Effects of RF Electric Currents on Hair Follicle Growth and Differentiation: A Possible Treatment for Alopecia
Abstract
:1. Introduction
2. Results
2.1. Effect of CRET on Proliferation of AGA-HF Cells
2.2. Effect of CRET on Apoptosis of AGA-HF Cells
2.3. Effect of CRET on Epidermal Depth of AGA-HF
2.4. Effect of CRET on AGA-HF Integrity: Analysis of Collagen Production
2.5. Effect of CRET on AGA-HF Integrity: Analysis of Metalloproteinase 9 (MMP9) Expression
2.6. Effect of CRET on Follicle Differentiation Factors: Analysis of β-Catenin Expression in AGA-HF
2.7. Effect of CRET on the Proportion of Bulge Cells of AGA-HF
2.8. Effect of CRET on the Proportion of Melanoblasts in AGA-HF
3. Discussion
4. Materials and Methods
4.1. Human Hair Follicle Collection
4.2. In Vitro Culture of Hair Follicles
4.3. Electric Treatment
4.4. TUNEL Assay
4.5. Immunohistochemistry for Ki67, β-Catenin, MMP9, Collagen Type I, NKI/Beted and cd-200
4.6. Hematoxylin and Masson’s Trichrome Staining for Total Collagen
4.7. Histomorphometric Analysis and Assessment of Immunohistochemistry Images
4.8. Statistic Analysis
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Schneider, M.R.; Schmidt-Ullrich, R.; Paus, R. The Hair Follicle as a Dynamic Miniorgan. Curr. Biol. 2009, 19, R132–R142. [Google Scholar] [CrossRef] [PubMed]
- Cotsarelis, G.; Millar, S.E. Towards a Molecular Understanding of Hair Loss and Its Treatment. Trends Mol. Med. 2001, 7, 293–301. [Google Scholar] [CrossRef] [PubMed]
- McKee, P.H.; Calonje, E.; Granter, S.R. Diseases of the Hair. In Pathology of the Skin; Elsevier Mosby: Edinburgh, UK, 2008. [Google Scholar]
- Almohanna, H.M.; Ahmed, A.A.; Tsatalis, J.P.; Tosti, A. The Role of Vitamins and Minerals in Hair Loss: A Review. Dermatol. Ther. 2019, 9, 51–70. [Google Scholar] [CrossRef] [PubMed]
- Gokce, N.; Basgoz, N.; Kenanoglu, S.; Akalin, H.; Ozkul, Y.; Ergoren, M.C.; Beccari, T.; Bertelli, M.; Dundar, M. An Overview of the Genetic Aspects of Hair Loss and Its Connection with Nutrition. J. Prev. Med. Hyg. 2022, 63, E228. [Google Scholar] [CrossRef] [PubMed]
- Li, K.N.; Tumbar, T. Hair Follicle Stem Cells as a Skin-organizing Signaling Center during Adult Homeostasis. EMBO J. 2021, 40, e107135. [Google Scholar] [CrossRef] [PubMed]
- Devjani, S.; Ezemma, O.; Kelley, K.J.; Stratton, E.; Senna, M. Androgenetic Alopecia: Therapy Update. Drugs 2023, 83, 701–715. [Google Scholar] [CrossRef] [PubMed]
- Vañó-Galván, S.; Camacho, F. New Treatments for Hair Loss. Actas Dermo-Sifiliográficas (Engl. Ed.) 2017, 108, 221–228. [Google Scholar] [CrossRef]
- Nestor, M.S.; Ablon, G.; Gade, A.; Han, H.; Fischer, D.L. Treatment Options for Androgenetic Alopecia: Efficacy, Side Effects, Compliance, Financial Considerations, and Ethics. J Cosmet. Dermatol. 2021, 20, 3759–3781. [Google Scholar] [CrossRef] [PubMed]
- Almohanna, H.M.; Perper, M.; Tosti, A. Safety Concerns When Using Novel Medications to Treat Alopecia. Expert Opin. Drug Saf. 2018, 17, 1115–1128. [Google Scholar] [CrossRef]
