Efficacy of Curcumin-Mediated Antimicrobial Photodynamic Therapy on Candida spp.—A Systematic Review
Abstract
:1. Introduction
2. Material and Methods
2.1. Focused Question
2.2. Information Sources and Search Strategy
2.3. Study Selection
- in vitro studies involving C. albicans or other non-albicans Candida stains;
- animal studies involving C. albicans or other non-albicans Candida stains;
- RCTs involving patients with oral candidiasis or denture stomatitis;
- Candida elimination method used in in vitro studies and in animal studies, and RCT was curcumin-mediated aPDT.
- case reports or case series;
- letters to the editor;
- historic reviews;
- reviews or systematic reviews;
- books and documents;
- duplicated publications or studies with the same ethical approval number;
- studies published in a non-English language;
- general medical applications;
- aPDT form not used as therapy;
- curcumin used not as a photosensitizer;
- other PS than curcumin was used;
- blue light used without PS;
- no Candida strains evaluated;
- endodontic, carious, or bone models, not related to oral candidiasis.
2.4. Risk of Bias in Individual Studies
2.5. Quality Assessment and Risk of Bias across Studies
- Was there a specific concentration of photosensitizer?
- Was the origin of the photosensitizer provided?
- Was an incubation time indicated?
- Were the light source parameters provided, such as type, wavelength, output power, fluence, and power density?
- Were clinical strains of Candida spp. used in the study?
- Was a negative control group included?
- Were there numerical results (statistics)?
- No missing outcome data?
- Did the study include at least 10 patients per group?
- Was there a minimum 6-month follow-up period?
- (1)
- High risk: 0–3;
- (2)
- Moderate risk: 4–6;
- (3)
- Low risk: 7–8.
2.6. Data Extraction
- citation (first author and publication year);
- type of study;
- type of Candida strains used in the study;
- test/control groups;
- follow-up;
- outcomes;
- type and parameters of the light source;
- curcumin concentration;
- use of nanocarriers and additional substances, incubation, and irradiation time.
3. Results
3.1. Primary Outcome
3.2. Study Selection during Full-Text Analysis
3.3. Quality Assessment Presentation
3.4. Data Presentation
3.5. General Characteristics of the Included Studies
Reference Number Country Year of Publication | Study Design | Candida Species | Study Group Number of Repetitions/Participants Demographic Data Clinical Protocol Data | Outcomes |
---|---|---|---|---|
[5] Brazil 2020 | In vitro study on a 96-well plate | Reference strain C. albicans ATCC 90028 Biofilm | PS-L-, PS-L + 37.5 J, PS-L + 50 J, PS + L-40J, PS + L-80 J, PS + L + 40/37.5 J, PS + L + 40/50 J, PS + L + 80/37.5 J, PS + L + 80/50 J (n = 6) | aPDT 80/50 J promotes a greater reduction in the expression of C. albicans genes associated with adhesion and biofilm formation and genes responsible for oxidative stress. |
[7] Brazil 2018 | In vivo animal study, tongues of mice infected with C. albicans | Reference strain C. albicans ATCC 90028 | CUR + L+, CUR-L-, CUR + L-, AC + L-, AC + L+, CC + L-, CC + L-, NYS1, NYS4; C free CUR, AC anionic CUR, CC cationic CUR, NYS 100 000 IU 1 and 4 x daily (n = 24) | Free CUR shows a better photodynamic effect than NP-CUR in nanocarriers. APDT with free CUR results in tongue epithelial CK13 and CK14 expression like that observed in healthy mice, which was not observed with NYS. |
[11] Brazil, Portugal 2015 | In vitro study on a 96-well plate | Reference strain C. albicans ATCC 18804 Planktonic cultures | PS + L+, PS + L-, PS-L+, PS-L-, H2O2 10 mM (n = 3) | aPDT caused extensive DNA damage to C. albicans, which was not effectively repaired due to the inhibition caused by CUR. |
[13] Thailand 2021 | In vitro study on a 6-well plate | Reference strain C. albicans ATCC 10231 Biofilm | CUR + L+ (D10, D20, B10, B20, E110, E220, D10 + E110, D10 + E220, D10 + Ti, D20 + E110, D20 + E220, D20 + Ti, B10 + E110, B10 + E22, B10 + Ti, B20 + E110, B20 + E220, B20 + Ti, E110 + Ti, E220 + Ti, D10 + E110 + Ti, D10 + E220 + Ti, D20 + E110 + Ti, D20 + E220 + Ti, B10 + E110 + Ti, B10 + E220 + Ti, B20 + E110 + TI, B20 + E220 + Ti), NYS CUR-L- (n = 9) | 20 µM bisdemethoxycurcumin + erythrosine 110–220 µM + 10% titanium nanoxide tend to generate relatively large amounts of ROS and effectively inhibits Candida albicans without inducing cytotoxicity against normal human gingival fibroblasts. |
[14] Saudi Arabia 2021 | A randomized controlled clinical trial with a 12-week follow-up | Oral candidiasis, prosthetic stomatitis; C. albicans, C. tropicalis, C. glabrata | RB + L+ (15 individuals—3 male and 12 female; mean age 57.2); CUR + L+ (15 individuals—5 male and 10 female; mean age 59.5); NYS (15 individuals—4 male and 11 female; mean age 56.9). Inclusion criteria: completely edentulous participants, removable complete denture wearers diagnosed with denture stomatitis, and habitual cigarette smokers. Random assignment of participants to one of the three research groups. Treated oral mucosa of the palate and denture plate. Six sessions for each participant—thrice per week for a half month. | CUR-mediated aPDT is as effective as topical NYS therapy in treating denture-induced stomatitis in cigarette smokers. |
