Correlation of Albumin, Red Cell Distribution Width and Other Biochemical and Hematological Parameters with Glycated Hemoglobin in Diabetic, Prediabetic and Non-Diabetic Patients
Abstract
:1. Introduction
2. Results
3. Discussion
3.1. Hematological Parameters
3.2. Biochemical Parameters
3.3. Implications for Clinical Practice
3.4. Limitations and Future Research
4. Materials and Methods
4.1. Study Population
4.2. Hematologic Parameters
4.3. Biochemical Parameters
4.4. Statistical Analyses
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- ElSayed, N.A.; Aleppo, G.; Aroda, V.R.; Bannuru, R.R.; Brown, F.M.; Bruemmer, D.; Collins, B.S.; Gaglia, J.L.; Hilliard, M.E.; Isaacs, D.; et al. Addendum. 2. Classification and Diagnosis of Diabetes: Standards of Care in Diabetes-2023. Diabetes Care 2023, 46 (Suppl. S1), 1715. [Google Scholar] [CrossRef] [PubMed]
- Sun, H.; Saeedi, P.; Karuranga, S.; Pinkepank, M.; Ogurtsova, K.; Duncan, B.B.; Stein, C.; Basit, A.; Chan, J.C.; Mbanya, J.C.; et al. IDF Diabetes Atlas: Global, regional and country-level diabetes prevalence estimates for 2021 and projections for 2045. Diabetes Res. Clin. Pract. 2022, 183, 109119, Erratum in Diabetes Res. Clin. Pract. 2023, 204, 110945. [Google Scholar] [CrossRef] [PubMed]
- Deshpande, A.D.; Harris-Hayes, M.; Schootman, M. Epidemiology of diabetes and diabetes-related complications. Phys. Ther. 2008, 88, 1254–1264. [Google Scholar] [CrossRef] [PubMed]
- Stumvoll, M.; Mitrakou, A.; Pimenta, W.; Jenssen, T.; Yki-Järvinen, H.A.; Van Haeften, T.; Renn, W.; Gerich, J. Use of the oral glucose tolerance test to assess insulin release and insulin sensitivity. Diabetes Care 2000, 23, 295–301. [Google Scholar] [CrossRef] [PubMed]
- Mannucci, E.; Ognibene, A.; Sposato, I.; Brogi, M.; Gallori, G.; Bardini, G.; Cremasco, F.; Messeri, G.; Rotella, C.M. Fasting plasma glucose and glycated haemoglobin in the screening of diabetes and impaired glucose tolerance. Acta Diabetol. 2003, 40, 181–186. [Google Scholar] [CrossRef] [PubMed]
- Perry, R.C.; Shankar, R.R.; Fineberg, N.; McGill, J.; Baron, A.D.; Early Diabetes Intervention Program (EDIP). HbA1c measurement improves the detection of type 2 diabetes in high-risk individuals with nondiagnostic levels of fasting plasma glucose: The Early Diabetes Intervention Program (EDIP). Diabetes Care 2001, 24, 465–471. [Google Scholar] [CrossRef]
- Aslam, H.; Oza, F.; Ahmed, K.; Kopel, J.; Aloysius, M.M.; Ali, A.; Dahiya, D.S.; Aziz, M.; Perisetti, A.; Goyal, H. The Role of Red Cell Distribution Width as a Prognostic Marker in Chronic Liver Disease: A Literature Review. Int. J. Mol. Sci. 2023, 24, 3487. [Google Scholar] [CrossRef] [PubMed]
- Yu, G.; Ming, L.; Cao, H.L.; Li, Q. Correction to: Red Blood Cell Distribution Width as a Predictive Marker for Coronary Artery Lesions in Patients with Kawasaki Disease. Pediatr. Cardiol. 2021, 42, 1662. [Google Scholar] [CrossRef]
- Deng, X.; Gao, B.; Wang, F.; Zhao, M.H.; Wang, J.; Zhang, L. Red Blood Cell Distribution Width Is Associated with Adverse Kidney Outcomes in Patients with Chronic Kidney Disease. Front. Med. 2022, 9, 877220. [Google Scholar] [CrossRef]
- Lu, Y.A.; Fan, P.C.; Lee, C.C.; Wu, V.C.; Tian, Y.C.; Yang, C.W.; Chen, Y.C.; Chang, C.H. Red cell distribution width associated with adverse cardiovascular outcomes in patients with chronic kidney disease. BMC Nephrol. 2017, 18, 361. [Google Scholar] [CrossRef]