- Iamsumang, W.; Leerunyakul, K.; Suchonwanit, P. Finasteride and Its Potential for the Treatment of Female Pattern Hair Loss: Evidence to Date. Drug Des. Dev. Ther. 2020, 14, 951–959. [Google Scholar] [CrossRef]
- Tkachenko, E.; Okhovat, J.-P.; Manjaly, P.; Huang, K.P.; Senna, M.M.; Mostaghimi, A. Complementary and Alternative Medicine for Alopecia Areata: A Systematic Review. J. Am. Acad. Dermatol. 2023, 88, 131–143. [Google Scholar] [CrossRef] [PubMed]
- El Sayed, M.; Ibrahim, N.; Afify, A. Superficial Cryotherapy versus Intralesional Corticosteroids Injection in Alopecia Areata: A Trichoscopic Comparative Study. Int. J. Trichol. 2022, 14, 8. [Google Scholar] [CrossRef]
- Kaiser, M.; Issa, N.; Yaghi, M.; Jimenez, J.J.; Issa, N.T. Review of Superficial Cryotherapy for the Treatment of Alopecia Areata. J. Drugs Dermatol. 2023, 22, 802–809. [Google Scholar] [CrossRef] [PubMed]
- Mester, E.; Szende, B.; Gärtner, P. The effect of laser beams on the growth of hair in mice. Radiobiol. Radiother. 1968, 9, 621–626. [Google Scholar]
- Verner, I.; Lotti, T. Clinical Evaluation of a Novel Fractional Radiofrequency Device for Hair Growth: Fractional Radiofrequency for Hair Growth Stimulation. Dermatol. Ther. 2018, 31, e12590. [Google Scholar] [CrossRef] [PubMed]
- Dabek, R.J.; Austen, W.G.; Bojovic, B. Laser-Assisted Hair Regrowth: Fractional Laser Modalities for the Treatment of Androgenic Alopecia. Plast. Reconstr. Surg.-Glob. Open 2019, 7, e2157. [Google Scholar] [CrossRef] [PubMed]
- Manabe, M.; Tsuboi, R.; Itami, S.; Osada, S.; Amoh, Y.; Ito, T.; Inui, S.; Ueki, R.; Ohyama, M.; Kurata, S.; et al. Guidelines for the Diagnosis and Treatment of Male-pattern and Female-pattern Hair Loss, 2017 Version. J. Dermatol. 2018, 45, 1031–1043. [Google Scholar] [CrossRef] [PubMed]
- Lanzafame, R.J.; Blanche, R.R.; Chiacchierini, R.P.; Kazmirek, E.R.; Sklar, J.A. The Growth of Human Scalp Hair in Females Using Visible Red Light Laser and LED Sources. Lasers Surg. Med. 2014, 46, 601–607. [Google Scholar] [CrossRef] [PubMed]
- Mineroff, J.; Maghfour, J.; Ozog, D.M.; Lim, H.W.; Kohli, I.; Jagdeo, J. Photobiomodulation CME Part II: Clinical Applications in Dermatology. J. Am. Acad. Dermatol. 2024, 90, S0190962224001877. [Google Scholar] [CrossRef]
- Light-Based Therapies for Skin of Color; Baron, E. (Ed.) Springer: London, UK, 2009; ISBN 978-1-84882-327-3. [Google Scholar]
- Frey, B.; Weiss, E.-M.; Rubner, Y.; Wunderlich, R.; Ott, O.J.; Sauer, R.; Fietkau, R.; Gaipl, U.S. Old and New Facts about Hyperthermia-Induced Modulations of the Immune System. Int. J. Hyperth. 2012, 28, 528–542. [Google Scholar] [CrossRef]
- Giombini, A.; Giovannini, V.; Cesare, A.D.; Pacetti, P.; Ichinoseki-Sekine, N.; Shiraishi, M.; Naito, H.; Maffulli, N. Hyperthermia Induced by Microwave Diathermy in the Management of Muscle and Tendon Injuries. Br. Med. Bull. 2007, 83, 379–396. [Google Scholar] [CrossRef] [PubMed]
- Meyer, P.F.; De Oliveira, P.; Silva, F.K.B.A.; Da Costa, A.C.S.; Pereira, C.R.A.; Casenave, S.; Valentim Silva, R.M.; Araújo-Neto, L.G.; Santos-Filho, S.D.; Aizamaque, E.; et al. Radiofrequency Treatment Induces Fibroblast Growth Factor 2 Expression and Subsequently Promotes Neocollagenesis and Neoangiogenesis in the Skin Tissue. Lasers Med. Sci. 2017, 32, 1727–1736. [Google Scholar] [CrossRef]