[15] Brazil 2012 | In vitro study on a 96-well plate | Reference strain C. albicans ATCC 90028, C. glabrata ATCC 2001, C. dubliniensis CBS 7987 Planktonic cell solutions and biofilms | PS + L+, PS-L+, PS + L-, PS-L- (n = 10) | C. albicans—cell viability decreases proportionally regardless of concentration, best effect 20 min PIT and 40 µM CUR. C. glabrata—best effect 40 µM CUR, dependence on PIT unclear. C. dubliniensis—Groups irradiated for 4 min were concentration-dependent for extreme values (40 and 20 µM). In contrast, groups irradiated for 8 min were concentration- and incubation time-dependent. |
[23] Austria 2021 | In vitro study in Eppendorf tubes | Reference strain of C. albicans ATCC Mya 273 Planktonic form | CUR-L-, CUR-L+, CUR + L-, CUR + L+; 5 µM 0/5/25 min, 10 µM 0/5/25 µM, 20 µM 0/5/25 min, 50 µM 0/5/25 min (DMSO 5/10%) (n = 3) | CUR shows the best antimicrobial activity at a concentration of 50 µM without an incubation period regardless of the DMSO concentration. |
[36] Brazil 2017 | In vitro study on a 96-well plate | Clinical strain C. dubliniensis CD6, CD7, CD8, reference strain CBS 7987 (control) Plankton cultures and biofilms | PS-L+, PS + L-5, PS + L-10, PS + L-20, PS-L-, PS + L + 5, PS + L + 10, PS + L + 20 (for planctonic forms); PS-L+, PS + L-20, PS + L-30, PS + L-40, PS-L-, PS + L + 20, PS + L + 30, PS + L + 40 (for biofilms) (n = 15) | The best therapeutic effect against plankton forms CUR 20 µM and against biofilms CUR 40 µM. |
[37] Brazil 2022 | Controlled, two-arm, parallel-group, single-blind clinical trial | Clinical strain, oral candidiasis, C. tropicalis, C. parapsilosis, C. krusei, C. glabrata | MB—39 patients (33 male and 6 female) between 40 and 83 years (mean = 61.49); CUR—37 patients (27 male and 10 female) between 34 and 77 years (mean = 60.11) Inclusion criteria: individuals with a confirmed histopathological diagnosis of SCC in the oral cavity, larynx, oropharynx, nasopharynx, or hypopharynx treated with RT and presented with oral candidiasis. Treated was the entire oral lesion surface. The aPDT session was twice a week for two weeks. | Curcumin at 80 µmol/L irradiated with an energy of 200 J/cm2 is associated with increased free radical generation. CUR was less effective than TBO. |
[38] Brazil 2023 | In vivo study in a mice model of oral candidiasis | Reference strain C. albicans ATCC 90028 | CUR + L + 20, CUR + L + 40, CUR + L + 80, CUR + L-20, CUR + L-40, CUR + L-80, CUR-L+, CUR-L- (n = 5) | Histological analysis of the tongues of mice treated with aPDT 80 µM CUR showed a reduced number of Candida cells that were confined to the stratum corneum and low inflammatory response. |
[39] Brazil 2020 | In vitro test on silicone samples in a 24-well plates | Reference strain C. albicans ATCC 90028 Biofilm | L-CUR-, L-CUR+, L + CUR-, L + CUR+ (n = 2) | The antimicrobial effect on C. albicans depends on the concentration of curcumin and the exposure time. The best results are obtained with 60 µg/mL curcumin and 30 min of irradiation. |
[40] Brazil 2012 | In vivo study in a mice model of oral candidiasis | Reference strain C. albicans ATCC 90028 | PS + L + 20 µM, PS + L + 40 µM, PS + L + 80 µM PS + L-20 µM, PS + L-40 µM, PS + L-80 µM, PS-L+, PS-L- (n = 5) | A curcumin concentration of 80 uM combined with LED light causes the greatest change in the number of C. albicans colonies. |
[41] Brazil 2017 | In vitro study on a 96-well plate | Reference strain C. albicans ATCC 90028 Biofilm, planktonic cultures | CUR + L+ (free CUR, anionic CUR, cationic CUR), CUR + L-, CUR-L+, CUR-L- NL- (anionic and cationic nanoparticles without CUR) (n = 6)—anionic CUR, cationic CUR (n = 3)—free CUR | Anionic CUR shows the lowest antibacterial photodynamic effect; cationic CUR was cytotoxic. |
[42] Brazil 2021 | In vitro study on a 96-well plate. In situ biofilm study in the oral cavity (volunteers wore palatal appliances containing enamel samples to establish dental biofilms in situ; study on a 24-well plate) | Reference strain C. albicans ATCC 90028 Biofilm | CUR + L+ (CUR-LCP, CUR-CHIH, CUR-ME, CUR-S), CUR + L-, CUR-L+, CUR-L- (n = 12)—in vitro study (n = 7)—in situ biofilm study | CUR-S is the only formulation that can significantly reduce the viability of the biofilm after photodynamic treatment. |
[43] Brazil 2022 | In vitro study on a 24-well plate | Reference strain C. albicans ATCC 18804, C. tropicalis ATCC 13803 Planktonic cultures | CUR-L- (saline), N (nystatin), C. longa + L-, CUR + L-, CUR-L+, CUR + L+ (n = 10) | The isolated curcumin longa extract and photodynamic therapy with CUR have antifungal activity against C. albicans and C. tropicalis and no toxicity to the invertebrate model G. mellonella. |
[44] Saudi Arabia 2023 | Randomized controlled clinical trial with 2-month follow-up | Prosthetic stomatitis; C. albicans, C. krusei | Group I (antifungal gel therapy)—25 patients (9 male and 16 female), mean age 55.2; 5 blocks/study group; every block comprised 5 subjects; Group II (aPDT CUR + antifungal gel)—25 patients (10 male and 15 female), mean age 56.7; 5 blocks/study group; every block comprised five subjects Inclusion criteria: edentulous patients using complete dentures. Treated was the oral mucosa of the palate and denture plate. The PDT over four weeks and eight weeks, twice a week with a 48 h interval between each session. | CUR-mediated aPDT is an effective treatment method for reducing the mycological burden on the palate mucosa and denture surfaces, as well as improving salivary pro-inflammatory cytokine levels in patients with denture-related stomatitis. |
