout mouse model. Neuropharmacology 2016, 106, 20–34. [Google Scholar] [CrossRef]
- Fujita, A.; Bonnavion, P.; Wilson, M.H.; Mickelsen, L.E.; Bloit, J.; de Lecea, L.; Jackson, A.C. Hypothalamic Tuberomammillary Nucleus Neurons: Electrophysiological Diversity and Essential Role in Arousal Stability. J. Neurosci. 2017, 37, 9574–9592. [Google Scholar] [CrossRef]
- Passani, M.B.; Bacciottini, L.; Mannaioni, P.F.; Blandina, P. Central histaminergic system and cognition. Neurosci. Biobehav. Rev. 2000, 24, 107–113. [Google Scholar] [CrossRef] [PubMed]
- Flores-Clemente, C.; Nicolas-Vazquez, M.I.; Mera Jimenez, E.; Hernandez-Rodriguez, M. Inhibition of Astrocytic Histamine N-Methyltransferase as a Possible Target for the Treatment of Alzheimer’s Disease. Biomolecules 2021, 11, 1408. [Google Scholar] [CrossRef]
- Haas, H.; Panula, P. The role of histamine and the tuberomamillary nucleus in the nervous system. Nat. Rev. Neurosci. 2003, 4, 121–130. [Google Scholar] [CrossRef] [PubMed]
- Anichtchik, O.V.; Rinne, J.O.; Kalimo, H.; Panula, P. An altered histaminergic innervation of the substantia nigra in Parkinson’s disease. Exp. Neurol. 2000, 163, 20–30. [Google Scholar] [CrossRef]
- Rinne, J.O.; Anichtchik, O.V.; Eriksson, K.S.; Kaslin, J.; Tuomisto, L.; Kalimo, H.; Roytta, M.; Panula, P. Increased brain histamine levels in Parkinson’s disease but not in multiple system atrophy. J. Neurochem. 2002, 81, 954–960. [Google Scholar] [CrossRef]
- Anichtchik, O.V.; Peitsaro, N.; Rinne, J.O.; Kalimo, H.; Panula, P. Distribution and modulation of histamine H(3) receptors in basal ganglia and frontal cortex of healthy controls and patients with Parkinson’s disease. Neurobiol. Dis. 2001, 8, 707–716. [Google Scholar] [CrossRef]
- Coelho, M.H.; Silva, I.J.; Azevedo, M.S.; Manso, C.F. Decrease in blood histamine in drug-treated parkinsonian patients. Mol. Chem. Neuropathol. 1991, 14, 77–85. [Google Scholar] [CrossRef] [PubMed]
- Abe, H.; Honma, S.; Ohtsu, H.; Honma, K. Circadian rhythms in behavior and clock gene expressions in the brain of mice lacking histidine decarboxylase. Brain Res. Mol. Brain Res. 2004, 124, 178–187. [Google Scholar] [CrossRef]
- Yu, X.; Zecharia, A.; Zhang, Z.; Yang, Q.; Yustos, R.; Jager, P.; Vyssotski, A.L.; Maywood, E.S.; Chesham, J.E.; Ma, Y.; et al. Circadian factor BMAL1 in histaminergic neurons regulates sleep architecture. Curr. Biol. 2014, 24, 2838–2844. [Google Scholar] [CrossRef]
- Nassan, M.; Videnovic, A. Circadian rhythms in neurodegenerative disorders. Nat. Rev. Neurol. 2022, 18, 7–24. [Google Scholar] [CrossRef] [PubMed]
- Cai, Y.; Liu, S.; Sothern, R.B.; Xu, S.; Chan, P. Expression of clock genes Per1 and Bmal1 in total leukocytes in health and Parkinson’s disease. Eur. J. Neurol. 2010, 17, 550–554. [Google Scholar] [CrossRef] [PubMed]
- Ding, H.; Liu, S.; Yuan, Y.; Lin, Q.; Chan, P.; Cai, Y. Decreased expression of Bmal2 in patients with Parkinson’s disease. Neurosci. Lett. 2011, 499, 186–188. [Google Scholar] [CrossRef] [PubMed]
- Breen, D.P.; Vuono, R.; Nawarathna, U.; Fisher, K.; Shneerson, J.M.; Reddy, A.B.; Barker, R.A. Sleep and circadian rhythm regulation in early Parkinson disease. JAMA Neurol. 2014, 71, 589–595. [Google Scholar] [CrossRef] [PubMed]
