ADAMTS13 in the New Era of TTP
Abstract
:1. Introduction
1.1. ADAMTS13 Activity as a Diagnostic Means to TTP
1.2. TTP Disease Course
2. Clinical Diagnosis
3. Management of TTP
3.1. Management of Acute TTP
3.2. Follow-Up after Remission
3.3. Relapse
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Conflicts of Interest
References
- Chiasakul, T.; Cuker, A. Clinical and laboratory diagnosis of TTP: An integrated approach. Hematology 2018, 2018, 530–538. [Google Scholar] [CrossRef] [PubMed]
- Scully, M.; Cataland, S.; Coppo, P.; de la Rubia, J.; Friedman, K.D.; Kremer Hovinga, J.; Lämmle, B.; Matsumoto, M.; Pavenski, K.; Sadler, E.; et al. Consensus on the standardization of terminology in thrombotic thrombocytopenic purpura and related thrombotic microangiopathies. J. Thromb. Haemost. 2017, 15, 312–322. [Google Scholar] [CrossRef] [PubMed]
- Osmanodja, B.; Schreiber, A.; Schrezenmeier, E.; Seelow, E. First diagnosis of thrombotic thrombocytopenic purpura after SARS-CoV-2 vaccine—Case report. BMC Nephrol. 2021, 22, 411. [Google Scholar] [CrossRef] [PubMed]
- Roose, E.; Schelpe, A.S.; Joly, B.S.; Peetermans, M.; Verhamme, P.; Voorberg, J.; Greinacher, A.; Deckmyn, H.; De Meyer, S.F.; Coppo, P.; et al. An open conformation of ADAMTS-13 is a hallmark of acute acquired thrombotic thrombocytopenic purpura. J. Thromb. Haemost. 2018, 16, 378–388. [Google Scholar] [CrossRef] [PubMed]
- South, K.; Luken, B.M.; Crawley, J.T.B.; Phillips, R.; Thomas, M.; Collins, R.F.; Deforche, L.; Vanhoorelbeke, K.; Lane, D.A. Conformational activation of ADAMTS13. Proc. Natl. Acad. Sci. USA 2014, 111, 18578–18583. [Google Scholar] [CrossRef] [PubMed]
- Halkidis, K.; Zheng, X.L. ADAMTS13 conformations and mechanism of inhibition in immune thrombotic thrombocytopenic purpura. J. Thromb. Haemost. 2022, 20, 2197–2203. [Google Scholar] [CrossRef] [PubMed]
- Halkidis, K.; Siegel, D.L.; Zheng, X.L. A human monoclonal antibody against the distal carboxyl terminus of ADAMTS-13 modulates its susceptibility to an inhibitor in thrombotic thrombocytopenic purpura. J. Thromb. Haemost. 2021, 19, 1888–1895. [Google Scholar] [CrossRef] [PubMed]
- Joly, B.S.; Boisseau, P.; Roose, E.; Stepanian, A.; Biebuyck, N.; Hogan, J.; Provot, F.; Delmas, Y.; Garrec, C.; Vanhoorelbeke, K.; et al. ADAMTS13 Gene Mutations Influence ADAMTS13 Conformation and Disease Age-Onset in the French Cohort of Upshaw-Schulman Syndrome. Thromb. Haemost. 2018, 118, 1902–1917. [Google Scholar] [CrossRef] [PubMed]
- Ferrari, B.; Peyvandi, F. How I treat thrombotic thrombocytopenic purpura in pregnancy. Blood 2020, 136, 2125–2132. [Google Scholar] [CrossRef]
- Gavriilaki, E.; Tsakiridis, I.; Kalmoukos, P.; Papakonstantinou, A.; Mauridou, M.; Kotsiou, N.; Mpalaska, A.; Chissan, S.; Mamopoulos, A.; Dagklis, T.; et al. A rare case of thrombotic thrombocytopenic purpura during pregnancy with a successful outcome despite ovarian hyperstimulation syndrome during treatment. Thromb. Update 2024, 15, 100172. [Google Scholar] [CrossRef]
- Bonnez, Q.; Sakai, K.; Vanhoorelbeke, K. ADAMTS13 and Non-ADAMTS13 Biomarkers in Immune-Mediated Thrombotic Thrombocytopenic Purpura. J. Clin. Med. 2023, 12, 6169. [Google Scholar] [CrossRef] [PubMed]