[45] Brazil 2011 | In vitro study on a 96-well plate | Reference strain C. albicans ATCC 90028 Planktonic cultures, biofilm | PS + L+, PS + L-, PS-L-, PS-L+ (n = 5) | The highest therapeutic efficacy 20 µM CUR, 5.28 J/cm2, 20 min incubation time. |
[46] Brazil, Netherlands 2021 | In vitro study on a 96-well plate | Reference strain of C. albicans ATCC 18804 Planktonic forms and biofilm | PS-L-, PS-L+, CHX, NYS, PS-D + L-, PS-D + L+, PS + D + L-, PS + D + L+, PS-M + L-, PS-M + L+, PS + M + L-, PS + M + L+ (n = 9) | CUR-Plu shows a lower reduction than CUR-DMSO. Multispecies biofilm shows greater resistance than monospecies. CUR-Plu can be considered a stable and effective method for controlling biofilm within a short time after synthesis. |
[47] Brazil 2011 | In vitro study on a 96-well plate | Clinical isolates C. albicans Ca1, Ca2, Ca3, Ca4, Ca5; C. glabrata Cg1, Cg2, Cg3, Cg4, Cg5; C. tropicails Ct1, Ct2, Ct3, Ct4, Ct5 Planktonic cell solution and biofilm | PS + L+, PS + L-, PS-L+, PS-L- (n = 5) | The greatest reduction in the activity of C. albicans, C. tropicalis, and C. glabrata using 40 µM CUR and 18 J/cm2. |
[48] Brazil 2023 | In vitro study on a 96-well plate | Reference strain C. albicans ATCC 90028 Planktonic cultures and biofilms | CUR + L+, CUR + L-, CUR-L+, CUR-L- (n = 12) | C. albicans planktonic cultures are susceptible to subsequent applications of sublethal aPDT doses via CUR. Sublethal aPDT CUR may have made C. albicans cells more resistant to therapy. |
[49] Brazil 2023 | In vitro study on a 96-well plate | Reference strain C. albicans SC 5314 Planktonic cultures and biofilms | CUR-L-, F + CUR-L-, P + CUR-L-, M + CUR-L-, F + CUR + L-, P + CUR + L-, M + CUR + L-, CUR + L-, CUR-UL+, CUR-BL+, M + CUR-UL+, M + CUR + UL+, M + CUR + BL+, F + CUR + BL+, P + CUR + BL+, CUR + BL+, M + CUR + UL + BL+ (n = 12) | CUR-loaded F127 micelles bound to blue light caused biofilm photoinactivation. |
[50] Brazil 2016 | In vitro test on acrylic samples in a 24-well plate | Reference strain C. albicans ATCC 90028, C. glabrata ATCC 2001 Biofilm | PS + L + (24 h), PS + L-(24 h), PS + L + (48 h), PS + L-(48 h), PS-L + (24 h), PS-L + (48 h), PS-L-(24 h), PS-L-(48 h) (n = 9) | The 24 and 48 h biofilms are susceptible to CUR-mediated aPDT at concentrations assessed at 37.5 J/cm2. |
[51] Thailand 2023 | In vitro study on a 6-well plate | Reference strain C. albicans ATCC 10231 Biofilm | CUR20 + L+, CUR40 + L+, CUR80 + L+, KI + L+, CUR20 + KI + L+, CUR40 + KI + L+, CUR80 + KI + L+, nystatin, phosphate-buffered saline (n = 5) | A mixture of 40 uM bisdemethoxycurcumin + 100 mM KI combined with blue light can effectively reduce C. albicans biofilm after 6 h with efficacy comparable to NYS. |
[52] Saudi Arabia, Australia 2017 | In vitro test on Petri dishes | Reference strain C. albicans ATCC 10231 Cells in water mixture, cells on agar surface | PS + L+, PS + L- | C. albicans in an aqueous mixture are inhibited at any light dose, on the agar surface at 96 J/cm2, spore soaking had no significant effect on cell number reduction. |
[53] Taiwan 2018 | In vitro study on a 96-well plate | Reference strain C. albicans ATCC 90029 Planktonic cell solutions, adherent cultures | PS + L+, PS + L+ 208 µM fluconazole (n = 3) | Fluconazole eliminates the yeast form, CUR-aPDT the biofilm. Fluconazole + CUR-aPDT eliminate the growth and virulence of C. albicans. |
[54] Italy, France 2017 | In vitro test on solid medium plates and in Eppendorf tubes | Reference strain C. albicans SC 5314 Planktonic cell solution, adherent cultures | PS + L+, PS + L-, PS-L+, PS-L- (n = 2) | 100% inhibition of C. albicans growth at any fluence. |
3.6. Characteristics of Light Sources Used in aPDT
Reference Number | Light Source | Wavelength (nm) | Energy Density (Fluence) (J/cm2) | Power Output (mW) | Irradiation Time | Spot Size/Fiber Surface Area (cm2) |
---|---|---|---|---|---|---|
[5] | LED | 450 | 37.5, 50 | 30 | 21, 27 min | - |
[7] | LED (LXHL-PR09, Luxeon III Emitter, Lumileds Lighting, San Jose, CA, USA) | 455 (440–460) | 37.5 | 75 | 7 min | 0.196 |
[11] | LED (LXHL-PR09, Luxeon III Emitter, Lumileds Lighting, San Jose, CA, USA) | 455 (440–460) | 37.5 | 89.2 | 7 min | 0.196 |
[13] | Dental lamp (VALO Ortho Cordless, South Jordan, UT, USA) | 395–480 | 72 | 3200 | 27 s | 0.747 |
[14] | LED (LXHL-PR09, Luxeon III Emitter, Lumileds Lighting, San Jose, CA, USA) | 455 (440–460) | 37.5 (denture) 122 (palate) | 260 | 26 min (denture), 20 min (palate) | 0.196 |
[15] | LED (Institute of Physics Sao Carlos, SP, Brazil) | 455 | 5.28 | 22 | 4 min | - |
[23] | LED self-made | 435 | 15.8 | - | 60 min | - |
[36] | LED (LXHL-PR09, Luxeon III Emitter, Lumileds Lighting, San Jose, CA, USA) | 455 (440–460) | 5.28 | 22 | 4 min | 0.196 |
[37] | Blue LED (New Dent s/n) | 480 | 200 | 480 | 90 s | 0.216 |
[38] | LED (University Sao Paulo, Sao Carlos, SP, Brazil) | 455 | 37.5 | 89.2 | 7 min | - |
[39] | LED (Biotable RGB, MMOptics, Sao Carlos, SP, Brazil) | 430 | 10.8, 32.4 | 18 | 10, 30 min | - |
[40] | LED (LXHL-PR09, Luxeon III Emitter, Lumileds Lighting, San Jose, CA, USA) | 455 (440–460) | 37.5 | 89.2 | 7 min | 0.196 |
[41] | LED (LXHL-PR09, Luxeon III Emitter, Lumileds Lighting, San Jose, CA, USA) | 455 (440–460) | 43.2 | 33.58 | 20 min | 0.196 |
[42] | LED (LXHL-PR09, Luxeon III Emitter, Lumileds Lighting, San Jose, CA, USA) | 450 (440–460) | 18 | 22 | 14 min | 0.196 |
[43] | Prototype device based on LEDs (Biotable Irrad/LED) | 450 ± 5 | 10, 25 | 110 | 91, 228 s | - |