- Alieva, A.K.; Zyrin, V.S.; Rudenok, M.M.; Kolacheva, A.A.; Shulskaya, M.V.; Ugryumov, M.V.; Slominsky, P.A.; Shadrina, M.I. Whole-Transcriptome Analysis of Mouse Models with MPTP-Induced Early Stages of Parkinson’s Disease Reveals Stage-Specific Response of Transcriptome and a Possible Role of Myelin-Linked Genes in Neurodegeneration. Mol. Neurobiol. 2018, 55, 7229–7241. [Google Scholar] [CrossRef] [PubMed]
- Naganuma, F.; Nakamura, T.; Yoshikawa, T.; Iida, T.; Miura, Y.; Karpati, A.; Matsuzawa, T.; Yanai, A.; Mogi, A.; Mochizuki, T.; et al. Histamine N-methyltransferase regulates aggression and the sleep-wake cycle. Sci. Rep. 2017, 7, 15899. [Google Scholar] [CrossRef] [PubMed]
- Karpati, A.; Yoshikawa, T.; Naganuma, F.; Matsuzawa, T.; Kitano, H.; Yamada, Y.; Yokoyama, M.; Futatsugi, A.; Mikoshiba, K.; Yanai, K. Histamine H(1) receptor on astrocytes and neurons controls distinct aspects of mouse behaviour. Sci. Rep. 2019, 9, 16451. [Google Scholar] [CrossRef] [PubMed]
- Rozov, S.V.; Porkka-Heiskanen, T.; Panula, P. On the Role of Histamine Receptors in the Regulation of Circadian Rhythms. PLoS ONE 2015, 10, e0144694. [Google Scholar] [CrossRef] [PubMed]
- Kopp, C.; Albrecht, U.; Zheng, B.; Tobler, I. Homeostatic sleep regulation is preserved in mPer1 and mPer2 mutant mice. Eur. J. Neurosci. 2002, 16, 1099–1106. [Google Scholar] [CrossRef]
- Niwa, Y.; Kanda, G.N.; Yamada, R.G.; Shi, S.; Sunagawa, G.A.; Ukai-Tadenuma, M.; Fujishima, H.; Matsumoto, N.; Masumoto, K.H.; Nagano, M.; et al. Muscarinic Acetylcholine Receptors Chrm1 and Chrm3 Are Essential for REM Sleep. Cell Rep. 2018, 24, 2231–2247.e7. [Google Scholar] [CrossRef]
- Shan, L.; Swaab, D.F.; Bao, A.M. Neuronal histaminergic system in aging and age-related neurodegenerative disorders. Exp. Gerontol. 2013, 48, 603–607. [Google Scholar] [CrossRef] [PubMed]
- Hood, S.; Amir, S. The aging clock: Circadian rhythms and later life. J. Clin. Investig. 2017, 127, 437–446. [Google Scholar] [CrossRef] [PubMed]
- Suzuki, K.; Miyamoto, M.; Miyamoto, T.; Iwanami, M.; Hirata, K. Sleep disturbances associated with Parkinson’s disease. Parkinsons Dis. 2011, 2011, 219056. [Google Scholar] [CrossRef] [PubMed]
- Chaudhuri, K.R.; Schapira, A.H. Non-motor symptoms of Parkinson’s disease: Dopaminergic pathophysiology and treatment. Lancet Neurol. 2009, 8, 464–474. [Google Scholar] [CrossRef] [PubMed]
- Thakkar, M.M. Histamine in the regulation of wakefulness. Sleep. Med. Rev. 2011, 15, 65–74. [Google Scholar] [CrossRef] [PubMed]
- Brown, R.E.; Stevens, D.R.; Haas, H.L. The physiology of brain histamine. Prog. Neurobiol. 2001, 63, 637–672. [Google Scholar] [CrossRef] [PubMed]
- McKillop, L.E.; Vyazovskiy, V.V. Sleep and ageing: From human studies to rodent models. Curr. Opin. Physiol. 2020, 15, 210–216. [Google Scholar] [CrossRef] [PubMed]
- Prell, G.D.; Khandelwal, J.K.; Burns, R.S.; LeWitt, P.A.; Green, J.P. Elevated levels of histamine metabolites in cerebrospinal fluid of aging, healthy humans. Compr. Gerontol. A 1988, 2, 114–119. [Google Scholar] [PubMed]
- Higuchi, M.; Yanai, K.; Okamura, N.; Meguro, K.; Arai, H.; Itoh, M.; Iwata, R.; Ido, T.; Watanabe, T.; Sasaki, H. Histamine H(1) receptors in patients with Alzheimer’s disease assessed by positron emission tomography. Neuroscience 2000, 99, 721–729. [Google Scholar] [CrossRef]
