Screen-Printed Electrodes—A Promising Tool for Antineoplastic Drug Detection (Cisplatin and Bleomycin) in Biological Samples
Abstract
:1. Introduction
2. Results and Discussion
2.1. Electrochemical Detection of Cisplatin in Human Serum
2.1.1. Scanning Electron Microscopy (SEM)
2.1.2. Elemental Analysis (EDX)
2.2. Electrochemical Biosensor Development for Bleomycin Detection
2.2.1. DNA Functionalized Sensor
2.2.2. Bleomycin Resistance Protein Functionalized Sensor
2.3. Comparison of the Current vs. Previously Developed Biosensors for Cisplatin and Bleomycin
3. Materials and Methods
3.1. Reagents and Solutions
3.2. Apparatus
3.3. Functionalization of the SPE for the Cisplatin Detection
3.4. Functionalization of the SPE for the Bleomycin Detection
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Alonso Domínguez, T.; Civera Andrés, M.; Santiago Crespo, J.A.; García Malpartida, K.; Botella Romero, F. Digestive toxicity in cancer treatments. Bibliographic review. Influence on nutritional status. Endocrinol. Diabetes Nutr. (Engl. Ed.) 2023, 70, 136–150. [Google Scholar] [CrossRef] [PubMed]
- Collins, F.S.; Varmus, H. A new initiative on precision medicine. N. Engl. J. Med. 2015, 372, 793–795. [Google Scholar] [CrossRef] [PubMed]
- Kang, J.S.; Lee, M.H. Overview of therapeutic drug monitoring. Korean J. Intern. Med. 2009, 24, 1–10. [Google Scholar] [CrossRef] [PubMed]
- Malvezzi, M.; Santucci, C.; Boffetta, P.; Collatuzzo, G.; Levi, F.; La Vecchia, C.; Negri, E. European cancer mortality predictions for the year 2023 with focus on lung cancer. Ann Oncol. 2023, 34, 410–419. [Google Scholar] [CrossRef] [PubMed]
- Dasari, S.; Njiki, S.; Mbemi, A.; Yedjou, C.G.; Tchounwou, P.B. Pharmacological Effects of Cisplatin Combination with Natural Products in Cancer Chemotherapy. Int. J. Mol. Sci. 2022, 23, 1532. [Google Scholar] [CrossRef] [PubMed]
- Wu, Y.; Lai, R.Y. Tunable Signal-Off and Signal-On Electrochemical Cisplatin Sensor. Anal. Chem. 2017, 89, 9984–9989. [Google Scholar] [CrossRef]
- Munawar, H.M.; Sohailm, M.; Ashraf, M. Spectrophotometric determination of cisplatin, carboplatin and oxaliplatin in pure and injectable dosage forms. Biomed. Res. 2019, 30, 557–562. [Google Scholar] [CrossRef]
- Akiyama, Y.; Kimura, K.; Komatsu, S.; Takarada, T.; Maeda, M.; Kikuchi, A. A Simple Colorimetric Assay of Bleomycin-Mediated DNA Cleavage Utilizing Double-Stranded DNA-Modified Gold Nanoparticles. Chembiochem 2023, 24, e202200451. [Google Scholar] [CrossRef] [PubMed]
- Nakamura, M.; Peisach, J. Self-inactivation of Fe(II)-bleomycin. J. Antibiot. 1988, 41, 638–647. [Google Scholar] [CrossRef]
- Chen, J.; Ghorai, M.K.; Kenney, G.; Stubbe, J. Mechanistic studies on bleomycin-mediated DNA damage: Multiple binding modes can result in double-stranded DNA cleavage. Nucleic Acids Res. 2008, 36, 3781–3790. [Google Scholar] [CrossRef]
- Bennani, I.; Chentoufi, M.A.; Cheikh, A.; Karbane, M.E.; Bouatia, M. Proposal of a simple and rapid method for the chemo-therapy preparations analytical control by spectrophotometry UV-Vis method. J. Oncol. Pharm. Pract. 2021, 27, 99–107. [Google Scholar] [CrossRef] [PubMed]
- Li, H. Quantitative Analysis of Bleomycin in Rat Plasma by LC-MS/MS. ETD Arch. 2018, 1036. Available online: https://engagedscholarship.csuohio.edu/etdarchive/1036 (accessed on 10 October 2023).