- Alwan, F.; Vendramin, C.; Vanhoorelbeke, K.; Langley, K.; McDonald, V.; Austin, S.; Clark, A.; Lester, W.; Gooding, R.; Biss, T.; et al. Presenting ADAMTS13 antibody and antigen levels predict prognosis in immune-mediated thrombotic thrombocytopenic purpura. Blood 2017, 130, 466–471. [Google Scholar] [CrossRef] [PubMed]
- Bustamante, A.; Ning, M.; García-Berrocoso, T.; Penalba, A.; Boada, C.; Simats, A.; Pagola, J.; Ribó, M.; Molina, C.; Lo, E.; et al. Usefulness of ADAMTS13 to predict response to recanalization therapies in acute ischemic stroke. Neurology 2018, 90, e995–e1004. [Google Scholar] [CrossRef] [PubMed]
- Moore, G.W.; Vetr, H.; Binder, N.B. ADAMTS13 Antibody and Inhibitor Assays. Methods Mol. Biol. 2023, 2663, 549–565. [Google Scholar] [CrossRef]
- Velásquez Pereira, L.C.; Roose, E.; Graça, N.A.G.; Sinkovits, G.; Kangro, K.; Joly, B.S.; Tellier, E.; Kaplanski, G.; Falter, T.; Von Auer, C.; et al. Immunogenic hotspots in the spacer domain of ADAMTS13 in immune-mediated thrombotic thrombocytopenic purpura. J. Thromb. Haemost. 2021, 19, 478–488. [Google Scholar] [CrossRef]
- Favaloro, E.J.; Mohammed, S.; Chapman, K.; Swanepoel, P.; Zebeljan, D.; Sefhore, O.; Malan, E.; Clifford, J.; Yuen, A.; Donikian, D.; et al. A multicenter laboratory assessment of a new automated chemiluminescent assay for ADAMTS13 activity. J. Thromb. Haemost. 2021, 19, 417–428. [Google Scholar] [CrossRef]
- Favaloro, E.J.; Pasalic, L.; Henry, B.; Lippi, G. Laboratory testing for ADAMTS13: Utility for TTP diagnosis/exclusion and beyond. Am. J. Hematol. 2021, 96, 1049–1055. [Google Scholar] [CrossRef] [PubMed]
- Saito, K.; Sakai, K.; Kubo, M.; Azumi, H.; Hamamura, A.; Ochi, S.; Amagase, H.; Kunieda, H.; Ogawa, Y.; Yagi, H.; et al. Persistent ADAMTS13 inhibitor delays recovery of ADAMTS13 activity in caplacizumab-treated Japanese patients with iTTP. Blood Adv. 2024, 8, 2151–2159. [Google Scholar] [CrossRef]
- Gavriilaki, E.; Anagnostopoulos, A.; Mastellos, D.C. Complement in Thrombotic Microangiopathies: Unraveling Ariadne’s Thread Into the Labyrinth of Complement Therapeutics. Front. Immunol. 2019, 10, 337. [Google Scholar] [CrossRef]
- Sukumar, S.; Gavriilaki, E.; Chaturvedi, S. Updates on thrombotic thrombocytopenic purpura: Recent developments in pathogenesis, treatment and survivorship. Thromb. Update 2021, 5, 100062. [Google Scholar] [CrossRef]
- Réti, M.; Farkas, P.; Csuka, D.; Rázsó, K.; Schlammadinger, Á.; Udvardy, M.L.; Madách, K.; Domján, G.; Bereczki, C.; Reusz, G.S.; et al. Complement activation in thrombotic thrombocytopenic purpura. J. Thromb. Haemost. 2012, 10, 791–798. [Google Scholar] [CrossRef] [PubMed]
- Lancellotti, S.; Sacco, M.; Tardugno, M.; Ferretti, A.; De Cristofaro, R. Immune and Hereditary Thrombotic Thrombocytopenic Purpura: Can ADAMTS13 Deficiency Alone Explain the Different Clinical Phenotypes? J. Clin. Med. 2023, 12, 3111. [Google Scholar] [CrossRef]
- Cugno, M.; Mancini, I.; Consonni, D.; De Zan, V.; Ardissino, G.; Griffini, S.; Grovetti, E.; Porcaro, L.; Ferrari, B.; Artoni, A.; et al. Complement activation and renal dysfunction in patients with acquired thrombotic thrombocytopenic purpura. Blood 2023, 141, 2278–2282. [Google Scholar] [CrossRef]
- Zheng, L.; Zhang, D.; Cao, W.; Song, W.-C.; Zheng, X.L. Synergistic effects of ADAMTS13 deficiency and complement activation in pathogenesis of thrombotic microangiopathy. Blood 2019, 134, 1095–1105. [Google Scholar] [CrossRef] [PubMed]
