CYSTATIN C—A Monitoring Perspective of Chronic Kidney Disease in Patients with Diabetes
Abstract
:1. Introduction
2. Serum Creatinine and/or Cystatin C?
2.1. CKD Is Underdiagnosed
2.2. Markers in the Monitoring of Renal Function
2.3. Equations for Estimating GFR
2.4. eGFRdiff—A Beneficial Indicator
2.5. Indications for the Use of Cystatin C
- -
- Diet: low-protein diet, keto diets, vegetarian, high-protein diets, and creatine supplements;
- -
- llness other than CKD: malnutrition, heart failure, catabolic consuming diseases, cancer, cirrhosis, muscle wasting diseases;
- -
- Lifestyle: smoking;
- -
- Medication effects: broad spectrum antibiotics that minimize extrarenal elimination, decreases in tubular secretion, steroids (anabolic, hormone);
- -
- Variations in body habitus and muscle mass: eating disorders, extreme sports or exercise, bodybuilding, above-knee amputation, spinal cord injuries resulting in paraplegia, paraparesis, quadriplegia or quadriparesis, and class III obesity [17].
2.6. Limitations in Using Cystatin C
3. Novel Biomarkers in Diabetic Kidney Disease
4. Discussions
4.1. Cystatin C—An Earlier Marker in the Diagnosis of CKD than Albuminuria
4.2. Variations of Serum Creatinine and Cystatin C in Different Clinical Conditions
5. Conclusions and Future Perspectives
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Mizdrak, M.; Kumrić, M.; Kurir, T.T.; Božić, J. Emerging Biomarkers for Early Detection of Chronic Kidney Disease. J. Pers. Med. 2022, 12, 548. [Google Scholar] [CrossRef]
- Pecoits-Filho, R.; Jimenez, B.Y.; Ashuntantang, G.E.; de Giorgi, F.; De Cosmo, S.; Groop, P.-H.; Liew, A.; Hradsky, A.; Pontremoli, R.; Sola, L.; et al. Renewing the fight: A call to action for diabetes and chronic kidney disease. Diabetes Res. Clin. Pract. 2023, 203, 110902. [Google Scholar] [CrossRef]
- International Diabetes Federation. IDF Diabetes Atlas, 10th ed.; International Diabetes Federation: Brussels, Belgium, 2021. [Google Scholar]
- Mende, C.W.; Bloomgarden, Z. Measurement of renal function: Should cystatin C be more widely used for people with diabetes? J. Diabetes 2024, 16, e13534. [Google Scholar] [CrossRef]
- Kovesdy, C.P. Epidemiology of chronic kidney disease: An update 2022. Kidney Int. Suppl. 2022, 12, 7–11. [Google Scholar] [CrossRef] [PubMed]
- Wu, B.; Bell, K.; Stanford, A.; Kern, D.M.; Tunceli, O.; Vupputuri, S.; Kalsekar, I.; Willey, V. Understanding CKD among patients with T2DM: Prevalence, temporal trends, and treatment patterns—NHANES 2007–2012. BMJ Open Diabetes Res. Care 2016, 4, e000154. [Google Scholar] [CrossRef]
- Thomas, M.C.; Cooper, M.E.; Zimmet, P. Changing epidemiology of type 2 diabetes mellitus and associated chronic kidney disease. Nat. Rev. Nephrol. 2016, 12, 73–81. [Google Scholar] [CrossRef]
- Swaminathan, S.M.; Rao, I.R.; Shenoy, S.V.; Prabhu, A.R.; Mohan, P.B.; Rangaswamy, D.; Bhojaraja, M.V.; Nagri, S.K.; Nagaraju, S.P. Novel biomarkers for prognosticating diabetic kidney disease progression. Int. Urol. Nephrol. 2023, 55, 913–928. [Google Scholar] [CrossRef] [PubMed]