- Kerscher, M. Aesthetic and Cosmetic Dermatology. Eur. J. Dermatol. 2009, 19, 530–534. [Google Scholar] [CrossRef]
- Kist, D.; Burns, A.J.; Sanner, R.; Counters, J.; Zelickson, B. Ultrastructural Evaluation of Multiple Pass Low Energy versus Single Pass High Energy Radio-frequency Treatment. Lasers Surg. Med. 2006, 38, 150–154. [Google Scholar] [CrossRef] [PubMed]
- Yokota, Y.; Sonoda, T.; Tashiro, Y.; Suzuki, Y.; Kajiwara, Y.; Zeidan, H.; Nakayama, Y.; Kawagoe, M.; Shimoura, K.; Tatsumi, M.; et al. Effect of Capacitive and Resistive Electric Transfer on Changes in Muscle Flexibility and Lumbopelvic Alignment after Fatiguing Exercise. J. Phys. Ther. Sci. 2018, 30, 719–725. [Google Scholar] [CrossRef]
- Wakade, D.V.; Nayak, C.S.; Bhatt, K.D. A Study Comparing the Efficacy of Monopolar Radiofrequency and Glycolic Acid Peels in Facial Rejuvenation of Aging Skin Using Histopathology and Ultrabiomicroscopic Sonography (UBM)—An Evidence Based Study. Acta Med. (Hradec Kral. Czech Repub.) 2016, 59, 14–17. [Google Scholar] [CrossRef]
- Sadick, N.; Rothaus, K.O. Aesthetic Applications of Radiofrequency Devices. Clin. Plast. Surg. 2016, 43, 557–565. [Google Scholar] [CrossRef]
- García Pablo, N. First Assessment of the Proionic Effects Resulting from Non-Thermal Application of 448 kHz Monopolar Radiofrequency for Reduction of Edema Caused by Fractional CO2 Laser Facial Rejuvenation Treatments. J. Surg. 2015, 3, 21. [Google Scholar] [CrossRef]
- Mulholland, R.S. Radio Frequency Energy for Non-Invasive and Minimally Invasive Skin Tightening. Clin. Plast. Surg. 2011, 38, 437–448. [Google Scholar] [CrossRef]
- Bonjorno, A.R.; Gomes, T.B.; Pereira, M.C.; De Carvalho, C.M.; Gabardo, M.C.L.; Kaizer, M.R.; Zielak, J.C. Radiofrequency Therapy in Esthetic Dermatology: A Review of Clinical Evidences. J Cosmet. Dermatol. 2020, 19, 278–281. [Google Scholar] [CrossRef]
- Soriano, M.C.D.; Perez, S.C.; Baques, M.I.C. Applied Professional Electro-Cosmetic Therapy: Theory and Practice for the Use of Electric Currents in Cosmetic Therapy, 1st ed.; SOR Internacional: Barcelona, Spain, 2002. [Google Scholar]
- Kincaid, C.M.; Ben Romdhane, N.; Csuka, E.A.; Sharma, A.N.; Juhasz, M.; Mesinkovska, N.A. Is There a Role for Radiofrequency Devices in Hair? Ski. Appendage Disord. 2023, 9, 169–178. [Google Scholar] [CrossRef] [PubMed]
- Wang, W.; Wang, H.; Long, Y.; Li, Z.; Li, J. Controlling Hair Loss by Regulating Apoptosis in Hair Follicles: A Comprehensive Overview. Biomolecules 2023, 14, 20. [Google Scholar] [CrossRef] [PubMed]
- Hou, C.; Miao, Y.; Wang, X.; Chen, C.; Lin, B.; Hu, Z. Expression of matrix metalloproteinases and tissue inhibitor of matrix metalloproteinases in the hair cycle. Exp. Ther. Med. 2016, 12, 231–237. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Tan, Y.; Wei, L.; Zhang, Y.; Goren, A.; McCoy, J.; Stanimirovic, A.; Lotti, T.; Kovacevic, M. Non-Ablative Radio Frequency for the Treatment of Androgenetic Alopecia. Acta Dermatovenerol. Alp. Pannonica Adriat. 2019, 28, 169–171. [Google Scholar] [CrossRef] [PubMed]