[44] | LED (LXHL-PR09, Luxeon III Emitter, Lumileds Lighting, San Jose, CA, USA) | 455 (440–460) | 37,5 (denture) 122 (palate) | 260 | 26 min (denture), 20 min (palate) | 0.196 |
[45] | LED (LXHL-PR09, Luxeon III Emitter, Lumileds Lighting, San Jose, CA, USA) | 455 (440–460) | 37.5, 1.32, 2.64, 3.96, 5.28, 6.60, 13.20, 26.40 | 22 | 29 min, 1, 2, 3, 4, 5, 10, 20 min | 0.196 |
[46] | LED (Biotable RGB, MMOptics, Sao Carlos, SP, Brazil) | 460 | 15 | - | 11 min 36 s | - |
[47] | LED (LXHL-PR09, Luxeon III Emitter, Lumileds Lighting, San Jose, CA, USA) | 455 (440–460) | 5.28, 18, 25.5, 37.5 | 22 | n.a | 0.196 |
[48] | LED (Biotable 3.4, Sao Carlos, Brazil) | 450 | 18 | 47 | 6.38 min | - |
[49] | LED (Biotable RGB, MMOptics, Sao Carlos, SP, Brazil) | 455 | 33.84 | 47 | 12 min | - |
[50] | LED (LXHL-PR09, Luxeon III Emitter, Lumileds Lighting, San Jose, CA, USA) | 455 (440–460) | 37.5 | 22 | 29 min | 0.196 |
[51] | Dental lamp (Elipar DeepCure-L Curing Light, 3M, Singapore) | 450 ± 30 | 90 | 950 | 95 s | 0.785 |
[52] | Xenon arc lamp (Polilight, PL 500, Rofin Australia Pty Ltd., Victoria, Australia) | 370–680; 420 | 24, 48, 72, 96, 240, 360 | 500,000 | 2, 4, 6, 8, 20, 30 min | - |
[53] | LED self-made | 430 | 9 | - | 30 min | - |
[54] | Diode laser blue-violet | 405 | 10, 20, 30 | - | 50, 100, 150 s | 0.2 |
3.7. Characterization of Curcumin Used as a Photosensitizer in aPDT
Reference Number | Incubation Time (in Minutes) | The Way of Presentation of Curcumin | Concentration/s of PS Used |
---|---|---|---|
[5] | 20 | CUR (Sigma-Aldrich, St. Louis, MO, USA) CUR diluted in 1% dimethylsulfoxide | 40, 80 µM |
[7] | 20 | Free CUR prepared in 10% dimethylsulfoxide diluted in sterile milli-Q water; anionic and cationic curcumin-loaded polymeric nanoparticles | 260 µM |
[11] | 20 | CUR (Sigma-Aldrich, St. Louis, MO, USA) A stock CUR solution (600 mM) prepared in 10% dimethylsulfoxide diluted in saline | 2, 5 µM |
[13] | 15 | Demethoxycurcumin and bisdemetoxycurcumin (Sigma-Aldrich, St. Louis, MO, USA) powder dissolved in methanol and then dissolved in water to form 200 µM stock solutions | 10, 20 µM |
[14] | 30 | CUR (Sigma-Aldrich, St. Louis, MO, USA) powder prepared with phosphate-buffered saline to obtain original concentrations of 5 µg/mL | 5 µg/mL |
[15] | 1, 5, 10, 20 | CUR (Sigma-Aldrich, St. Louis, MO, USA) prepared with 10% dimethylsulfoxide to obtain original stock solution | 5, 10, 20, 30, 40 µM |
[23] | 0, 5, 25 | The stock solution (100 mM) of curcumin (Carl Roth, Karlsruhe, >90.6%) prepared by dissolving in dimethylsulfoxide; A stock solution (5 nM) of SACUR-12a (Institiute of Organic Chemistry, University of Regensburg, Regensburg, Germany) prepared in ddH2O | 5, 10, 20, 50 µM CUR + 5% DMSO/10% DMSO; 10, 50, 100 µM SA-CUR12a |
[36] | 20 | CUR (Sigma-Aldrich, St. Louis, MO, USA) prepared with 10% dimethylsulfoxide to obtain an original stock solution | 5, 10, 20 µM (for planktonic form), 20, 30, 40 µM (for biofilms) |
[37] | 1 | Curcumin (96% turmeric, Millenium Farmacias Ltd.a., Janauba, Minas Gerais, Brazil) prepared by diluting 0.03 g in 10 mL of dimethylsulfoxide and then adding more 990 mL of ultrapure water | 80 µM |
[38] | 20 | CUR-based water-soluble salt mixture (PDTPharma, Cravinhos, Brazil) A water-soluble mixture of curcuminoids prepared in ultra-pure water | 20, 40, 80 µM |
[39] | 5 | CUR turmeric powder, lot C1386, content ≥ 65% (Sigma-Aldrich, St. Louis, MO, USA). The excipients used for preparation of the mouthwash: propylene glycol, polyethylene glycol 400, sorbitol, polysorbate 80 or Tween 80, and ultrapure water | 30, 60 µg/mL |
[40] | 20 | A stock solution (800 µM) of natural CUR (Sigma-Aldrich, St. Louis, MO, USA) prepared in 10% dimethylsulfoxide and then diluted in saline solution | 20, 40, 80 µM |
[41] | 40 | CUR purity ≥ 65% (Sigma-Aldrich, St. Louis, MO, USA) used as a PS in ratio 9:1 of sterile distilled water/DMSO | 130 µM |
[42] | 5 | CUR (Sigma-Aldrich, St. Louis, MO, USA) incorporated into three different bioadhesive formulations (CUR-LCP, CUR-CHIH, and CUR-ME); Free CUR solubilized into 10% dimethylsulfoxide and high-purity water (CUR-S) | 20, 40, 60, 80 µM |
[43] | 20 | The glycolic extract of C. longa (Seiva Brazilis, Sao Paulo, SP, Brazil) obtained commercially at a concentration of 20% (200 mg/mL); CUR (PDT Pharma, Cravinhos, SP, Brazil) diluted in a 1% dimethylsulfoxide solution and ethanol p.a. and then was kept as a stock solution, posteriorly diluted in phosphate-buffered solution | 100 mg/mL CUR longa/200 µg/mL CUR |
[44] | 30 | CUR powder mixed with phosphate-buffered saline for obtaining the original concentration of 5 µg/mL | 5 µg |
[45] | 5, 20 | CUR (Sigma-Aldrich, St. Louis, MO, USA) A stock solution of curcumin (200 µM) prepared in 10% dimethylsulfoxide and then diluted in saline solution to obtain the concentrations to be tested | 0.005; 0.01; 0.05; 0.1; 0.5; 1; 5; 10; 20 µM |
[46] | 5 | CUR (Sigma-Aldrich, St. Louis, MO, USA, lot number: SLBR4883) disolved in dimethylsulfoxide to obtain the stock solution and then diluted in milli-Q water to obtain the concentrations to be tested | 270 µM |
[47] | 20 | CUR (Sigma-Aldrich, St. Louis, MO, USA) A stock solution of curcumin (600 µM) prepared in dimethylsulfoxide and then diluted in saline solution to obtain the concentrations to be tested | 5, 10, 20 µM |
[48] | 20 | A solution of 368.38 µM CUR (Sigma-Aldrich, St. Louis, MO, USA) (>65% pure) prepared in 2.5% dimethylsulfoxide and diluted in phosphate-buffered saline to obtain the concentrations to be tested | 40 µM |