- Dejenie, T.A.; Abebe, E.C.; Mengstie, M.A.; Seid, M.A.; Gebeyehu, N.A.; Adella, G.A.; Kassie, G.A.; Gebrekidan, A.Y.; Gesese, M.M.; Tegegne, K.D.; et al. Dyslipidemia and serum cystatin C levels as biomarker of diabetic nephropathy in patients with type 2 diabetes mellitus. Front. Endocrinol. 2023, 14, 1124367. [Google Scholar] [CrossRef] [PubMed]
- Thipsawat, S. Early detection of diabetic nephropathy in patient with type 2 diabetes mellitus: A review of the literature. Diab. Vasc. Dis. Res. 2021, 18, 147916412110588. [Google Scholar] [CrossRef]
- Pugliese, G.; Penno, G.; Natali, A.; Barutta, F.; Di Paolo, S.; Reboldi, G.; Gesualdo, L.; De Nicola, L. Diabetic kidney disease: New clinical and therapeutic issues. Joint position statement of the Italian Diabetes Society and the Italian Society of Nephrology on The natural history of diabetic kidney disease and treatment of hyperglycemia in patients with type 2 diabetes and impaired renal function. J. Nephrol. 2020, 33, 9–35. [Google Scholar] [CrossRef]
- Zhang, W.G.; Liu, X.M.; Dong, Z.Y.; Wang, Q.; Pei, Z.; Chen, Y.; Zheng, Y.; Wang, Y.; Chen, P.; Feng, Z.; et al. New Diagnostic Model for the Differentiation of Diabetic Nephropathy From Non-Diabetic Nephropathy in Chinese Patients. Front. Endocrinol. 2022, 13, 913021. [Google Scholar] [CrossRef]
- Szczech, L.A.; Stewart, R.C.; Su, H.L.; DeLoskey, R.J.; Astor, B.C.; Fox, C.H.; McCullough, P.A.; Vassalotti, J.A. Primary Care Detection of Chronic Kidney Disease in Adults with Type-2 Diabetes: The ADD-CKD Study (Awareness, Detection and Drug Therapy in Type 2 Diabetes and Chronic Kidney Disease). PLoS ONE 2014, 9, e110535. [Google Scholar] [CrossRef] [PubMed]
- Akpınar, K.; Aslan, D.; Fenkçi, S.M. Assessment of estimated glomerular filtration rate based on cystatin C in diabetic nephropathy. J. Bras. Nefrol. 2021, 43, 340–348. [Google Scholar] [CrossRef]
- Lamb, E.J.; Price, C.P. Kidney Function Tests in Tietz Textbook of Clinical Chemistry and Molecular Diagnostics; Elsevier: Amsterdam, The Netherlands, 2012; pp. 669–707. [Google Scholar] [CrossRef]
- Gaspari, F.; Perico, N.; Remuzzi, G. Application of newer clearance techniques for the determination of glomerular filtration rate. Curr. Opin. Nephrol. Hypertens. 1998, 7, 675–680. [Google Scholar] [CrossRef] [PubMed]
- Official Journal of the International Society of Nephrology. KDIGO 2024 Clinical Practice Guideline for the Evaluation and Management of Chronic Kidney Disease. Off. J. Int. Soc. Nephrol. 2024, 105, S117–S314. [Google Scholar]
- Dahl, H.; Meyer, K.; Sandnes, K.; Welland, N.L.; Arnesen, I.; Marti, H.-P.; Dierkes, J.; Lysne, V. Cystatin C proteoforms in chronic kidney disease. PLoS ONE 2023, 18, e0269436. [Google Scholar] [CrossRef]