- Gavriilaki, E.; Peffault de Latour, R.; Risitano, A.M. Advancing therapeutic complement inhibition in hematologic diseases: PNH and beyond. Blood J. Am. Soc. Hematol. 2022, 139, 3571–3582. [Google Scholar] [CrossRef]
- Mancini, I.; Valsecchi, C.; Lotta, L.A.; Deforche, L.; Pontiggia, S.; Bajetta, M.; Palla, R.; Vanhoorelbeke, K.; Peyvandi, F. FRETS-VWF73 rather than CBA assay reflects ADAMTS13 proteolytic activity in acquired thrombotic thrombocytopenic purpura patients. Thromb. Haemost. 2014, 112, 297–303. [Google Scholar] [CrossRef] [PubMed]
- Meyer, S.C.; Sulzer, I.; Lämmle, B.; Hovinga, J.A.K. Hyperbilirubinemia interferes with ADAMTS-13 activity measurement by FRETS-VWF73 assay: Diagnostic relevance in patients suffering from acute thrombotic microangiopathies. J. Thromb. Haemost. 2007, 5, 866–867. [Google Scholar] [CrossRef] [PubMed]
- Mackie, I.; Langley, K.; Chitolie, A.; Liesner, R.; Scully, M.; Machin, S.; Peyvandi, F. Discrepancies between ADAMTS13 activity assays in patients with thrombotic microangiopathies. Thromb. Haemost. 2013, 109, 488–496. [Google Scholar] [CrossRef]
- Joly, B.; Stepanian, A.; Hajage, D.; Thouzeau, S.; Capdenat, S.; Coppo, P.; Veyradier, A. Evaluation of a chromogenic commercial assay using VWF-73 peptide for ADAMTS13 activity measurement. Thromb. Res. 2014, 134, 1074–1080. [Google Scholar] [CrossRef]
- Moore, G.W.; Llusa, M.; Griffiths, M.; Binder, N.B. ADAMTS13 Activity Measurement by ELISA and Fluorescence Resonance Energy Transfer Assay. Methods Mol. Biol. 2023, 2663, 533–547. [Google Scholar] [CrossRef]
- Pascual, C.; Nieto, J.M.; Fidalgo, T.; Seguí, I.G.; Díaz-Ricart, M.; Docampo, M.F.; Del Rio, J.; Salinas, R. Multicentric evaluation of the new HemosIL Acustar® chemiluminescence ADAMTS13 activity assay. Int. J. Lab. Hematol. 2021, 43, 485–493. [Google Scholar] [CrossRef] [PubMed]
- Falcinelli, E.; Baccolo, A.; Mezzasoma, A.M.; Gresele, P. Comparative evaluation of the fully automated HemosIL® AcuStar ADAMTS13 activity assay vs. ELISA: Possible interference by autoantibodies different from anti ADAMTS-13. Clin. Chem. Lab. Med. 2021, 59, e193–e196. [Google Scholar] [CrossRef] [PubMed]
- Reese, J.A.; Muthurajah, D.S.; Kremer Hovinga, J.A.; Vesely, S.K.; Terrell, D.R.; George, J.N. Children and adults with thrombotic thrombocytopenic purpura associated with severe, acquired Adamts13 deficiency: Comparison of incidence, demographic and clinical features. Pediatr. Blood Cancer 2013, 60, 1676–1682. [Google Scholar] [CrossRef] [PubMed]
- Fujimura, Y.; Matsumoto, M. Registry of 919 patients with thrombotic microangiopathies across Japan: Database of Nara Medical University during 1998–2008. Intern. Med. 2010, 49, 7–15. [Google Scholar] [CrossRef] [PubMed]
- Hovinga, J.A.K.; Vesely, S.K.; Terrell, D.R.; Lämmle, B.; George, J.N. Survival and relapse in patients with thrombotic thrombocytopenic purpura. Blood 2010, 115, 1500–1511. [Google Scholar] [CrossRef] [PubMed]
- Scully, M.; Yarranton, H.; Liesner, R.; Cavenagh, J.; Hunt, B.; Benjamin, S.; Bevan, D.; Mackie, I.; Machin, S. Regional UK TTP registry: Correlation with laboratory ADAMTS 13 analysis and clinical features. Br. J. Haematol. 2008, 142, 819–826. [Google Scholar] [CrossRef] [PubMed]