[49] | 20 | CUR (368.38 g/M, ≥65% purity) (Sigma-Aldrich, St. Louis, MO, USA)—synthesis of photo-responsive micelles | 63 µM |
[50] | 20 | CUR (Sigma-Aldrich, St. Louis, MO, USA) A stock solution of curucmin (800 µM) disolved in 10% dimethylsulfoxide and then diluted in physiological solution (0.85% NaCl) to the final concentrations | 80, 100, 120 µM |
[51] | 20 | Bisdemetoxycurcumin (MedChem Express, Suite Q, NJ, USA) dissolved in absolute ethanol (final concentration, <1% ethanol) and heated at 70 °C for 5 min to prepare a stock solution | 20, 40, 80 µM bisdemethoxycurcumin + 100 µM KI |
[52] | 10, 20, 30 | CUR (Sigma-Aldrich, St. Louis, MO, USA) A stock solution (2000 µM, pH = 4.9) of curcumin powder disolved 73.8 mg in 30 mL of propylene glycol (99.5%) and then diluted in 70 mL of sterile water to obtain the concentrations to be tested | 100–1000 µM, 800 µM |
[53] | 20 | Curcumin solutions | 1, 5, 10, 20, 40, 80 µM |
[54] | n.a. | CUR (Sigma-Aldrich, S.r.l., Milan, Italy) (content ≤ 100%) distilled in dimethylsulfoxide to obtain 20 mM stock solutions | 100 µM |
4. Discussion
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Lopes, J.P.; Lionakis, M.S. Pathogenesis and virulence of Candida albicans. Virulence 2022, 13, 89–121. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Mukaremera, L.; Lee, K.K.; Mora-Montes, H.M.; Gow, N.A.R. Candida albicans Yeast, Pseudohyphal, and Hyphal Morphogenesis Differentially Affects Immune Recognition. Front. Immunol. 2017, 8, 629. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Akpan, A.; Morgan, R. Oral candidiasis. Postgrad. Med. J. 2002, 78, 455–459. [Google Scholar] [CrossRef]
- Millsop, J.W.; Fazel, N. Oral candidiasis. Clin. Dermatol. 2016, 34, 487–494. [Google Scholar] [CrossRef] [PubMed]
- Jordão, C.C.; Viana de Sousa, T.; Inêz Klein, M.; Mendonça Dias, L.; Pavarina, A.C.; Carmello, J.C. Antimicrobial photodynamic therapy reduces gene expression of Candida albicans in biofilms. Photodiagnosis Photodyn. Ther. 2020, 31, 101825. [Google Scholar] [CrossRef] [PubMed]
- Daliri, F.; Azizi, A.; Goudarzi, M.; Lawaf, S.; Rahimi, A. In vitro comparison of the effect of photodynamic therapy with curcumin and methylene blue on Candida albicans colonies. Photodiagnosis Photodyn. Ther. 2019, 26, 193–198. [Google Scholar] [CrossRef] [PubMed]
- Sakima, V.T.; Barbugli, P.A.; Cerri, P.S.; Chorilli, M.; Carmello, J.C.; Pavarina, A.C.; Mima, E.G.O. Antimicrobial Photodynamic Therapy Mediated by Curcumin-Loaded Polymeric Nanoparticles in a Murine Model of Oral Candidiasis. Molecules 2018, 23, 2075. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- McCarty, T.P.; White, C.M.; Pappas, P.G. Candidemia and Invasive Candidiasis. Infect. Dis. Clin. N. Am. 2021, 35, 389–413. [Google Scholar] [CrossRef] [PubMed]
- Lockhart, S.R.; Etienne, K.A.; Vallabhaneni, S.; Farooqi, J.; Chowdhary, A.; Govender, N.P.; Colombo, A.L.; Calvo, B.; Cuomo, C.A.; Desjardins, C.A.; et al. Simultaneous Emergence of Multidrug-Resistant Candida auris on 3 Continents Confirmed by Whole-Genome Sequencing and Epidemiological Analyses. Clin. Infect. Dis. 2017, 64, 134–140, Erratum in Clin. Infect. Dis. 2018, 67, 987. https://doi.org/10.1093/cid/ciy333. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Arzmi, M.H.; Dashper, S.; McCullough, M. Polymicrobial interactions of Candida albicans and its role in oral carcinogenesis. J. Oral. Pathol. Med. 2019, 48, 546–551. [Google Scholar] [CrossRef] [PubMed]
- Carmello, J.C.; Pavarina, A.C.; Oliveira, R.; Johansson, B. Genotoxic effect of photodynamic therapy mediated by curcumin on Candida albicans. FEMS Yeast Res. 2015, 15, fov018. [Google Scholar] [CrossRef] [PubMed]
- Finlay, P.M.; Richardson, M.D.; Robertson, A.G. A comparative study of the efficacy of fluconazole and amphotericin B in the treatment of oropharyngeal candidosis in patients undergoing radiotherapy for head and neck tumours. Br. J. Oral. Maxillofac. Surg. 1996, 34, 23–25. [Google Scholar] [CrossRef] [PubMed]
- Kanpittaya, K.; Teerakapong, A.; Morales, N.P.; Hormdee, D.; Priprem, A.; Weera-Archakul, W.; Damrongrungruang, T. Inhibitory Effects of Erythrosine/Curcumin Derivatives/Nano-Titanium Dioxide-Mediated Photodynamic Therapy on Candida albicans. Molecules 2021, 26, 2405. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Labban, N.; Taweel, S.M.A.; ALRabiah, M.A.; Alfouzan, A.F.; Alshiddi, I.F.; Assery, M.K. Efficacy of Rose Bengal and Curcumin mediated photodynamic therapy for the treatment of denture stomatitis in patients with habitual cigarette smoking: A randomized controlled clinical trial. Photodiagnosis Photodyn. Ther. 2021, 35, 102380. [Google Scholar] [CrossRef] [PubMed]
- Andrade, M.C.; Ribeiro, A.P.; Dovigo, L.N.; Brunetti, I.L.; Giampaolo, E.T.; Bagnato, V.S.; Pavarina, A.C. Effect of different pre-irradiation times on curcumin-mediated photodynamic therapy against planktonic cultures and biofilms of Candida spp. Arch. Oral. Biol. 2013, 58, 200–210. [Google Scholar] [CrossRef] [PubMed]
- Contaldo, M.; Di Stasio, D.; Romano, A.; Fiori, F.; Della Vella, F.; Rupe, C.; Lajolo, C.; Petruzzi, M.; Serpico, R.; Lucchese, A. Oral Candidiasis and Novel Therapeutic Strategies: Antifungals, Phytotherapy, Probiotics, and Photodynamic Therapy. Curr. Drug Deliv. 2023, 20, 441–456. [Google Scholar] [CrossRef] [PubMed]
- Donnelly, R.F.; McCarron, P.A.; Tunney, M.M. Antifungal photodynamic therapy. Microbiol. Res. 2008, 163, 1–12. [Google Scholar] [CrossRef] [PubMed]