- Benoit, S.W.; Ciccia, E.A.; Devarajan, P. Cystatin C as a biomarker of chronic kidney disease: Latest developments. Expert Rev. Mol. Diagn. 2020, 20, 1019–1026. [Google Scholar] [CrossRef] [PubMed]
- Perrone, R.D.; Madias, N.E.; Levey, A.S. Serum creatinine as an index of renal function: New insights into old concepts. Clin. Chem. 1992, 38, 1933–1953. [Google Scholar] [CrossRef]
- Sapkota, S.; Khatiwada, S.; Shrestha, S.; Baral, N.; Maskey, R.; Majhi, S.; Chandra, L.; Lamsal, M. Diagnostic Accuracy of Serum Cystatin C for Early Recognition of Nephropathy in Type 2 Diabetes Mellitus. Int. J. Nephrol. 2021, 2021, 8884126. [Google Scholar] [CrossRef]
- Cheuiche, A.V.; Queiroz, M.; Azeredo-da-Silva, A.L.F.; Silveiro, S.P. Performance of Cystatin C-Based Equations for Estimation of Glomerular Filtration Rate in Diabetes Patients: A Prisma-Compliant Systematic Review and Meta-Analysis. Sci. Rep. 2019, 9, 1418. [Google Scholar] [CrossRef]
- Wang, Y.; Adingwupu, O.M.; Shlipak, M.G.; Doria, A.; Estrella, M.M.; Froissart, M.; Gudnason, V.; Grubb, A.; Kalil, R.; Mauer, M.; et al. Discordance Between Creatinine-Based and Cystatin C-Based Estimated GFR: Interpretation According to Performance Compared to Measured GFR. Kidney Med. 2023, 5, 100710. [Google Scholar] [CrossRef] [PubMed]
- Chen, D.C.; Potok, O.A.; Rifkin, D.; Estrella, M.M. Advantages, Limitations, and Clinical Considerations in Using Cystatin C to Estimate GFR. Kidney360 2022, 3, 1807–1814. [Google Scholar] [CrossRef] [PubMed]
- ElSayed, N.A.; Aleppo, G.; Bannuru, R.R.; Bruemmer, D.; Collins, B.S.; Ekhlaspour, L.; Hilliard, M.E.; Johnson, E.L.; Khunti, K. 11. Chronic Kidney Disease and Risk Management: Standards of Care in Diabetes—2024. Diabetes Care 2024, 47, S219–S230. [Google Scholar] [CrossRef]
- Sauriasari, R.; Safitri, D.D.; Azmi, N.U. Current updates on protein as biomarkers for diabetic kidney disease: A systematic review. Ther. Adv. Endocrinol. Metab. 2021, 12, 20420188211049612. [Google Scholar] [CrossRef] [PubMed]
- Said, S.M.; Nasr, S.H. Silent diabetic nephropathy. Kidney Int. 2016, 90, 24–26. [Google Scholar] [CrossRef] [PubMed]
- Uwaezuoke, S.; Ayuk, A.; Muoneke, V.; Mbanefo, N. Chronic kidney disease in children: Using novel biomarkers as predictors of disease. Saudi J. Kidney Dis. Transplant. 2018, 29, 775. [Google Scholar] [CrossRef]
- Pichaiwong, W.; Homsuwan, W.; Leelahavanichkul, A. The prevalence of normoalbuminuria and renal impairment in type 2 diabetes mellitus. Clin. Nephrol. 2019, 92, 73–80. [Google Scholar] [CrossRef]
- Delanaye, P.; Schaeffner, E.; Cozzolino, M.; Langlois, M.; Plebani, M.; Ozben, T.; Cavalier, E. The new, race-free, Chronic Kidney Disease Epidemiology Consortium (CKD-EPI) equation to estimate glomerular filtration rate: Is it applicable in Europe? A position statement by the European Federation of Clinical Chemistry and Laboratory Medicine (EFLM). Clin. Chem. Lab. Med. 2023, 61, 44–47. [Google Scholar] [CrossRef] [PubMed]