- Lippi, G.; Targher, G.; Montagnana, M.; Salvagno, G.L.; Zoppini, G.; Guidi, G.C. Relation between red blood cell distribution width and inflammatory biomarkers in a large cohort of unselected outpatients. Arch. Pathol. Lab. Med. 2009, 133, 628–632. [Google Scholar] [CrossRef]
- Joosse, H.J.; van Oirschot, B.A.; Kooijmans, S.A.; Hoefer, I.E.; van Wijk, R.A.; Huisman, A.; van Solinge, W.W.; Haitjema, S. In-vitro and in-silico evidence for oxidative stress as drivers for RDW. Sci. Rep. 2023, 13, 9223. [Google Scholar] [CrossRef]
- Ma, Y.; Li, S.; Zhang, A.; Ma, Y.; Wan, Y.; Han, J.; Cao, W.; Xu, G. Association between Red Blood Cell Distribution Width and Diabetic Retinopathy: A 5-Year Retrospective Case-Control Study. J. Ophthalmol. 2021, 2021, 6653969. [Google Scholar] [CrossRef]
- Malandrino, N.; Wu, W.C.; Taveira, T.H.; Whitlatch, H.B.; Smith, R.J. Association between red blood cell distribution width and macrovascular and microvascular complications in diabetes. Diabetologia 2012, 55, 226–235. [Google Scholar] [CrossRef]
- Hassan, A.A.; Ahmed, B.E.; Adam, I. Red Cell Distribution Width and Prediabetes in Adults in Northern Sudan: A Case-Control Study. Hematol. Rep. 2023, 15, 651–661. [Google Scholar] [CrossRef]
- Al-Kindi, S.G.; Refaat, M.; Jayyousi, A.; Asaad, N.; Al Suwaidi, J.; Abi Khalil, C. Red Cell Distribution Width Is Associated with All-Cause and Cardiovascular Mortality in Patients with Diabetes. Biomed. Res. Int. 2017, 2017, 5843702. [Google Scholar] [CrossRef]
- Hankins, J. The role of albumin in fluid and electrolyte balance. J. Infus. Nurs. 2006, 29, 260–265. [Google Scholar] [CrossRef]
- Roche, M.; Rondeau, P.; Singh, N.R.; Tarnus, E.; Bourdon, E. The antioxidant properties of serum albumin. FEBS Lett. 2008, 582, 1783–1787. [Google Scholar] [CrossRef]
- Barchel, D.; Almoznino-Sarafian, D.; Shteinshnaider, M.; Tzur, I.; Cohen, N.; Gorelik, O. Clinical characteristics and prognostic significance of serum albumin changes in an internal medicine ward. Eur. J. Intern. Med. 2013, 24, 772–778. [Google Scholar] [CrossRef]
- Li, D.; Long, J.; Zhang, J.; He, M.; Zeng, Q.; He, Q.; Zhan, W.; Chi, Y.; Zou, M. Association between red cell distribution width-and-albumin ratio and the risk of peripheral artery disease in patients with diabetes. Front Endocrinol. 2024, 15, 1272573. [Google Scholar] [CrossRef]
- Cai, Y.W.; Zhang, H.F.; Gao, J.W.; Cai, Z.X.; Cai, J.W.; Gao, Q.Y.; Chen, Z.T.; Liao, G.H.; Zeng, C.R.; Chen, N.; et al. Serum albumin and risk of incident diabetes and diabetic microvascular complications in the UK Biobank cohort. Diabetes Metab. 2023, 49, 101472. [Google Scholar] [CrossRef]
- Hu, Y.; Wang, J.; Zeng, S.; Chen, M.; Zou, G.; Li, Y.; Zhu, L.; Xu, J. Association Between Serum Albumin Levels and Diabetic Peripheral Neuropathy Among Patients with Type 2 Diabetes: Effect Modification of Body Mass Index. Diabetes Metab. Syndr. Obes. 2022, 15, 527–534. [Google Scholar] [CrossRef]
- Nikolaidou, B.; Gkaliagkousi, E.; Anyfanti, P.; Gavriilaki, E.; Lazaridis, A.; Triantafyllou, A.; Zografou, I.; Douma, S. The impact of hyperglycemia on urinary albumin excretion in recent onset diabetes mellitus type II. BMC Nephrol. 2020, 21, 119. [Google Scholar] [CrossRef]