- Soukos, N.S.; Goodson, J.M. Photodynamic therapy in the control of oral biofilms. Periodontology 2000 2011, 55, 143–166. [Google Scholar] [CrossRef] [PubMed]
- Amalraj, A.; Pius, A.; Gopi, S.; Gopi, S. Biological activities of curcuminoids, other biomolecules from turmeric and their derivatives—A review. J. Tradit. Complement. Med. 2016, 7, 205–233. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Akbik, D.; Ghadiri, M.; Chrzanowski, W.; Rohanizadeh, R. Curcumin as a wound healing agent. Life Sci. 2014, 116, 1–7. [Google Scholar] [CrossRef] [PubMed]
- Tonnesen, H.H.; Arrieta, A.F.; Lerner, D. Studies on curcumin and curcuminoids. Part XXIV. Characterization of the spectroscopic properties of the naturally occurring curcuminoids And selected derivatives. Pharmazie 1995, 50, 689–693. [Google Scholar]
- Hussain, Z.; Thu, H.E.; Ng, S.F.; Khan, S.; Katas, H. Nanoencapsulation, an efficient and promising approach to maximize wound healing efficacy of curcumin: A review of new trends and state-of-the-art. Colloids Surf. B Biointerfaces 2017, 150, 223–241. [Google Scholar] [CrossRef] [PubMed]
- Schamberger, B.; Plaetzer, K. Photofungizides Based on Curcumin and Derivates Thereof against Candida albicans and Aspergillus niger. Antibiotics 2021, 10, 1315. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Page, M.J.; McKenzie, J.E.; Bossuyt, P.M.; Boutron, I.; Hoffmann, T.C.; Mulrow, C.D.; Shamseer, L.; Tetzlaff, J.M.; Akl, E.A.; Brennan, S.E.; et al. The PRISMA 2020 statement: An updated guideline for reporting systematic reviews. BMJ 2021, 372, n71. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Watson, P.F.; Petrie, A. Method agreement analysis: A review of correct methodology. Theriogenology 2010, 73, 1167–1179. [Google Scholar] [CrossRef] [PubMed]
- Higgins, J.; Savović, J.; Page, M.; Elbers, R.; Sterne, J. Assessing risk of bias in a randomized trial. In Cochrane Handbook for Systematic Reviews of Interventions, 2nd ed.; Higgins, J., Thomas, J., Chandler, J., Cumpston, M., Li, T., Page, M., Welch, V., Eds.; John Wiley & Sons: Chichester, UK, 2019; pp. 205–228. [Google Scholar]
- Santezi, C.; Reina, B.D.; Dovigo, L.N. Curcumin-mediated Photodynamic Therapy for the treatment of oral infections-A review. Photodiagnosis Photodyn. Ther. 2018, 21, 409–415. [Google Scholar] [CrossRef] [PubMed]
- Ravazzi, T.P.Q.; de Jesus, I.M.; de Oliveira Santos, G.P.; Reis, T.A.; Rosa, L.P.; Rosa, F.C.S. The effects of antimicrobial photodynamic therapy (aPDT) with nanotechnology-applied curcumin and 450nm blue led irradiation on multi-species biofilms in root canals. Lasers Med. Sci. 2023, 38, 254. [Google Scholar] [CrossRef] [PubMed]
- Pellissari, C.V.; Pavarina, A.C.; Bagnato, V.S.; Mima, E.G.; Vergani, C.E.; Jorge, J.H. Cytotoxicity of antimicrobial photodynamic inactivation on epithelial cells when co-cultured with Candida albicans. Photochem. Photobiol. Sci. 2016, 15, 682–690. [Google Scholar] [CrossRef] [PubMed]
- Yasini, Z.; Roghanizad, N.; Fazlyab, M.; Pourhajibagher, M. Ex vivo efficacy of sonodynamic antimicrobial chemotherapy for inhibition of Enterococcus faecalis and Candida albicans biofilm. Photodiagnosis Photodyn. Ther. 2022, 40, 103113. [Google Scholar] [CrossRef] [PubMed]
- Dantas Lopes Dos Santos, D.; Besegato, J.F.; de Melo, P.B.G.; Oshiro Junior, J.A.; Chorilli, M.; Deng, D.; Bagnato, V.S.; Rastelli, A.N.S. Curcumin-loaded Pluronic® F-127 Micelles as a Drug Delivery System for Curcumin-mediated Photodynamic Therapy for Oral Application. Photochem. Photobiol. 2021, 97, 1072–1088. [Google Scholar] [CrossRef] [PubMed]
- da Silva, F.C.; Fernandes Rodrigues, P.L.; Santos Dantas Araújo, T.; Sousa Santos, M.; de Oliveira, J.M.; Pereira Rosa, L.; de Oliveira Santos, G.P.; de Araújo, B.P.; Bagnato, V.S. Fluorescence spectroscopy of Candida albicans biofilms in bone cavities treated with photodynamic therapy using blue LED (450 nm) and curcumin. Photodiagnosis Photodyn. Ther. 2019, 26, 366–370. [Google Scholar] [CrossRef] [PubMed]
- Reina, B.D.; Santezi, C.; Malheiros, S.S.; Calixto, G.; Rodero, C.; Victorelli, F.D.; Chorilli, M.; Dovigo, L.N. Liquid crystal precursor system as a vehicle for curcumin-mediated photodynamic inactivation of oral biofilms. J. Biophotonics 2023, 16, e202200040. [Google Scholar] [CrossRef] [PubMed]
- Soria-Lozano, P.; Gilaberte, Y.; Paz-Cristobal, M.P.; Pérez-Artiaga, L.; Lampaya-Pérez, V.; Aporta, J.; Pérez-Laguna, V.; García-Luque, I.; Revillo, M.J.; Rezusta, A. In vitro effect photodynamic therapy with differents photosensitizers on cariogenic microorganisms. BMC Microbiol. 2015, 15, 187. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Comeau, P.; Manso, A. A Systematic Evaluation of Curcumin Concentrations and Blue Light Parameters towards Antimicrobial Photodynamic Therapy against Cariogenic Microorganisms. Pharmaceutics 2023, 15, 2707. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Sanitá, P.V.; Pavarina, A.C.; Dovigo, L.N.; Ribeiro, A.P.D.; Andrade, M.C.; Mima, E.G.O. Curcumin-mediated anti-microbial photodynamic therapy against Candida dubliniensis biofilms. Lasers Med. Sci. 2018, 33, 709–717. [Google Scholar] [CrossRef] [PubMed]
- Fonseca, L.L.; Durães, C.P.; Menezes, A.S.D.S.; Tabosa, A.T.L.; Barbosa, C.U.; Filho, A.P.S.; Souza, D.P.S.P.; Guimarães, V.H.D.; Santos, S.H.S.; de Paula, A.M.B.; et al. Comparison between two antimicrobial photodynamic therapy protocols for oral candidiasis in patients undergoing treatment for head and neck cancer: A two-arm, single-blind clinical trial. Photodiagnosis Photodyn. Ther. 2022, 39, 102983. [Google Scholar] [CrossRef] [PubMed]