- Levey, A.S.; Stevens, L.A.; Schmid, C.H.; Zhang, Y.L.; Castro, A.F., 3rd; Feldman, H.I.; Kusek, J.W.; Eggers, P.; Van Lente, F.; Greene, T.; et al. A New Equation to Estimate Glomerular Filtration Rate. Ann. Intern. Med. 2009, 150, 604. [Google Scholar] [CrossRef]
- Inker, L.A.; Eneanya, N.D.; Coresh, J.; Tighiouart, H.; Wang, D.; Sang, Y.; Crews, D.C.; Doria, A.; Estrella, M.M.; Froissart, M.; et al. New Creatinine- and Cystatin C–Based Equations to Estimate GFR without Race. N. Engl. J. Med. 2021, 385, 1737–1749. [Google Scholar] [CrossRef]
- Inker, L.A.; Schmid, C.H.; Tighiouart, H.; Eckfeldt, J.H.; Feldman, H.I.; Greene, T.; Kusek, J.W.; Manzi, J.; Van Lente, F.; Zhang, Y.L.; et al. Estimating Glomerular Filtration Rate from Serum Creatinine and Cystatin C. N. Engl. J. Med. 2012, 367, 20–29. [Google Scholar] [CrossRef]
- American Diabetes Association. Standards of Medical Care in Diabetes. Diabetes Care 2014, 37, S14–S80. [Google Scholar] [CrossRef]
- Official Journal of the International Society of Nephrology. KDIGO 2012 Clinical Practice Guideline for the Evaluation and Management of Chronic Kidney Disease. Off. J. Int. Soc. Nephrol. 2013, 3, S1–S150. [Google Scholar]
- Delgado, C.; Baweja, M.; Crews, D.C.; Eneanya, N.D.; Gadegbeku, C.A.; Inker, L.A.; Mendu, M.L.; Miller, W.G.; Moxey-Mims, M.M.; Roberts, G.V.; et al. A Unifying Approach for GFR Estimation: Recommendations of the NKF-ASN Task Force on Reassessing the Inclusion of Race in Diagnosing Kidney Disease. Am. J. Kidney Dis. 2022, 79, 268–288.e1. [Google Scholar] [CrossRef] [PubMed]
- He, D.; Gao, B.; Wang, J.; Yang, C.; Zhao, M.H.; Zhang, L. The Difference Between Cystatin C- and Creatinine-Based Estimated Glomerular Filtration Rate and Risk of Diabetic Microvascular Complications among Adults with Diabetes: A Population-Based Cohort Study. Diabetes Care 2024, 47, 873–880. [Google Scholar] [CrossRef] [PubMed]
- Spencer, S.; Desborough, R.; Bhandari, S. Should Cystatin C eGFR Become Routine Clinical Practice? Biomolecules 2023, 13, 1075. [Google Scholar] [CrossRef] [PubMed]
- Jung, C.Y.; Yoo, T.H. Pathophysiologic Mechanisms and Potential Biomarkers in Diabetic Kidney Disease. Diabetes Metab. J. 2022, 46, 181–197. [Google Scholar] [CrossRef] [PubMed]
- Amelia, R.; Sari, D.K.; Muzasti, R.A.; Wijaya, H. Correlation of Cystatin-c with Albumin Creatinine Ratio for the Diagnosis of Diabetic Nephropathy in Patients with Type 2 Diabetes: A Cross-sectional Study in Medan Indonesia. Open Access Maced. J. Med. Sci. 2022, 10, 12–15. [Google Scholar] [CrossRef]
- Arceo, E.S.; Dizon, G.A.; Tiongco, R.E.G. Serum cystatin C as an early marker of nephropathy among type 2 diabetics: A meta-analysis. Diabetes Metab. Syndr. Clin. Res. Rev. 2019, 13, 3093–3097. [Google Scholar] [CrossRef]
- Jeon, Y.L.; Kim, M.H.; Lee, W.I.; Kang, S.Y. Cystatin C as an early marker of diabetic nephropathy in patients with type 2 diabetes. Clin. Lab. 2013, 59, 1221–1229. [Google Scholar] [CrossRef]