- Qin, Y.; Zhang, L.; Ye, G.; Zhao, S. Homogeneous label-free colorimetric strategy for convenient bleomycin detection based on bleomycin enhanced Fe(II)–H2O2–ABTS reaction. Anal. Methods 2014, 6, 7973–7977. [Google Scholar] [CrossRef]
- Plesnik, H.; Bosnjak, M.; Cemazar, M.; Sersa, G.; Kosjek, T. An effective validation of analytical method for determination of a polar complexing agent: The illustrative case of cytotoxic bleomycin. Anal. Bioanal. Chem. 2023, 415, 2737–2748. [Google Scholar] [CrossRef] [PubMed]
- Heydari-Bafrooei, E.; Amini, M.; Saeednia, S. Electrochemical detection of DNA damage induced by Bleomycin in the presence of metal ions. J. Electroanal. Chem. 2017, 803, 104–110. [Google Scholar] [CrossRef]
- Hu, J.-B.; Li, Q.-L.; Shang, J. Studies on Electrochemical Behavior of Bleomycin and Its Interaction with DNA at a Co/GC Ion Implantation Modified Electrode. Chin. J. Chem. 2010, 20, 267–271. [Google Scholar] [CrossRef]
- Yardim, Y.; Vandeput, M.; Çelebi, M.; Senturk, Z.; Kauffmann, J.-M. A Reduced Graphene Oxide-based Electrochemical DNA Biosensor for the Detection of Interaction between Cisplatin and DNA based on Guanine and Adenine Oxidation Signals. Electroanalysis 2017, 29, 1451–1458. [Google Scholar] [CrossRef]
- Vaneev, A.N.; Gorelkin, P.V.; Krasnovskaya, O.O.; Akasov, R.A.; Spector, D.V.; Lopatukhina, E.V.; Timoshenko, R.V.; Garani-na, A.S.; Zhang, Y.; Salikhov, S.V.; et al. In Vitro/In Vivo Electrochemical Detection of Pt(II) Species. Anal. Chem. 2022, 94, 4901–4905. [Google Scholar] [CrossRef]
- Kato, R.; Sato, T.; Iwamoto, A.; Yamazaki, T.; Nakashiro, S.; Yoshikai, S.; Fujimoto, A.; Imano, H.; Ijiri, Y.; Mino, Y.; et al. Interaction of platinum agents, cisplatin, carboplatin and oxaliplatin against albumin in vivo rats and in vitro study using inductively coupled plasma-mass spectrometry. Bio-Pharm. Drug Dispos. 2019, 40, 242–249. [Google Scholar] [CrossRef]
- Wang, J.; Tao, J.; Jia, S.; Wang, M.; Jiang, H.; Du, Z. The Protein-Binding Behavior of Platinum Anticancer Drugs in Blood Revealed by Mass Spectrometry. Pharmaceuticals 2021, 14, 104. [Google Scholar] [CrossRef]
- Larios, R.; Del Castillo Busto, M.E.; Garcia-Sar, D.; Ward-Deitrich, C.; Goenaga-Infante, H. Accurate quantification of carboplatin adducts with serum proteins by monolithic chromatography coupled to ICPMS with isotope dilution analysis. J. Anal. At. Spectrom. 2019, 34, 729–740. [Google Scholar] [CrossRef]
- Dumas, P.; Bergdoll, M.; Cagnon, C.; Masson, J.M. Crystal structure and site directed mutagenesis of a bleomycin resistance protein and their significance for drug sequestering. EMBO J. 1994, 13, 2483–2492. [Google Scholar] [CrossRef]