- Remnant, L.; Kochanova, N.Y.; Reid, C.; Cisneros-Soberanis, F.; Earnshaw, W.C. The Intrinsically Disorderly Story of Ki-67. Open Biol. 2021, 11, 210120. [Google Scholar] [CrossRef] [PubMed]
- Mistriotis, P.; Andreadis, S.T. Hair Follicle: A Novel Source of Multipotent Stem Cells for Tissue Engineering and Regenerative Medicine. Tissue Eng. Part B Rev. 2013, 19, 265–278. [Google Scholar] [CrossRef] [PubMed]
- Choi, B.Y. Hair-Growth Potential of Ginseng and Its Major Metabolites: A Review on Its Molecular Mechanisms. Int. J. Mol. Sci. 2018, 19, 2703. [Google Scholar] [CrossRef] [PubMed]
- Van Doren, S.R. Matrix Metalloproteinase Interactions with Collagen and Elastin. Matrix Biol. 2015, 44–46, 224–231. [Google Scholar] [CrossRef] [PubMed]
- Akiyama, M.; Smith, L.T.; Shimizu, H. Changing Patterns of Localization of Putative Stem Cells in Developing Human Hair Follicles. J. Investig. Dermatol. 2000, 114, 321–327. [Google Scholar] [CrossRef]
- Giangreco, A.; Qin, M.; Pintar, J.E.; Watt, F.M. Epidermal Stem Cells Are Retained in Vivo throughout Skin Aging. Aging Cell 2008, 7, 250–259. [Google Scholar] [CrossRef]
- Lee, S.E.; Sada, A.; Zhang, M.; McDermitt, D.J.; Lu, S.Y.; Kemphues, K.J.; Tumbar, T. High Runx1 Levels Promote a Reversible, More-Differentiated Cell State in Hair-Follicle Stem Cells during Quiescence. Cell Rep. 2014, 6, 499–513. [Google Scholar] [CrossRef]
- Nishimura, E.K. Melanocyte Stem Cells: A Melanocyte Reservoir in Hair Follicles for Hair and Skin Pigmentation. Pigment Cell Melanoma Res. 2011, 24, 401–410. [Google Scholar] [CrossRef]
- Tobin, D.J. Human Hair Pigmentation—Biological Aspects. Int. J. Cosmet. Sci. 2008, 30, 233–257. [Google Scholar] [CrossRef]
- De Tollenaere, M.; Chapuis, E.; Auriol, P.; Auriol, D.; Scandolera, A.; Reynaud, R. Global Repigmentation Strategy of Grey Hair Follicles by Targeting Oxidative Stress and Stem Cells Protection. Appl. Sci. 2021, 11, 1533. [Google Scholar] [CrossRef]
- Qiu, W.; Chuong, C.; Lei, M. Regulation of Melanocyte Stem Cells in the Pigmentation of Skin and Its Appendages: Biological Patterning and Therapeutic Potentials. Exp. Dermatol. 2019, 28, 395–405. [Google Scholar] [CrossRef]
- Matsumura, H.; Mohri, Y.; Binh, N.T.; Morinaga, H.; Fukuda, M.; Ito, M.; Kurata, S.; Hoeijmakers, J.; Nishimura, E.K. Hair Follicle Aging Is Driven by Transepidermal Elimination of Stem Cells via COL17A1 Proteolysis. Science 2016, 351, aad4395. [Google Scholar] [CrossRef]
- Messenger, A.G. Hair through the Female Life Cycle: Hair through the Female Life Cycle. Br. J. Dermatol. 2011, 165, 2–6. [Google Scholar] [CrossRef]
- Houschyar, K.S.; Borrelli, M.R.; Tapking, C.; Popp, D.; Puladi, B.; Ooms, M.; Chelliah, M.P.; Rein, S.; Pförringer, D.; Thor, D.; et al. Molecular Mechanisms of Hair Growth and Regeneration: Current Understanding and Novel Paradigms. Dermatology 2020, 236, 271–280. [Google Scholar] [CrossRef]
- Choi, B.Y. Targeting Wnt/β-Catenin Pathway for Developing Therapies for Hair Loss. Int. J. Mol. Sci. 2020, 21, 4915. [Google Scholar] [CrossRef]