- Luo, Y.; Wang, Q.; Li, H.; Lin, W.; Yao, J.; Zhang, J.; Duan, S.; Zhang, W.; Zheng, Y.; Cai, G.; et al. Serum cystatin C is associated with peripheral artery stiffness in patients with type 2 diabetes mellitus combined with chronic kidney disease. Clin. Biochem. 2023, 118, 110593. [Google Scholar] [CrossRef]
- Briet, M.; Bozec, E.; Laurent, S.; Fassot, C.; London, G.; Jacquot, C.; Froissart, M.; Houillier, P.; Boutouyrie, P. Arterial stiffness and enlargement in mild-to-moderate chronic kidney disease. Kidney Int. 2006, 69, 350–357. [Google Scholar] [CrossRef]
- Adingwupu, O.M.; Barbosa, E.R.; Palevsky, P.M.; Vassalotti, J.A.; Levey, A.S.; Inker, L.A. Cystatin C as a GFR Estimation Marker in Acute and Chronic Illness: A Systematic Review. Kidney Med. 2023, 5, 100727. [Google Scholar] [CrossRef]
- Shah, K.F.; Stevens, P.E.; Lamb, E.J. The influence of a cooked-fish meal on estimated glomerular filtration rate. Ann. Clin. Biochem. Int. J. Lab. Med. 2020, 57, 182–185. [Google Scholar] [CrossRef] [PubMed]
- Thurlow, J.S.; Abbott, K.C.; Linberg, A.; Little, D.; Fenderson, J.; Olson, S.W. SCr and SCysC Concentrations Before and After Traumatic Amputation in Male Soldiers: A Case-Control Study. Am. J. Kidney Dis. 2014, 63, 167–170. [Google Scholar] [CrossRef] [PubMed]
- Delanaye, P.; Cavalier, E.; Radermecker, R.P.; Paquot, N.; Depas, G.; Chapelle, J.-P.; Scheen, A.J.; Krzesinski, J.-M. Cystatin C or Creatinine for Detection of Stage 3 Chronic Kidney Disease in Anorexia Nervosa. Nephron Clin. Pract. 2008, 110, c158–c163. [Google Scholar] [CrossRef]
- Farrington, D.K.; Surapaneni, A.; Matsushita, K.; Seegmiller, J.C.; Coresh, J.; Grams, M.E. Discrepancies between Cystatin C–Based and Creatinine-Based eGFR. Clin. J. Am. Soc. Nephrol. 2023, 18, 1143–1152. [Google Scholar] [CrossRef]
- Mende, C.; Katz, A. Cystatin C- and Creatinine-Based Estimates of Glomerular Filtration Rate in Dapagliflozin Phase 3 Clinical Trials. Diabetes Ther. 2016, 7, 139–151. [Google Scholar] [CrossRef] [PubMed]
- Shlipak, M.G.; Matsushita, K.; Ärnlöv, J.; Inker, L.A.; Katz, R.; Polkinghorne, K.R.; Rothenbacher, D.; Sarnak, M.J.; Astor, B.C.; Coresh, J.; et al. Cystatin C versus Creatinine in Determining Risk Based on Kidney Function. N. Engl. J. Med. 2013, 369, 932–943. [Google Scholar] [CrossRef]
- Shardlow, A.; McIntyre, N.J.; Fraser, S.D.S.; Roderick, P.; Raftery, J.; Fluck, R.J.; McIntyre, C.W.; Taal, M.W. The clinical utility and cost impact of cystatin C measurement in the diagnosis and management of chronic kidney disease: A primary care cohort study. PLoS Med. 2017, 14, e1002400. [Google Scholar] [CrossRef]
- Canney, M.; Sexton, D.J.; O’Leary, N.; Healy, M.; Kenny, R.A.; Little, M.A.; O’seaghdha, C.M. Examining the utility of cystatin C as a confirmatory test of chronic kidney disease across the age range in middle-aged and older community-dwelling adults. J. Epidemiol. Community Health 2018, 72, 287–293. [Google Scholar] [CrossRef]