- Dortet, L.; Girlich, D.; Virlouvet, A.L.; Poirel, L.; Nordmann, P.; Iorga, B.I.; Naas, T. Characterization of BRPMBL, the Bleomycin Resistance Protein Associated with the Carbapenemase NDM. Antimicrob. Agents Chemother. 2017, 61, 02413–02416. [Google Scholar] [CrossRef]
- Kilkuskie, R.E.; Macdonald, T.L.; Hecht, S.M. Bleomycin may be activated for DNA cleavage by NADPH-cytochrome P-450 reductase. Biochemistry 1984, 23, 6165–6171. [Google Scholar] [CrossRef] [PubMed]
- Petrlova, J.; Potesil, D.; Zehnalek, J.; Sures, B.; Adam, V.; Trnkova, L.; Kizek, R. Cisplatin electrochemical biosensor. Electro-Chim. Acta 2006, 51, 5169–5173. [Google Scholar] [CrossRef]
- Materon, E.M.; Wong, A.; Klein, S.I.; Liu, J.; Sotomayor, M.D.P.T. Multi-walled carbon nanotubes modified screen-printed electrodes for cisplatin detection. Electrochim. Acta 2015, 158, 271–276. [Google Scholar] [CrossRef]
- Ye, L.; Xiang, M.; Lu, Y.; Gao, Y.; Pang, P. Electrochemical Determination of Cisplatin in Serum at Graphene Oxide/Multi-walled Carbon Nanotubes Modified Glassy Carbon Electrode. Int. J. Electrochem. Sci. 2014, 9, 1537–1546. [Google Scholar] [CrossRef]
- Yin, B.-C.; Wu, D.; Ye, B.-C. Sensitive DNA-Based Electro-chemical Strategy for Trace Bleomycin Detection. Anal. Chem. 2010, 82, 8272–8277. [Google Scholar] [CrossRef] [PubMed]
- Kozak, J.; Tyszczuk-Rotko, K.; Metelka, R. Voltammetric Quantification of Anti-Cancer Antibiotic Bleomycin Using an Elec-trochemically Pretreated and Decorated with Lead Nanoparticles Screen-Printed Sensor. Int. J. Mol. Sci. 2023, 24, 472. [Google Scholar] [CrossRef]
- Stan, D.; Mirica, A.-C.; Iosub, R.; Stan, D.; Mincu, N.B.; Gheorghe, M.; Avram, M.; Adiaconita, B.; Craciun, G.; Bocancia Mateescu, A.L. What Is the Optimal Method for Cleaning Screen-Printed Electrodes? Processes 2022, 10, 723. [Google Scholar] [CrossRef]
Conc. (mg/mL) | Experiment 1 (Different Sensors) | Experiment 2 (Same Sensor) | Experiment 3 (Different Sensors) | Average | STDV | RSD | RSD% | ||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Iconc. (μA) | Iblank (μA) | Iconc.–Iblank | Iconc. (μA) | Iblank (μA) | Iconc.–Iblank | Iconc. (μA) | Iblank (μA) | Iconc.–Iblank | |||||
0.18 | 9.52 | 8.1 | 1.42 | 4.8 | 3.57 | 1.23 | 6.87 | 4.99 | 1.88 | 1.51 | 0.33 | 0.22 | 22.13 |
3.6 | 15.94 | 6.35 | 9.59 | 13.83 | 3.57 | 10.26 | 20.33 | 8.51 | 11.82 | 10.56 | 1.14 | 0.11 | 10.84 |
10.8 | 18.05 | 4.42 | 13.63 | 18.29 | 3.57 | 14.72 | 21.52 | 8.80 | 12.72 | 13.69 | 1.00 | 0.07 | 7.31 |
18 | 22.87 | 7.31 | 15.56 | 25.17 | 3.57 | 21.6 | 27.42 | 1.98 | 25.44 | 20.87 | 4.98 | 0.24 | 23.87 |
32.4 | 32.21 | 5.81 | 26.4 | 40.44 | 3.57 | 36.87 | 39.17 | 1.98 | 37.19 | 33.49 | 6.14 | 0.18 | 18.33 |
Regression Statistics | |
---|---|
Multiple R | 0.966 |
R square | 0.934 |