- Lara, P.N.; Coe, T.L.; Zhou, H.; Fernando, L.; Holland, P.V.; Wun, T. Improved survival with plasma exchange in patients with thrombotic thrombocytopenic purpura-hemolytic uremic syndrome. Am. J. Med. 1999, 107, 573–579. [Google Scholar] [CrossRef]
- Bendapudi, P.K.; Li, A.; Hamdan, A.; Uhl, L.; Kaufman, R.; Stowell, C.; Dzik, W.; Makar, R.S. Impact of severe ADAMTS13 deficiency on clinical presentation and outcomes in patients with thrombotic microangiopathies: The experience of the Harvard TMA Research Collaborative. Br. J. Haematol. 2015, 171, 836–844. [Google Scholar] [CrossRef] [PubMed]
- Gavriilaki, E.; Koravou, E.; Dimou-Mpesikli, S.; Nikolousis, E.; Banti, A.; Pontikoglou, C.; Kalpadakis, C.; Bitsani, A.; Tassi, I.; Touloumenidou, T.; et al. Caplacizumab for Acquired Thrombotic Thrombocytopenic Purpura: Real-World Multicenter Data on Re-Administration and Plasma Exchange Free Treatment. Blood 2022, 140, 8503–8504. [Google Scholar] [CrossRef]
- Louw, S.; Gounden, R.; Mayne, E.S. Thrombotic thrombocytopenic purpura (TTP)-like syndrome in the HIV era. Thromb. J. 2018, 16, 35. [Google Scholar] [CrossRef]
- Mannucci, P.M.; Canciani, M.T.; Forza, I.; Lussana, F.; Lattuada, A.; Rossi, E. Changes in health and disease of the metalloprotease that cleaves von Willebrand factor. Blood 2001, 98, 2730–2735. [Google Scholar] [CrossRef] [PubMed]
- Lee, C.-H.; Huang, Y.-C.; Li, S.-S.; Hsu, Y.-T.; Chen, Y.-P.; Chen, T.-Y. Application of PLASMIC Score in Risk Prediction of Thrombotic Thrombocytopenic Purpura: Real-World Experience From a Tertiary Medical Center in Taiwan. Front. Med. 2022, 9, 893273. [Google Scholar] [CrossRef] [PubMed]
- Coppo, P.; Schwarzinger, M.; Buffet, M.; Wynckel, A.; Clabault, K.; Presne, C.; Poullin, P.; Malot, S.; Vanhille, P.; Azoulay, E.; et al. Predictive Features of Severe Acquired ADAMTS13 Deficiency in Idiopathic Thrombotic Microangiopathies: The French TMA Reference Center Experience. PLoS ONE 2010, 5, e10208. [Google Scholar] [CrossRef] [PubMed]
- Oliveira, D.S.; Lima, T.G.; Benevides, F.L.N.; Barbosa, S.A.T.; Oliveira, M.A.; Boris, N.P.; Silva, H.F. Plasmic score applicability for the diagnosis of thrombotic microangiopathy associated with ADAMTS13-acquired deficiency in a developing country. Hematol. Transfus. Cell Ther. 2019, 41, 119–124. [Google Scholar] [CrossRef] [PubMed]
- Paydary, K.; Banwell, E.; Tong, J.; Chen, Y.; Cuker, A. Diagnostic accuracy of the PLASMIC score in patients with suspected thrombotic thrombocytopenic purpura: A systematic review and meta-analysis. Transfusion 2020, 60, 2047–2057. [Google Scholar] [CrossRef] [PubMed]
- Upadhyay, V.A.; Geisler, B.P.; Sun, L.; Uhl, L.; Kaufman, R.M.; Stowell, C.; Makar, R.S.; Bendapudi, P.K. Utilizing a PLASMIC score-based approach in the management of suspected immune thrombotic thrombocytopenic purpura: A cost minimization analysis within the Harvard TMA Research Collaborative. Br. J. Haematol. 2019, 186, 490–498. [Google Scholar] [CrossRef] [PubMed]
- Kim, C.H.; Simmons, S.C.; Williams, L.A.; Staley, E.M.; Zheng, X.L.; Pham, H.P. ADAMTS13 test and/or PLASMIC clinical score in management of acquired thrombotic thrombocytopenic purpura: A cost-effective analysis. Transfusion 2017, 57, 2609–2618. [Google Scholar] [CrossRef] [PubMed]