- Colantonio, L.D.; Tanner, R.M.; Warnock, D.G.; Gutiérrez, O.M.; Judd, S.; Muntner, P.; Bowling, C.B. The role of cystatin-C in the confirmation of reduced glomerular filtration rate among the oldest old. Arch. Med. Sci. 2016, 1, 55–67. [Google Scholar] [CrossRef]
Stage 1 (eRFG ≥ 90 mL/min/1.73 m2) | 98.9% undiagnosed |
Stage 2 (eRFG 60–89 mL/min/1.73 m2) | 95.1% undiagnosed |
Stage 3 (eRFG 30–59 mL/min/1.73 m2) | 82% undiagnosed |
Stage 4 (eRFG 15–29 mL/min/1.73 m2) | 47.1% undiagnosed |
Stage 5 (eRFG < 15 mL/min/1.73 m2) | 41.2% undiagnosed |
GFR Category | GFR (mL/min per 1.73 m2) |
---|---|
G1 | ≥90 (Normal or high) |
G2 | 60–89 (Mildly decreased) |
G3a | 45–59 (Mildly to moderately decreased) |
G3b | 30–44 (Moderately to severely decreased) |
G4 | 15–29 (Severely decreased) |
G5 | <15 (Kidney failure) |
Category | Albumin Excretion Rate (mg/24 h) | Albumin-to-Creatinine Ratio (Approximately Equivalent) | Terms | |
---|---|---|---|---|
(mg/mmol) | (mg/g) | |||
A1 | <30 | <3 | <30 | Normal to mildly increased |
A2 | 30–300 | 3–30 | 30–300 | Moderately increased |
A3 | ≥300 | ≥30 | ≥300 | Severely increased |
Barriers in Using Cystatin C to Estimate GFR |
---|
Absence of education provided about cystatin C |
Higher costs compared to serum creatinine |
Lack of institutional guidelines and policies |
Placement of cystatin C results within the electronic health record |
Proficiency with serum creatinine versus unfamiliarity with cystatin C |
Glomerular biomarkers | Ceruloplasmin, Fibronectin, Glycosaminoglycans, Immunoglobulin G, Laminin, L-PGDS, Serum cystatin C, Transferrin, Type IV collagen |
Tubular biomarkers | KIM-1, L-FABP, RBP4, NGAL, Urinary cystatin C |
Biomarkers of inflammation | Tumor necrotic factor-α, Tumor necrotic factor-α receptors, CTGF, IL-6, MCP-1, TGF- β |
Biomarkers of oxidative stress | 8oxodG, Pentosidine, Uric acid |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Visinescu, A.-M.; Rusu, E.; Cosoreanu, A.; Radulian, G. CYSTATIN C—A Monitoring Perspective of Chronic Kidney Disease in Patients with Diabetes. Int. J. Mol. Sci. 2024, 25, 8135. https://doi.org/10.3390/ijms25158135
Visinescu A-M, Rusu E, Cosoreanu A, Radulian G. CYSTATIN C—A Monitoring Perspective of Chronic Kidney Disease in Patients with Diabetes. International Journal of Molecular Sciences. 2024; 25(15):8135. https://doi.org/10.3390/ijms25158135
Chicago/Turabian StyleVisinescu, Alexandra-Mihaela, Emilia Rusu, Andrada Cosoreanu, and Gabriela Radulian. 2024. "CYSTATIN C—A Monitoring Perspective of Chronic Kidney Disease in Patients with Diabetes" International Journal of Molecular Sciences 25, no. 15: 8135. https://doi.org/10.3390/ijms25158135
APA StyleVisinescu, A. -M., Rusu, E., Cosoreanu, A., & Radulian, G. (2024). CYSTATIN C—A Monitoring Perspective of Chronic Kidney Disease in Patients with Diabetes. International Journal of Molecular Sciences, 25(15), 8135. https://doi.org/10.3390/ijms25158135