- Wang, G.X.; Fang, Z.B.; Li, J.T.; Huang, B.L.; Liu, D.L.; Chu, S.F.; Li, H.L. The correlation between serum albumin and diabetic retinopathy among people with type 2 diabetes mellitus: NHANES 2011–2020. PLoS ONE 2022, 17, e0270019. [Google Scholar] [CrossRef]
- Abass, A.E.; Musa, I.R.; Rayis, D.A.; Adam, I.; Gasim, I.G. Glycated hemoglobin and red blood cell indices in non-diabetic pregnant women. Clin. Pract. 2017, 7, 999. [Google Scholar] [CrossRef]
- Ruan, B.; Paulson, R.F. Metabolic regulation of stress erythropoiesis, outstanding questions, and possible paradigms. Front. Physiol. 2023, 13, 1063294. [Google Scholar] [CrossRef]
- Song, C.S.; Park, D.I.; Yoon, M.Y.; Seok, H.S.; Park, J.H.; Kim, H.J.; Cho, Y.K.; Sohn, C.I.; Jeon, W.K.; Kim, B.I. Association between red cell distribution width and disease activity in patients with inflammatory bowel disease. Dig. Dis. Sci. 2012, 57, 1033–1038. [Google Scholar] [CrossRef]
- Cakal, B.; Akoz, A.G.; Ustundag, Y.; Yalinkilic, M.; Ulker, A.; Ankarali, H. Red cell distribution width for assessment of activity of inflammatory bowel disease. Dig. Dis. Sci. 2009, 54, 842–847. [Google Scholar] [CrossRef]
- Lee, W.S.; Kim, T.Y. Relation between red blood cell distribution width and inflammatory biomarkers in rheumatoid arthritis. Arch. Pathol. Lab. Med. 2010, 134, 505–506. [Google Scholar] [CrossRef]
- Conic, R.R.; Damiani, G.; Schrom, K.P.; Ramser, A.E.; Zheng, C.; Xu, R.; McCormick, T.S.; Cooper, K.D. Psoriasis and Psoriatic Arthritis Cardiovascular Disease Endotypes Identified by Red Blood Cell Distribution Width and Mean Platelet Volume. J. Clin. Med. 2020, 9, 186. [Google Scholar] [CrossRef]
- Tsalamandris, S.; Antonopoulos, A.S.; Oikonomou, E.; Papamikroulis, G.A.; Vogiatzi, G.; Papaioannou, S.; Deftereos, S.; Tousoulis, D. The Role of Inflammation in Diabetes: Current Concepts and Future Perspectives. Eur. Cardiol. 2019, 14, 50–59. [Google Scholar] [CrossRef]
- Sharpe, P.C.; Trinick, T. Mean platelet volume in diabetes mellitus. Q. J. Med. 1993, 86, 739–742. [Google Scholar] [PubMed]
- Colwell, J.A.; Nesto, R.W. The platelet in diabetes: Focus on prevention of ischemic events. Diabetes Care 2003, 26, 2181–2188. [Google Scholar] [CrossRef]
- Vinik, A.I.; Erbas, T.; Park, T.S.; Nolan, R.; Pittenger, G.L. Platelet dysfunction in type 2 diabetes. Diabetes Care 2001, 24, 1476–1485. [Google Scholar] [CrossRef] [PubMed]
- Schneider, D.J. Factors contributing to increased platelet reactivity in people with diabetes. Diabetes Care 2009, 32, 525–527. [Google Scholar] [CrossRef]
- Kakouros, N.; Rade, J.J.; Kourliouros, A.; Resar, J.R. Platelet function in patients with diabetes mellitus: From a theoretical to a practical perspective. Int. J. Endocrinol. 2011, 2011, 742719. [Google Scholar] [CrossRef]
- Yngen, M.; Norhammar, A.; Hjemdahl, P.; Wallén, N.H. Effects of improved metabolic control on platelet reactivity in patients with type 2 diabetes mellitus following coronary angioplasty. Diab. Vasc. Dis. Res. 2006, 3, 52–56. [Google Scholar] [CrossRef]
- Xie, Y.; Bowe, B.; Li, T.; Xian, H.; Yan, Y.; Al-Aly, Z. Higher blood urea nitrogen is associated with increased risk of incident diabetes mellitus. Kidney Int. 2018, 93, 741–752. [Google Scholar] [CrossRef]
- Thomas, S.S.; Zhang, L.; Mitch, W.E. Molecular mechanisms of insulin resistance in chronic kidney disease. Kidney Int. 2015, 88, 1233–1239. [Google Scholar] [CrossRef] [PubMed]