- Shin, D.W. The Molecular Mechanism of Natural Products Activating Wnt/β-Catenin Signaling Pathway for Improving Hair Loss. Life 2022, 12, 1856. [Google Scholar] [CrossRef]
- Papukashvili, D.; Rcheulishvili, N.; Liu, C.; Xie, F.; Tyagi, D.; He, Y.; Wang, P.G. Perspectives on miRNAs Targeting DKK1 for Developing Hair Regeneration Therapy. Cells 2021, 10, 2957. [Google Scholar] [CrossRef] [PubMed]
- Deng, Y.; Wang, M.; He, Y.; Liu, F.; Chen, L.; Xiong, X. Cellular Senescence: Ageing and Androgenetic Alopecia. Dermatology 2023, 239, 533–541. [Google Scholar] [CrossRef] [PubMed]
- Hernández-Bule, M.L.; Paíno, C.L.; Trillo, M.Á.; Úbeda, A. Electric Stimulation at 448 kHz Promotes Proliferation of Human Mesenchymal Stem Cells. Cell Physiol. Biochem. 2014, 34, 1741–1755. [Google Scholar] [CrossRef] [PubMed]
- Hernandez Bule, M.L.; Angeles Trillo, M.; Martinez Garcia, M.A.; Abilahoud, C.; Ubeda, A. Chondrogenic Differentiation of Adipose-Derived Stem Cells by Radiofrequency Electric Stimulation. J. Stem Cell Res. Ther. 2017, 7, 12. [Google Scholar] [CrossRef]
- Hernández-Bule, M.L.; Toledano-Macías, E.; Naranjo, A.; de Andrés-Zamora, M.; Úbeda, A. In Vitro Stimulation with Radiofrequency Currents Promotes Proliferation and Migration in Human Keratinocytes and Fibroblasts. Electromagn. Biol. Med. 2021, 40, 338–352. [Google Scholar] [CrossRef] [PubMed]
- Pablo, N. Radiofrequency Current at 448 Khz For Female Pattern Hair Loss: Cellular Bases For Redensification Improvement. J. Dermatol. Res. 2022, 1–24. [Google Scholar] [CrossRef]
- Tejada, S.; Lobo, M.V.; García-Villanueva, M.; Sacristán, S.; Pérez-Morgado, M.I.; Salinas, M.; Martín, M.E. Eukaryotic initiation factors (eIF) 2alpha and 4E expression, localization, and phosphorylation in brain tumors. J. Histochem. Cytochem. 2009, 57, 503–512. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Martínez-Pascual, M.A.; Sacristán, S.; Toledano-Macías, E.; Naranjo, P.; Hernández-Bule, M.L. Effects of RF Electric Currents on Hair Follicle Growth and Differentiation: A Possible Treatment for Alopecia. Int. J. Mol. Sci. 2024, 25, 7865. https://doi.org/10.3390/ijms25147865
Martínez-Pascual MA, Sacristán S, Toledano-Macías E, Naranjo P, Hernández-Bule ML. Effects of RF Electric Currents on Hair Follicle Growth and Differentiation: A Possible Treatment for Alopecia. International Journal of Molecular Sciences. 2024; 25(14):7865. https://doi.org/10.3390/ijms25147865
Chicago/Turabian StyleMartínez-Pascual, María Antonia, Silvia Sacristán, Elena Toledano-Macías, Pablo Naranjo, and María Luisa Hernández-Bule. 2024. "Effects of RF Electric Currents on Hair Follicle Growth and Differentiation: A Possible Treatment for Alopecia" International Journal of Molecular Sciences 25, no. 14: 7865. https://doi.org/10.3390/ijms25147865
APA StyleMartínez-Pascual, M. A., Sacristán, S., Toledano-Macías, E., Naranjo, P., & Hernández-Bule, M. L. (2024). Effects of RF Electric Currents on Hair Follicle Growth and Differentiation: A Possible Treatment for Alopecia. International Journal of Molecular Sciences, 25(14), 7865. https://doi.org/10.3390/ijms25147865