- Yanai, K.; Watanabe, T.; Meguro, K.; Yokoyama, H.; Sato, I.; Sasano, H.; Itoh, M.; Iwata, R.; Takahashi, T.; Ido, T. Age-dependent decrease in histamine H1 receptor in human brains revealed by PET. Neuroreport 1992, 3, 433–436. [Google Scholar] [CrossRef]
- Prast, H.; Gujrati, V.; Walser, S.; Philippu, A. Histamine, histidine decarboxylase and histamine-N-methyltransferase in brain areas of spontaneously hypertensive rats. Naunyn Schmiedebergs Arch. Pharmacol. 1988, 338, 573–576. [Google Scholar] [CrossRef] [PubMed]
- Mazurkiewicz-Kwilecki, I.M.; Prell, G.D. Age-related changes in brain histamine. Agents Actions 1984, 14, 554–557. [Google Scholar] [CrossRef] [PubMed]
- Ferretti, C.; Blengio, M.; Ghi, P.; Adage, T.; Portaleone, P.; Ricci Gamalero, S. Hypothalamic histamine release in normal and stressed rats is affected by sex and aging. Pharmacol. Biochem. Behav. 1998, 59, 255–260. [Google Scholar] [CrossRef] [PubMed]
- Cacabelos, R.; Torrellas, C.; Fernández-Novoa, L.; López-Muñoz, F. Histamine and Immune Biomarkers in CNS Disorders. Mediat. Inflamm. 2016, 2016, 1924603. [Google Scholar] [CrossRef] [PubMed]
- Terao, A.; Steininger, T.L.; Morairty, S.R.; Kilduff, T.S. Age-related changes in histamine receptor mRNA levels in the mouse brain. Neurosci. Lett. 2004, 355, 81–84. [Google Scholar] [CrossRef] [PubMed]
- West, R.E., Jr.; Zweig, A.; Shih, N.Y.; Siegel, M.I.; Egan, R.W.; Clark, M.A. Identification of two H3-histamine receptor subtypes. Mol. Pharmacol. 1990, 38, 610–613. [Google Scholar] [PubMed]
- Kondratova, A.A.; Kondratov, R.V. The circadian clock and pathology of the ageing brain. Nat. Rev. Neurosci. 2012, 13, 325–335. [Google Scholar] [CrossRef] [PubMed]
- Palomba, M.; Nygard, M.; Florenzano, F.; Bertini, G.; Kristensson, K.; Bentivoglio, M. Decline of the presynaptic network, including GABAergic terminals, in the aging suprachiasmatic nucleus of the mouse. J. Biol. Rhythms 2008, 23, 220–231. [Google Scholar] [CrossRef] [PubMed]
- Aujard, F.; Herzog, E.D.; Block, G.D. Circadian rhythms in firing rate of individual suprachiasmatic nucleus neurons from adult and middle-aged mice. Neuroscience 2001, 106, 255–261. [Google Scholar] [CrossRef]
- Zhao, J.; Warman, G.R.; Cheeseman, J.F. The functional changes of the circadian system organization in aging. Ageing Res. Rev. 2019, 52, 64–71. [Google Scholar] [CrossRef]
- Yoon, I.Y.; Kripke, D.F.; Elliott, J.A.; Youngstedt, S.D.; Rex, K.M.; Hauger, R.L. Age-related changes of circadian rhythms and sleep-wake cycles. J. Am. Geriatr. Soc. 2003, 51, 1085–1091. [Google Scholar] [CrossRef] [PubMed]
- Karasek, M.; Reiter, R.J. Melatonin and aging. Neuro Endocrinol. Lett. 2002, 23 (Suppl. 1), 14–16. [Google Scholar] [PubMed]
- Froy, O. Circadian rhythms, aging, and life span in mammals. Physiology 2011, 26, 225–235. [Google Scholar] [CrossRef] [PubMed]
- Kolker, D.E.; Fukuyama, H.; Huang, D.S.; Takahashi, J.S.; Horton, T.H.; Turek, F.W. Aging alters circadian and light-induced expression of clock genes in golden hamsters. J. Biol. Rhythms 2003, 18, 159–169. [Google Scholar] [CrossRef] [PubMed]
- Weinert, H.; Weinert, D.; Schurov, I.; Maywood, E.S.; Hastings, M.H. Impaired expression of the mPer2 circadian clock gene in the suprachiasmatic nuclei of aging mice. Chronobiol. Int. 2001, 18, 559–565. [Google Scholar] [CrossRef] [PubMed]