- Zhong, J.B.; Yao, Y.F.; Zeng, G.Q.; Zhang, Y.; Ye, B.K.; Dou, X.Y.; Cai, L. A closer association between blood urea nitrogen and the probability of diabetic retinopathy in patients with shorter type 2 diabetes duration. Sci. Rep. 2023, 13, 9881. [Google Scholar] [CrossRef]
- Scalia, R.; Gong, Y.; Berzins, B.; Zhao, L.J.; Sharma, K. Hyperglycemia is a major determinant of albumin permeability in diabetic microcirculation: The role of mu-calpain. Diabetes 2007, 56, 1842–1849. [Google Scholar] [CrossRef] [PubMed]
- Cheng, Q.; Liu, X.; Cai, A.; Zhou, D.; Huang, Y.; Feng, Y. Serum sodium level is inversely associated with new-onset diabetes in hypertensive patients. J. Diabetes 2022, 14, 831–839. [Google Scholar] [CrossRef] [PubMed]
- Anastasiadi, A.T.; Arvaniti, V.Z.; Hudson, K.E.; Kriebardis, A.G.; Stathopoulos, C.; D’Alessandro, A.; Spitalnik, S.L.; Tzounakas, V.L. Exploring unconventional attributes of red blood cells and their potential applications in biomedicine. Protein Cell 2024, 15, 315–330. [Google Scholar] [CrossRef]
- Lippi, G.; Plebani, M. Red blood cell distribution width (RDW) and human pathology. One size fits all. Clin. Chem. Lab. Med. 2014, 52, 1247–1249. [Google Scholar] [CrossRef] [PubMed]
Mean Values | p-Values | ||||||
---|---|---|---|---|---|---|---|
Hematologic Parameters | Reference Range | Group A (±SD) | Group B (±SD) | Group C (±SD) | Group A with Group B | Group A with Group C | Group B with Group C |
HbA1c | <5.7% | 5.3 (±0.27) | 6.0 (±0.22) | 8.0 (±1.78) | <0.0001 | <0.0001 | <0.0001 |
MCV | 80.0–95.0 fL | 87.7 (±7.85) | 88.1 (±7.04) | 87.7 (±6.79) | 0.2634 | 0.4741 | 0.2484 |
RDW | 11.5–14.5% | 14.6 (±3.00) | 15.0 (±3.13) | 15.2 (±2.86) | 0.0916 | 0.0201 | 0.2964 |
RDW-SD | 40.0–55.0 fL | 43.9 (±5.32) | 45.8 (±6.08) | 45.8 (±6.48) | <0.0005 | <0.0001 | 0.4480 |
PLT | 150−400 103/μL | 241.1 (±73.37) | 241.5 (±87.44) | 242.5 (±89.98) | 0.4809 | 0.4315 | 0.4547 |
MPV | 9.0−13.0 fL | 9.1 (±1.05) | 9.2 (±1.16) | 9.3 (±1.12) | 0.1628 | <0.05 | 0.2043 |
PDW | 9.0−17.0 fL | 16.9 (±0.73) | 16.8 (±0.74) | 16.9 (0.72) | 0.1709 | 0.2701 | <0.05 |
Biochemical parameters | |||||||
ALB | 3.5–5.0 g/dL | 4.1 (±0.73) | 4.0 (±0.74) | 3.8 (±0.72) | 0.2491 | <0.0001 | <0.0001 |
Urea | 15.0–50.0 mg/dL | 38.5 (±23.12) | 46.3 (±27.96) | 55.6 (±36.15) | 0.0008 | <0.0001 | <0.0005 |
Na | 136.0–146.0 mmol/L | 139.3 (±2.92) | 139.6 (±3.56) | 138.4 (±3.55) | 0.1650 | 0.001 | <0.0001 |
Hematologic Parameters | Analysis of Variance | |||||
---|---|---|---|---|---|---|
Source of Variation | Sum of Squares | Degrees of Freedom | Mean Square | F | p-Value | |
HbA1c | Between Groups | 1091.72 | 2.00 | 545.86 | 393.25 | 0.000000001 |
Within Groups | 1074.37 | 774.00 | 1.39 | |||
Total | 2166.09 | 776.00 | ||||
MCV | Between Groups | 28.91 | 2.00 | 14.46 | 0.28 | 0.755147002 |
Within Groups | 39,825.57 | 774.00 | 51.45 | |||
Total | 39,854.48 | 776.00 | ||||
RDW | Between Groups | 37.22 | 2.00 | 18.61 | 2.10 | 0.123107809 |
Within Groups | 6858.61 | 774.00 | 8.86 | |||
Total | 6895.84 | 776.00 | ||||
RDW-SD | Between Groups | 551.31 | 2.00 | 275.65 | 7.52 | 0.000586034 |
Within Groups | 27,912.28 | 761.00 | 36.68 | |||
Total | 28,463.58 | 763.00 | ||||
PLT | Between Groups | 212.98 | 2.00 | 106.49 | 0.01 | 0.985168391 |
Within Groups | 4,575,244.06 | 642.00 | 7126.55 | |||