Adjusted R square | 0.928 |
Standard error | 2.992 |
Intercept (mg/mL) | 8.133 |
Slope () | 0.732 |
Standard deviation (intercept) | 1.032 |
Standard deviation (slope) | 0.059 |
Conc. (μg/mL) | Experiment 1 | Experiment 2 | Experiment 3 | Average | STDV | RSD | RSD % |
---|---|---|---|---|---|---|---|
I (μA) | I (μA) | I (μA) | |||||
1.52 | 4.22 | 4.05 | 3.93 | 4.07 | 0.15 | 0.04 | 3.58 |
7.56 | 5.76 | 6.79 | 5.90 | 6.15 | 0.56 | 0.09 | 9.08 |
15.12 | 6.78 | 7.68 | 9.18 | 7.88 | 1.21 | 0.15 | 15.39 |
Electrode | Detected Compound | Linear Range (μmol L−1) | LOD (μmol L−1) | Matrix | Ref. |
---|---|---|---|---|---|
MB-P-oligo-AG DNA/GE | Cisplatin | 0.2–2.0 | 0.20 | pH 5 HEPES buffer | [6] |
PtMT-HMDE | Cisplatin | 10–160 350–650 | data not found | human blood serum diluted 1000 times | [25] |
CdTc-HMDE | Cisplatin | 10–650 | 2.50 | human blood serum diluted 1000 times | [25] |
MWCNT-COOH/SDS/SPE | Cisplatin | 1.45 × 10−5–1.0 × 10−4 | 4.60 | 0.1 mol L−1 NaCl | [26] |
GO-MWNTs/GCE | Cisplatin | 1.30–26.0 | 0.11 | 5% human serum | [27] |
HSA/GE | Cisplatin | 2.0–14.4 × 104 | 76.00 | human serum | This work |
SH-DNA1/GE | Bleomycin | 0–1.0 | 0.1 | D-buffer | [28] |
pSPCE/PbNPs | Bleomycin | 0.0001–0.02 | 2.8 × 10−5 | NaAc—HAc solution (pH 4.5) | [29] |
BRP/GE | Bleomycin | 0.1–5.0 | 0.7 | human serum | This work |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mirica, A.-C.; Stan, D.; Zaharia, D.-C.; Iovu, H.; Mocanu, S.; Avram, M.; Bocancia-Mateescu, L.-A. Screen-Printed Electrodes—A Promising Tool for Antineoplastic Drug Detection (Cisplatin and Bleomycin) in Biological Samples. Int. J. Mol. Sci. 2024, 25, 8030. https://doi.org/10.3390/ijms25158030
Mirica A-C, Stan D, Zaharia D-C, Iovu H, Mocanu S, Avram M, Bocancia-Mateescu L-A. Screen-Printed Electrodes—A Promising Tool for Antineoplastic Drug Detection (Cisplatin and Bleomycin) in Biological Samples. International Journal of Molecular Sciences. 2024; 25(15):8030. https://doi.org/10.3390/ijms25158030
Chicago/Turabian StyleMirica (Ion), Andreea-Cristina, Dana Stan, Dragos-Cosmin Zaharia, Horia Iovu, Sorin Mocanu, Marioara Avram, and Lorena-Andreea Bocancia-Mateescu. 2024. "Screen-Printed Electrodes—A Promising Tool for Antineoplastic Drug Detection (Cisplatin and Bleomycin) in Biological Samples" International Journal of Molecular Sciences 25, no. 15: 8030. https://doi.org/10.3390/ijms25158030
APA StyleMirica, A. -C., Stan, D., Zaharia, D. -C., Iovu, H., Mocanu, S., Avram, M., & Bocancia-Mateescu, L. -A. (2024). Screen-Printed Electrodes—A Promising Tool for Antineoplastic Drug Detection (Cisplatin and Bleomycin) in Biological Samples. International Journal of Molecular Sciences, 25(15), 8030. https://doi.org/10.3390/ijms25158030