- Bonaconsa, M.; Malpeli, G.; Montaruli, A.; Carandente, F.; Grassi-Zucconi, G.; Bentivoglio, M. Differential modulation of clock gene expression in the suprachiasmatic nucleus, liver and heart of aged mice. Exp. Gerontol. 2014, 55, 70–79. [Google Scholar] [CrossRef] [PubMed]
- Kalfalah, F.; Janke, L.; Schiavi, A.; Tigges, J.; Ix, A.; Ventura, N.; Boege, F.; Reinke, H. Crosstalk of clock gene expression and autophagy in aging. Aging 2016, 8, 1876–1895. [Google Scholar] [CrossRef] [PubMed]
- Kunieda, T.; Minamino, T.; Katsuno, T.; Tateno, K.; Nishi, J.; Miyauchi, H.; Orimo, M.; Okada, S.; Komuro, I. Cellular senescence impairs circadian expression of clock genes in vitro and in vivo. Circ. Res. 2006, 98, 532–539. [Google Scholar] [CrossRef] [PubMed]
- Ando, H.; Ushijima, K.; Kumazaki, M.; Takamura, T.; Yokota, N.; Saito, T.; Irie, S.; Kaneko, S.; Fujimura, A. Influence of age on clock gene expression in peripheral blood cells of healthy women. J. Gerontol. A Biol. Sci. Med. Sci. 2010, 65, 9–13. [Google Scholar] [CrossRef]
- Takahashi, J.S.; Hong, H.K.; Ko, C.H.; McDearmon, E.L. The genetics of mammalian circadian order and disorder: Implications for physiology and disease. Nat. Rev. Genet. 2008, 9, 764–775. [Google Scholar] [CrossRef]
- Nakamura, T.J.; Nakamura, W.; Tokuda, I.T.; Ishikawa, T.; Kudo, T.; Colwell, C.S.; Block, G.D. Age-Related Changes in the Circadian System Unmasked by Constant Conditions. eNeuro 2015, 2, ENEURO.0064-15.2015. [Google Scholar] [CrossRef] [PubMed]
- Nakamura, T.J.; Nakamura, W.; Yamazaki, S.; Kudo, T.; Cutler, T.; Colwell, C.S.; Block, G.D. Age-related decline in circadian output. J. Neurosci. 2011, 31, 10201–10205. [Google Scholar] [CrossRef] [PubMed]
- Chang, H.C.; Guarente, L. SIRT1 mediates central circadian control in the SCN by a mechanism that decays with aging. Cell 2013, 153, 1448–1460. [Google Scholar] [CrossRef] [PubMed]
- Brunswick, C.A.; Baldwin, D.J.; Bodinayake, K.K.; McKenna, A.R.; Lo, C.Y.; Bellfy, L.; Urban, M.W.; Stuart, E.M.; Murakami, S.; Smies, C.W.; et al. The clock gene Per1 is necessary in the retrosplenial cortex-but not in the suprachiasmatic nucleus-for incidental learning in young and aging male mice. Neurobiol. Aging 2023, 126, 77–90. [Google Scholar] [CrossRef] [PubMed]
- Wolff, C.A.; Gutierrez-Monreal, M.A.; Meng, L.; Zhang, X.; Douma, L.G.; Costello, H.M.; Douglas, C.M.; Ebrahimi, E.; Pham, A.; Oliveira, A.C.; et al. Defining the age-dependent and tissue-specific circadian transcriptome in male mice. Cell Rep. 2023, 42, 111982. [Google Scholar] [CrossRef] [PubMed]
- Claustrat, F.; Fournier, I.; Geelen, G.; Brun, J.; Corman, B.; Claustrat, B. [Aging and circadian clock gene expression in peripheral tissues in rats]. Pathol. Biol. 2005, 53, 257–260. [Google Scholar] [CrossRef] [PubMed]
- Duncan, M.J.; Prochot, J.R.; Cook, D.H.; Tyler Smith, J.; Franklin, K.M. Influence of aging on Bmal1 and Per2 expression in extra-SCN oscillators in hamster brain. Brain Res. 2013, 1491, 44–53. [Google Scholar] [CrossRef] [PubMed]
- Asai, M.; Yoshinobu, Y.; Kaneko, S.; Mori, A.; Nikaido, T.; Moriya, T.; Akiyama, M.; Shibata, S. Circadian profile of Per gene mRNA expression in the suprachiasmatic nucleus, paraventricular nucleus, and pineal body of aged rats. J. Neurosci. Res. 2001, 66, 1133–1139. [Google Scholar] [CrossRef] [PubMed]