Total | 4,575,457.04 | 644.00 | ||||
MPV | Between Groups | 4.50 | 2.00 | 2.25 | 1.81 | 0.163926007 |
Within Groups | 960.34 | 774.00 | 1.24 | |||
Total | 964.84 | 776.00 | ||||
PDW | Between Groups | 1.50 | 2.00 | 0.75 | 1.42 | 0.242158585 |
Within Groups | 339.39 | 642.00 | 0.53 | |||
Total | 340.89 | 644.00 |
Biochemical Parameters | Analysis of Variance | |||||
---|---|---|---|---|---|---|
Source of Variation | Sum of Squares | Degrees of Freedom | Mean Square | F | p-Value | |
ALB | Between Groups | 10.78 | 2.00 | 5.39 | 16.24 | 0.0000001230 |
Within Groups | 256.44 | 773.00 | 0.33 | |||
Total | 267.22 | 775.00 | ||||
Urea | Between Groups | 38,545.47 | 2.00 | 19,272.74 | 20.61 | 0.0000000019 |
Within Groups | 702,132.53 | 751.00 | 934.93 | |||
Total | 740,678.00 | 753.00 | ||||
Na | Between Groups | 189.65 | 2.00 | 94.82 | 8.72 | 0.0001819390 |
Within Groups | 7844.30 | 721.00 | 10.88 | |||
Total | 8033.95 | 723.00 |
Pearson’s Correlation Test | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|
ALB | Na | Urea | MCV | RDW | RDW-SD | PLT | MPV | PDW | ||
HbA1c | PCC | −0.23 | −0.174 | 0.148 | −0.049 | 0.152 | 0.016 | −0.059 | 0.035 | 0.068 |
p | <0.0001 | <0.0001 | <0.0001 | 0.169 | <0.0001 | 0.61 | 0.132 | 0.334 | 0.084 | |
Age | PCC | −0.173 | 0.015 | 0.278 | 0.076 | 0.023 | 0.198 | −0.083 | 0.085 | 0.154 |
p | <0.0001 | 0.727 | <0.0001 | 0.058 | 0.515 | <0.0001 | 0.062 | 0.036 | 0.001 |
Participant Characteristics | Group A n = 218 (%) | Group B n = 226 (%) | Group C n = 333 (%) | Total n = 777 (%) |
---|---|---|---|---|
Gender | ||||
Male | 102 (25.19) | 122 (30.12) | 181 (44.69) | 405 (100.00) |
Female | 116 (31.18) | 104 (27.96) | 152 (40.86) | 372 (100.00) |
mean (±SD) | ||||
Age | 54 (±14.23) | 63 (±13.56) | 66 (±13.83) | 62 (±14.63) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ginoudis, A.; Ioannidou, S.; Tsakiroglou, G.; Kazeli, K.; Vagdatli, E.; Lymperaki, E. Correlation of Albumin, Red Cell Distribution Width and Other Biochemical and Hematological Parameters with Glycated Hemoglobin in Diabetic, Prediabetic and Non-Diabetic Patients. Int. J. Mol. Sci. 2024, 25, 8037. https://doi.org/10.3390/ijms25158037
Ginoudis A, Ioannidou S, Tsakiroglou G, Kazeli K, Vagdatli E, Lymperaki E. Correlation of Albumin, Red Cell Distribution Width and Other Biochemical and Hematological Parameters with Glycated Hemoglobin in Diabetic, Prediabetic and Non-Diabetic Patients. International Journal of Molecular Sciences. 2024; 25(15):8037. https://doi.org/10.3390/ijms25158037
Chicago/Turabian StyleGinoudis, Argyrios, Stavroula Ioannidou, Georgia Tsakiroglou, Konstantina Kazeli, Eleni Vagdatli, and Evgenia Lymperaki. 2024. "Correlation of Albumin, Red Cell Distribution Width and Other Biochemical and Hematological Parameters with Glycated Hemoglobin in Diabetic, Prediabetic and Non-Diabetic Patients" International Journal of Molecular Sciences 25, no. 15: 8037. https://doi.org/10.3390/ijms25158037
APA StyleGinoudis, A., Ioannidou, S., Tsakiroglou, G., Kazeli, K., Vagdatli, E., & Lymperaki, E. (2024). Correlation of Albumin, Red Cell Distribution Width and Other Biochemical and Hematological Parameters with Glycated Hemoglobin in Diabetic, Prediabetic and Non-Diabetic Patients. International Journal of Molecular Sciences, 25(15), 8037. https://doi.org/10.3390/ijms25158037