- Mima, E.G.O.; Pavarina, A.C.; Jordão, C.C.; Vieira, S.M.; Dovigo, L.N. Curcuminoid-Mediated Antimicrobial Photodynamic Therapy on a Murine Model of Oral Candidiasis. J. Vis. Exp. 2023. [Google Scholar] [CrossRef] [PubMed]
- Rocha, M.P.; Ruela, A.L.M.; Rosa, L.P.; Santos, G.P.O.; Rosa, F.C.S. Antimicrobial photodynamic therapy in dentistry using an oil-in-water microemulsion with curcumin as a mouthwash. Photodiagnosis Photodyn. Ther. 2020, 32, 101962. [Google Scholar] [CrossRef] [PubMed]
- Dovigo, L.N.; Carmello, J.C.; de Souza Costa, C.A.; Vergani, C.E.; Brunetti, I.L.; Bagnato, V.S.; Pavarina, A.C. Curcumin-mediated photodynamic inactivation of Candida albicans in a murine model of oral candidiasis. Med. Mycol. 2013, 51, 243–251. [Google Scholar] [CrossRef] [PubMed]
- Trigo Gutierrez, J.K.; Zanatta, G.C.; Ortega, A.L.M.; Balastegui, M.I.C.; Sanitá, P.V.; Pavarina, A.C.; Barbugli, P.A.; Mima, E.G.O. Encapsulation of curcumin in polymeric nanoparticles for antimicrobial Photodynamic Therapy. PLoS ONE 2017, 12, e0187418. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Santezi, C.; Reina, B.D.; de Annunzio, S.R.; Calixto, G.; Chorilli, M.; Dovigo, L.N. Photodynamic potential of curcumin in bioadhesive formulations: Optical characteristics and antimicrobial effect against biofilms. Photodiagnosis Photodyn. Ther. 2021, 35, 102416. [Google Scholar] [CrossRef] [PubMed]
- Marques Meccatti, V.; de Souza Moura, L.; Guerra Pinto, J.; Ferreira-Strixino, J.; Abu Hasna, A.; Alves Figueiredo-Godoi, L.M.; Campos Junqueira, J.; Marcucci, M.C.; de Paula Ramos, L.; Carvalho, C.A.T.; et al. Extract and Photodynamic Therapy are Effective against Candida spp. and Do Not Show Toxicity In Vivo. Int. J. Dent. 2022, 2022, 5837864. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Al-Ghamdi, A.R.S.; Khanam, H.K.; Qamar, Z.; Abdul, N.S.; Reddy, N.; Vempalli, S.; Noushad, M.; Alqahtani, W.M.S. Therapeutic efficacy of adjunctive photodynamic therapy in the treatment of denture stomatitis. Photodiagnosis Photodyn. Ther. 2023, 42, 103326. [Google Scholar] [CrossRef] [PubMed]
- Dovigo, L.N.; Pavarina, A.C.; Ribeiro, A.P.; Brunetti, I.L.; Costa, C.A.; Jacomassi, D.P.; Bagnato, V.S.; Kurachi, C. Investigation of the photodynamic effects of curcumin against Candida albicans. Photochem. Photobiol. 2011, 87, 895–903. [Google Scholar] [CrossRef] [PubMed]
- Dos Santos, D.D.L.; Besegato, J.F.; de Melo, P.B.G.; Junior, J.A.O.; Chorilli, M.; Deng, D.; Bagnato, V.S.; de Souza Rastelli, A.N. Effect of curcumin-encapsulated Pluronic® F-127 over duo-species biofilm of Streptococcus mutans and Candida albicans. Lasers Med. Sci. 2022, 37, 1775–1786. [Google Scholar] [CrossRef] [PubMed]
- Dovigo, L.N.; Pavarina, A.C.; Carmello, J.C.; Machado, A.L.; Brunetti, I.L.; Bagnato, V.S. Susceptibility of clinical isolates of Candida to photodynamic effects of curcumin. Lasers Surg. Med. 2011, 43, 927–934. [Google Scholar] [CrossRef] [PubMed]
- Dias, L.M.; Klein, M.I.; Ferrisse, T.M.; Medeiros, K.S.; Jordão, C.C.; Bellini, A.; Pavarina, A.C. The Effect of Sub-Lethal Successive Applications of Photodynamic Therapy on Candida albicans Biofilm Depends on the Photosensitizer. J. Fungi 2023, 9, 111. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Trigo-Gutierrez, J.K.; Calori, I.R.; de Oliveira Bárbara, G.; Pavarina, A.C.; Gonçalves, R.S.; Caetano, W.; Tedesco, A.C.; Mima, E.G.O. Photo-responsive polymeric micelles for the light-triggered release of curcumin targeting antimicrobial activity. Front. Microbiol. 2023, 14, 1132781. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Quishida, C.C.; De Oliveira Mima, E.G.; Jorge, J.H.; Vergani, C.E.; Bagnato, V.S.; Pavarina, A.C. Photodynamic inactivation of a multispecies biofilm using curcumin and LED light. Lasers Med. Sci. 2016, 31, 997–1009. [Google Scholar] [CrossRef] [PubMed]
- Damrongrungruang, T.; Panutyothin, N.; Kongjun, S.; Thanabat, K.; Ratha, J. Combined bisdemethoxycurcumin and potassium iodide-mediated antimicrobial photodynamic therapy. Heliyon 2023, 9, e17490. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Al-Asmari, F.; Mereddy, R.; Sultanbawa, Y. A novel photosensitization treatment for the inactivation of fungal spores and cells mediated by curcumin. J. Photochem. Photobiol. B. 2017, 173, 301–306. [Google Scholar] [CrossRef] [PubMed]
- Hsieh, Y.H.; Zhang, J.H.; Chuang, W.C.; Yu, K.H.; Huang, X.B.; Lee, Y.C.; Lee, C.I. An in Vitro Study on the Effect of Combined Treatment with Photodynamic and Chemical Therapies on Candida albicans. Int. J. Mol. Sci. 2018, 19, 337. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Merigo, E.; Conti, S.; Ciociola, T.; Fornaini, C.; Polonelli, L.; Lagori, G.; Manfredi, M.; Vescovi, P. Effect of different wavelengths and dyes on Candida albicans: In vivo study using Galleria mellonella as an experimental model. Photodiagnosis Photodyn. Ther. 2017, 18, 34–38. [Google Scholar] [CrossRef] [PubMed]
- Casu, C.; Orrù, G.; Scano, A. Curcumin/H2O2 photodynamically activated: An antimicrobial time-response assessment against an MDR strain of Candida albicans. Eur. Rev. Med. Pharmacol. Sci. 2022, 26, 8841–8851. [Google Scholar] [CrossRef] [PubMed]