- Chen, C.Y.; Logan, R.W.; Ma, T.; Lewis, D.A.; Tseng, G.C.; Sibille, E.; McClung, C.A. Effects of aging on circadian patterns of gene expression in the human prefrontal cortex. Proc. Natl. Acad. Sci. USA 2016, 113, 206–211. [Google Scholar] [CrossRef]
- Brzezinski, A.; Saada, A.; Miller, H.; Brzezinski-Sinai, N.A.; Ben-Meir, A. Is the aging human ovary still ticking?: Expression of clock-genes in luteinized granulosa cells of young and older women. J. Ovarian Res. 2018, 11, 95. [Google Scholar] [CrossRef]
- Cox, K.H.; Takahashi, J.S. Circadian clock genes and the transcriptional architecture of the clock mechanism. J. Mol. Endocrinol. 2019, 63, R93–R102. [Google Scholar] [CrossRef] [PubMed]
- Kruse, A.C.; Li, J.; Hu, J.; Kobilka, B.K.; Wess, J. Novel insights into M3 muscarinic acetylcholine receptor physiology and structure. J. Mol. Neurosci. 2014, 53, 316–323. [Google Scholar] [CrossRef] [PubMed]
- Bando, H.; Nishio, T.; van der Horst, G.T.; Masubuchi, S.; Hisa, Y.; Okamura, H. Vagal regulation of respiratory clocks in mice. J. Neurosci. 2007, 27, 4359–4365. [Google Scholar] [CrossRef] [PubMed]
- Tice, M.A.; Hashemi, T.; Taylor, L.A.; McQuade, R.D. Distribution of muscarinic receptor subtypes in rat brain from postnatal to old age. Brain Res. Dev. Brain Res. 1996, 92, 70–76. [Google Scholar] [CrossRef] [PubMed]
- Sanfilippo, C.; Giuliano, L.; Castrogiovanni, P.; Imbesi, R.; Ulivieri, M.; Fazio, F.; Blennow, K.; Zetterberg, H.; Di Rosa, M. Sex, Age, and Regional Differences in CHRM1 and CHRM3 Genes Expression Levels in the Human Brain Biopsies: Potential Targets for Alzheimer’s Disease-related Sleep Disturbances. Curr. Neuropharmacol. 2023, 21, 740–760. [Google Scholar] [CrossRef] [PubMed]
- Miyoshi, K.; Kawakami, N.; Das, A.K.; Fujimoto, K.; Horio, S.; Fukui, H. Heterologous up-regulation of the histamine H1 receptor by M3 muscarinic receptor-mediated activation of H1-receptor gene transcription. J. Pharm. Pharmacol. 2007, 59, 843–848. [Google Scholar] [CrossRef] [PubMed]
- Miyoshi, K.; Kawakami, N.; Wakayama, Y.; Izumi, N.; Horio, S.; Fukui, H. Histamine H1 receptor down-regulation mediated by M3 muscarinic acetylcholine receptor subtype. J. Pharmacol. Sci. 2004, 95, 426–434. [Google Scholar] [CrossRef] [PubMed]
- Date, I.; Felten, D.L.; Felten, S.Y. Long-term effect of MPTP in the mouse brain in relation to aging: Neurochemical and immunocytochemical analysis. Brain Res. 1990, 519, 266–276. [Google Scholar] [CrossRef]
- Irwin, I.; Finnegan, K.T.; Delanney, L.E.; Di Monte, D.; Langston, J.W. The relationships between aging, monoamine oxidase, striatal dopamine and the effects of MPTP in C57BL/6 mice: A critical reassessment. Brain Res. 1992, 572, 224–231. [Google Scholar] [CrossRef]
- Ohashi, S.; Mori, A.; Kurihara, N.; Mitsumoto, Y.; Nakai, M. Age-related severity of dopaminergic neurodegeneration to MPTP neurotoxicity causes motor dysfunction in C57BL/6 mice. Neurosci. Lett. 2006, 401, 183–187. [Google Scholar] [CrossRef]
- Yao, K.; Zhao, Y.F. Aging modulates microglia phenotypes in neuroinflammation of MPTP-PD mice. Exp. Gerontol. 2018, 111, 86–93. [Google Scholar] [CrossRef] [PubMed]
- Saitoh, T.; Niijima, K.; Mizuno, Y. Long-term effect of 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) on striatal dopamine content in young and mature mice. J. Neurol. Sci. 1987, 77, 229–235. [Google Scholar] [CrossRef] [PubMed]
- Filipov, N.M.; Norwood, A.B.; Sistrunk, S.C. Strain-specific sensitivity to MPTP of C57BL/6 and BALB/c mice is age dependent. Neuroreport 2009, 20, 713–717. [Google Scholar] [CrossRef] [PubMed]
- Ansah, T.A.; Ferguson, M.C.; Nayyar, T.; Deutch, A.Y. Age- and duration-dependent effects of MPTP on cortical serotonin systems. Neurosci. Lett. 2011, 504, 160–164. [Google Scholar] [CrossRef] [PubMed]
- Finkel, T.; Holbrook, N.J. Oxidants, oxidative stress and the biology of ageing. Nature 2000, 408, 239–247. [Google Scholar] [CrossRef] [PubMed]
- Antignano, I.; Liu, Y.; Offermann, N.; Capasso, M. Aging microglia. Cell Mol. Life Sci. 2023, 80, 126. [Google Scholar] [CrossRef] [PubMed]
- Liu, C.Q.; Chen, Z.; Liu, F.X.; Hu, D.N.; Luo, J.H. Involvement of brain endogenous histamine in the degeneration of dopaminergic neurons in 6-hydroxydopamine-lesioned rats. Neuropharmacology 2007, 53, 832–841. [Google Scholar] [CrossRef] [PubMed]
- Horton, J.R.; Sawada, K.; Nishibori, M.; Cheng, X. Structural basis for inhibition of histamine N-methyltransferase by diverse drugs. J. Mol. Biol. 2005, 353, 334–344. [Google Scholar] [CrossRef] [PubMed]
- Haas, H.L.; Sergeeva, O.A.; Selbach, O. Histamine in the nervous system. Physiol. Rev. 2008, 88, 1183–1241. [Google Scholar] [CrossRef]
- Rocha, S.M.; Saraiva, T.; Cristovao, A.C.; Ferreira, R.; Santos, T.; Esteves, M.; Saraiva, C.; Je, G.; Cortes, L.; Valero, J.; et al. Histamine induces microglia activation and dopaminergic neuronal toxicity via H1 receptor activation. J. Neuroinflamm. 2016, 13, 137. [Google Scholar] [CrossRef]
- Magnone, M.C.; Langmesser, S.; Bezdek, A.C.; Tallone, T.; Rusconi, S.; Albrecht, U. The Mammalian circadian clock gene per2 modulates cell death in response to oxidative stress. Front. Neurol. 2014, 5, 289. [Google Scholar] [CrossRef] [PubMed]
- Bohnen, N.I.; Yarnall, A.J.; Weil, R.S.; Moro, E.; Moehle, M.S.; Borghammer, P.; Bedard, M.A.; Albin, R.L. Cholinergic system changes in Parkinson’s disease: Emerging therapeutic approaches. Lancet Neurol. 2022, 21, 381–392. [Google Scholar] [CrossRef] [PubMed]
- Calabresi, P.; Picconi, B.; Parnetti, L.; Di Filippo, M. A convergent model for cognitive dysfunctions in Parkinson’s disease: The critical dopamine-acetylcholine synaptic balance. Lancet Neurol. 2006, 5, 974–983. [Google Scholar] [CrossRef] [PubMed]
- Muller, M.L.; Bohnen, N.I. Cholinergic dysfunction in Parkinson’s disease. Curr. Neurol. Neurosci. Rep. 2013, 13, 377. [Google Scholar] [CrossRef] [PubMed]
- Zhang, W.; Yamada, M.; Gomeza, J.; Basile, A.S.; Wess, J. Multiple muscarinic acetylcholine receptor subtypes modulate striatal dopamine release, as studied with M1-M5 muscarinic receptor knock-out mice. J. Neurosci. 2002, 22, 6347–6352. [Google Scholar] [CrossRef] [PubMed]
- McOmish, C.; Pavey, G.; McLean, C.; Horne, M.; Dean, B.; Scarr, E. Muscarinic receptor binding changes in postmortem Parkinson’s disease. J. Neural Transm. 2017, 124, 227–236. [Google Scholar] [CrossRef] [PubMed]