- Leferman, C.E.; Stoica, L.; Tiglis, M.; Stoica, B.A.; Hancianu, M.; Ciubotaru, A.D.; Salaru, D.L.; Badescu, A.C.; Bogdanici, C.M.; Ciureanu, I.A.; et al. Overcoming Drug Resistance in a Clinical C. albicans Strain Using Photoactivated Curcumin as an Adjuvant. Antibiotics 2023, 12, 1230. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Tsutsumi-Arai, C.; Arai, Y.; Terada-Ito, C.; Imamura, T.; Tatehara, S.; Ide, S.; Shirakawa, J.; Wakabayashi, N.; Satomura, K. Inhibitory effect of 405-nm blue LED light on the growth of Candida albicans and Streptococcus mutans dual-species biofilms on denture base resin. Lasers Med. Sci. 2022, 37, 2311–2319. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Zhu, Y.; Chen, J.; Wang, Y.; Sherwood, M.E.; Murray, C.K.; Vrahas, M.S.; Hooper, D.C.; Hamblin, M.R.; Dai, T. Antimicrobial blue light inactivation of Candida albicans: In vitro and in vivo studies. Virulence 2016, 7, 536–545. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Lin, C.H.; Chien, H.F.; Lin, M.H.; Chen, C.P.; Shen, M.; Chen, C.T. Chitosan Inhibits the Rehabilitation of Damaged Microbes Induced by Photodynamic Inactivation. Int. J. Mol. Sci. 2018, 19, 2598. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Pinto, A.P.; Rosseti, I.B.; Carvalho, M.L.; da Silva, B.G.M.; Alberto-Silva, C.; Costa, M.S. Photodynamic Antimicrobial Chemotherapy (PACT), using Toluidine blue O inhibits the viability of biofilm produced by Candida albicans at different stages of development. Photodiagnosis Photodyn. Ther. 2018, 21, 182–189. [Google Scholar] [CrossRef] [PubMed]
- Idrees, M.; Kujan, O. Curcumin is effective in managing oral inflammation: An in vitro study. J. Oral. Pathol. Med. [CrossRef] [PubMed]
- Lee, Y.S.; Chen, X.; Widiyanto, T.W.; Orihara, K.; Shibata, H.; Kajiwara, S. Curcumin affects function of Hsp90 and drug efflux pump of Candida albicans. Front. Cell Infect. Microbiol. 2022, 12, 944611. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
Ordinal Number | Reason for Exclusion | Reference Number |
---|---|---|
1 | Review | [27] |
2 | Endodontic model | [28] |
3 | Cytotoxicity testing PDT | [29] |
4 | Endodontic model | [30] |
5 | Caries model | [31] |
6 | Bone defect model | [32] |
7 | Caries model | [33] |
8 | Caries model | [34] |
9 | Caries model | [35] |
Reference Number | PS Concentration | Origin of PS | Incubation Time | Light Source Parameters | Clinical Strains of Candida Spp. | Negative Control Group | Numerical Results Available (Statistics) | No Missing Outcome Data | 10 Patients per Group | 6-Month Follow-Up Period | Total Score 8/2 (RCT) |
---|---|---|---|---|---|---|---|---|---|---|---|
[5] | yes | yes | yes | yes | no | yes | yes | yes | - | - | 7/- |
[6] | yes | yes | no | yes | no | yes | yes | no | - | - | 5/- |
[7] | yes | no | yes | yes | no | yes | yes | yes | - | - | 6/- |
[11] | yes | yes | yes | yes | no | yes | yes | yes | - | - | 7/- |
[13] | yes | yes | yes | yes | no | yes | yes | yes | - | - | 7/- |
[14] | yes | yes | yes | yes | yes | yes | yes | yes | yes | no | 8/1 |
[15] | yes | yes | yes | yes | no | yes | yes | yes | - | - | 7/- |
[23] | yes | yes | yes | yes | no | yes | yes | yes | - | - | 7/- |
[36] | yes | yes | yes | yes | yes | yes | yes | yes | - | - | 8/- |
[37] | yes | yes | yes | yes | yes | no | yes | yes | yes | no | 7/1 |
[38] | yes | yes | yes | yes | no | yes | yes | yes | - | - | 7/- |
[39] | yes | yes | yes | yes | no | yes | yes | yes | - | - | 7/- |
[40] | yes | yes | yes | yes | no | yes | yes | yes | - | - | 7/- |
[41] | yes | yes | yes | yes | no | yes | yes | yes | - | - | 7/- |
[42] | yes | yes | yes | yes | no | yes | yes | yes | - | - | 7/- |
[43] | yes | yes | yes | yes | no | yes | yes | yes | - | - | 7/- |
[44] | yes | no | yes | yes | yes | yes | yes | yes | yes | no | 7/1 |
[45] | yes | yes | yes | yes | no | yes | yes | yes | - | - | 7/- |
[46] | yes | yes | yes | yes | no | yes | yes | yes | - | - | 7/- |
[47] | yes | yes | yes | yes | yes | yes | yes | no | - | - | 7/- |
[48] | yes | yes | yes | yes | no | yes | yes | yes | - | - | 7/- |
[49] | yes | yes | yes | yes | no | yes | yes | yes | - | - | 7/- |
[50] | yes | yes | yes | yes | no | yes | yes | yes | - | - | 7/- |
[51] | yes | yes | yes | yes | no | yes | yes | yes | - | - | 7/- |
[52] | yes | yes | yes | yes | no | no | yes | yes | - | - | 6/- |
[53] | yes | no | yes | yes | no | yes | yes | yes | - | - | 6/- |
[54] | yes | yes | no | yes | no | yes | yes | yes | - | - | 6/- |
[55] | no | yes | no | yes | yes | yes | yes | no | - | - | 5/- |
[56] | yes | yes | no | yes | yes | yes | yes | no | - | - | 5/- |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kubizna, M.; Dawiec, G.; Wiench, R. Efficacy of Curcumin-Mediated Antimicrobial Photodynamic Therapy on Candida spp.—A Systematic Review. Int. J. Mol. Sci. 2024, 25, 8136. https://doi.org/10.3390/ijms25158136
Kubizna M, Dawiec G, Wiench R. Efficacy of Curcumin-Mediated Antimicrobial Photodynamic Therapy on Candida spp.—A Systematic Review. International Journal of Molecular Sciences. 2024; 25(15):8136. https://doi.org/10.3390/ijms25158136
Chicago/Turabian StyleKubizna, Magdalena, Grzegorz Dawiec, and Rafał Wiench. 2024. "Efficacy of Curcumin-Mediated Antimicrobial Photodynamic Therapy on Candida spp.—A Systematic Review" International Journal of Molecular Sciences 25, no. 15: 8136. https://doi.org/10.3390/ijms25158136
APA StyleKubizna, M., Dawiec, G., & Wiench, R. (2024). Efficacy of Curcumin-Mediated Antimicrobial Photodynamic Therapy on Candida spp.—A Systematic Review. International Journal of Molecular Sciences, 25(15), 8136. https://doi.org/10.3390/ijms25158136