- Karachi, C.; Grabli, D.; Bernard, F.A.; Tande, D.; Wattiez, N.; Belaid, H.; Bardinet, E.; Prigent, A.; Nothacker, H.P.; Hunot, S.; et al. Cholinergic mesencephalic neurons are involved in gait and postural disorders in Parkinson disease. J. Clin. Investig. 2010, 120, 2745–2754. [Google Scholar] [CrossRef] [PubMed]
- Ugrumov, M.V.; Khaindrava, V.G.; Kozina, E.A.; Kucheryanu, V.G.; Bocharov, E.V.; Kryzhanovsky, G.N.; Kudrin, V.S.; Narkevich, V.B.; Klodt, P.M.; Rayevsky, K.S.; et al. Modeling of presymptomatic and symptomatic stages of parkinsonism in mice. Neuroscience 2011, 181, 175–188. [Google Scholar] [CrossRef]
- Lee, K.H.; Lee, D.W.; Kang, B.C. The ‘R’ principles in laboratory animal experiments. Lab. Anim. Res. 2020, 36, 45. [Google Scholar] [CrossRef]
- Paxinos, G.; Keith, B.J.; Franklin, M. The Mouse Brain in Stereotaxic Coordinates; Elsevier Science: Amsterdam, The Netherlands, 2007. [Google Scholar]
- Rudenok, M.M.; Alieva, A.K.; Starovatykh, J.S.; Nesterov, M.S.; Stanishevskaya, V.A.; Kolacheva, A.A.; Ugryumov, M.V.; Slominsky, P.A.; Shadrina, M.I. Expression analysis of genes involved in mitochondrial biogenesis in mice with MPTP-induced model of Parkinson’s disease. Mol. Genet. Metab. Rep. 2020, 23, 100584. [Google Scholar] [CrossRef]
- Alieva, A.K.; Filatova, E.V.; Rudenok, M.M.; Slominsky, P.A.; Shadrina, M.I. Housekeeping Genes for Parkinson’s Disease in Humans and Mice. Cells 2021, 10, 2252. [Google Scholar] [CrossRef] [PubMed]
- Livak, K.J.; Schmittgen, T.D. Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) Method. Methods 2001, 25, 402–408. [Google Scholar] [CrossRef] [PubMed]
- Tatton, N.A.; Kish, S.J. In situ detection of apoptotic nuclei in the substantia nigra compacta of 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine-treated mice using terminal deoxynucleotidyl transferase labelling and acridine orange staining. Neuroscience 1997, 77, 1037–1048. [Google Scholar] [CrossRef] [PubMed]
- Jackson-Lewis, V.; Jakowec, M.; Burke, R.E.; Przedborski, S. Time course and morphology of dopaminergic neuronal death caused by the neurotoxin 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine. Neurodegeneration 1995, 4, 257–269. [Google Scholar] [CrossRef]
- Petroske, E.; Meredith, G.E.; Callen, S.; Totterdell, S.; Lau, Y.S. Mouse model of Parkinsonism: A comparison between subacute MPTP and chronic MPTP/probenecid treatment. Neuroscience 2001, 106, 589–601. [Google Scholar] [CrossRef]
Gene | Striatum | SN |
---|---|---|
Per1 | 0.24 1 0.15–0.31 2 | 0.65 0.58–0.69 |
Per2 | 0.26 0.17–0.46 | 0.41 0.34–0.53 |
Hnmt | 1.10 0.99–1.25 | 0.86 0.78–0.88 |
Hrh1 | 0.93 0.74–1.10 | 0.80 0.72–1.01 |
Hrh3 | 0.32 0.26–0.56 | 0.70 0.66–0.84 |
Chrm3 | 0.66 0.61–0.85 | 0.72 0.68–0.89 |
Young Mice | Adult Mice | |||
---|---|---|---|---|
Gene | Striatum | SN | Striatum | SN |
Per1 | 0.52 1 0.32–0.73 2 | 0.92 0.71–1.13 | 1.67 1.44–2.06 | 1.70 1.39–2.02 |
Per2 | 1.32 0.68–1.68 | 0.79 0.57–0.88 | 1.39 1.18–1.73 | 2.54 1.83–2.92 |
Hnmt | 0.93 0.83–1.17 | 0.84 0.75–1.09 | 0.97 0.94–1.16 | 1.47 1.26–1.57 |
Hrh1 | 0.81 0.76–1.12 | 1.26 0.82–2.53 | 1.18 0.78–1.57 | 1.46 1.14–1.56 |
Hrh3 | 0.96 0.88–1.12 | 0.91 0.70–1.67 | 1.01 0.90–1.59 | 1.68 1.45–2.09 |
Chrm3 | 1.13 0.91–1.75 | 1.25 1.04–1.62 | 1.15 0.99–1.47 | 2.60 2.16–3.36 |
Gene (Protein) | Nucleotide Sequence |
---|---|
Sars1 (Seryl-aminoacyl-tRNA Synthetase) NM_011319.3 * | Probe: 5′-VIC-CGTTCTACTTTGTTGTCTGCGTCCTCATCA-BHQ2-3′ Forward primer: 5′-GCGAGATTGGGAACCTTCTG-3′ Reverse primer: 5′-ATGGGAATACTTCTTCCTGACTGTA-3′ |
Psmd6 (Proteasome 26S subunit, non-ATPase, 6) NM_025550.2 * | Probe: 5′-VIC-AATCGTGGAGACCAACAGACCTGATAGCAA-BHQ2-3′ Forward primer: 5′-GGTGTGGGTGTGGACTTCATT-3′ Reverse primer: 5′-CTCCTTTCTTGATGGTTTCTTGATACTG-3′ |
Hnmt (Histamine N-methyltransferase) NM_080462.2 * | Probe: 5′-VIC-CAACTTCACCTGCACCTCCGCCTACACTCA-BHQ2-3′ Forward primer: 5′-AAGGATTGGAGAAGCAAAAGCAG-3′ Reverse primer: 5′-TGTTCAGCACTTGGCTCAAC-3′ |
Hrh1 (Histamine H1 Receptor) NM_001252642.2 * | Probe: 5′-VIC-TGATGGCTCCCTCCCTCGGTCTCTGGC-BHQ2-3′ Forward primer: 5′-GCTACTGTGGGCTGGTGATTC-3′ Reverse primer: 5′-AGGTGTTGGGAAGGCTCATTG-3′ |
Hrh3 (Histamine H3 Receptor) NM_133849.3 * | Probe: 5′-VIC-TCCGACTTCCTCGTGGGTGCCTTC-BHQ2-3′ Forward primer: 5′-CTGGTCATGCTCGCCTTCG-3′ Reverse primer: 5′-CGGTCAGCACATAGGGTACATAC-3′ |
Per1 (Period Circadian Clock 1) NM_011065.5 * | Probe: 5′-VIC-TCGTGGACTTGACACCTCTTCTGTGGC-BHQ2-3′ Forward primer: 5′-CCTTCCTCAACCGCTTCAG-3′ Reverse primer: 5′-CGGGAACGCTTTGCTTTAGA-3′ |
Per2 (Period Circadian Clock 2) NM_011066.3 * | Probe: 5′-VIC-TGTTTCCCAACACTGACACGGCAGAAA-BHQ2-3′ Forward primer: 5′-GCGGCTTAGATTCTTTCACTCA-3′ Reverse primer: 5′-ATGCGGAAGGGCTGGTAG-3′ |
Chrm3 (Cholinergic Receptor Muscarinic 3) NM_033269.4 * | Probe: 5′-VIC-GAGTGAACCATATCCTTTCCCATCA-BHQ2-3′ Forward primer: 5′-GCCCTTATTGTACCTTTGCTGAAG-3′ Reverse primer: 5′-CTCCTCTTGAAGTGCTGCGTTCTGACC-3′ |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Semenova, E.I.; Rudenok, M.M.; Rybolovlev, I.N.; Shulskaya, M.V.; Lukashevich, M.V.; Partevian, S.A.; Budko, A.I.; Nesterov, M.S.; Abaimov, D.A.; Slominsky, P.A.; et al. Effects of Age and MPTP-Induced Parkinson’s Disease on the Expression of Genes Associated with the Regulation of the Sleep–Wake Cycle in Mice. Int. J. Mol. Sci. 2024, 25, 7721. https://doi.org/10.3390/ijms25147721
Semenova EI, Rudenok MM, Rybolovlev IN, Shulskaya MV, Lukashevich MV, Partevian SA, Budko AI, Nesterov MS, Abaimov DA, Slominsky PA, et al. Effects of Age and MPTP-Induced Parkinson’s Disease on the Expression of Genes Associated with the Regulation of the Sleep–Wake Cycle in Mice. International Journal of Molecular Sciences. 2024; 25(14):7721. https://doi.org/10.3390/ijms25147721
Chicago/Turabian StyleSemenova, Ekaterina I., Margarita M. Rudenok, Ivan N. Rybolovlev, Marina V. Shulskaya, Maria V. Lukashevich, Suzanna A. Partevian, Alexander I. Budko, Maxim S. Nesterov, Denis A. Abaimov, Petr A. Slominsky, and et al. 2024. "Effects of Age and MPTP-Induced Parkinson’s Disease on the Expression of Genes Associated with the Regulation of the Sleep–Wake Cycle in Mice" International Journal of Molecular Sciences 25, no. 14: 7721. https://doi.org/10.3390/ijms25147721
APA StyleSemenova, E. I., Rudenok, M. M., Rybolovlev, I. N., Shulskaya, M. V., Lukashevich, M. V., Partevian, S. A., Budko, A. I., Nesterov, M. S., Abaimov, D. A., Slominsky, P. A., Shadrina, M. I., & Alieva, A. K. (2024). Effects of Age and MPTP-Induced Parkinson’s Disease on the Expression of Genes Associated with the Regulation of the Sleep–Wake Cycle in Mice. International Journal of Molecular Sciences, 25(14), 7721. https://doi.org/10.3390/ijms25147721