- Liu, A.; Dhaliwal, N.; Upreti, H.; Kasmani, J.; Dane, K.; Moliterno, A.; Braunstein, E.; Brodsky, R.; Chaturvedi, S. Reduced sensitivity of PLASMIC and French Scores for the diagnosis of Thrombotic Thrombocytopenic Purpura (TTP) in Older Individuals. Transfusion 2021, 61, 266–273. [Google Scholar] [CrossRef] [PubMed]
- Prevel, R.; Roubaud-Baudron, C.; Gourlain, S.; Jamme, M.; Peres, K.; Benhamou, Y.; Galicier, L.; Azoulay, E.; Poullin, P.; Provôt, F.; et al. Immune thrombotic thrombocytopenic purpura in older patients: Prognosis and long-term survival. Blood 2019, 134, 2209–2217. [Google Scholar] [CrossRef]
- Hoffmann, J.J.M.L.; Nabbe, K.C.A.M.; van den Broek, N.M.A. Effect of age and gender on reference intervals of red blood cell distribution width (RDW) and mean red cell volume (MCV). Clin. Chem. Lab. Med. 2015, 53, 2015–2019. [Google Scholar] [CrossRef]
- Bendapudi, P.K.; Hurwitz, S.; Fry, A.; Marques, M.B.; Waldo, S.W.; Li, A.; Sun, L.; Upadhyay, V.; Hamdan, A.; Brunner, A.M.; et al. Derivation and external validation of the PLASMIC score for rapid assessment of adults with thrombotic microangiopathies: A cohort study. Lancet Haematol. 2017, 4, e157–e164. [Google Scholar] [CrossRef] [PubMed]
- Research Portal—A Novel Biomarker to Improve The Quality of Life of Immune Mediatied Thrombotic Thrombocytopenic Purpura Patients. Available online: https://research.kuleuven.be/portal/en/project/3E210461 (accessed on 26 May 2024).
- Lu, R.; Sui, J.; Zheng, X.L. Elevated plasma levels of syndecan-1 and soluble thrombomodulin predict adverse outcomes in thrombotic thrombocytopenic purpura. Blood Adv. 2020, 4, 5378–5388. [Google Scholar] [CrossRef]
- Lu, R.; Zheng, X.L. Plasma Levels of Big Endothelin-1 Are Associated with Renal Insufficiency and In-Hospital Mortality of Immune Thrombotic Thrombocytopenic Purpura. Thromb. Haemost. 2022, 122, 344–352. [Google Scholar] [CrossRef]
- Dainese, C.; Valeri, F.; Bruno, B.; Borchiellini, A. Anti-ADAMTS13 Autoantibodies: From Pathophysiology to Prognostic Impact—A Review for Clinicians. J. Clin. Med. 2023, 12, 5630. [Google Scholar] [CrossRef] [PubMed]
- De Waele, L.; Curie, A.; Kangro, K.; Tellier, E.; Kaplanski, G.; Männik, A.; Tersteeg, C.; Joly, B.S.; Coppo, P.; Veyradier, A.; et al. Anti-cysteine/spacer antibodies that open ADAMTS13 are a common feature in iTTP. Blood Adv. 2021, 5, 4480–4484. [Google Scholar] [CrossRef]
- Scully, M.; Rayment, R.; Clark, A.; Westwood, J.P.; Cranfield, T.; Gooding, R.; Bagot, C.N.; Taylor, A.; Sankar, V.; Gale, D.; et al. A British Society for Haematology Guideline: Diagnosis and management of thrombotic thrombocytopenic purpura and thrombotic microangiopathies. Br. J. Haematol. 2023, 203, 546–563. [Google Scholar] [CrossRef]
- Cablivi|European Medicines Agency. Available online: https://www.ema.europa.eu/en/medicines/human/EPAR/cablivi (accessed on 9 May 2024).
- Matsumoto, M.; Miyakawa, Y.; Kokame, K.; Ueda, Y.; Wada, H.; Higasa, S.; Yagi, H.; Ogawa, Y.; Sakai, K.; Miyata, T.; et al. Diagnostic and treatment guidelines for thrombotic thrombocytopenic purpura (TTP) in Japan 2023. Int. J. Hematol. 2023, 118, 529–546. [Google Scholar] [CrossRef] [PubMed]
- Yates, S.G.; Hofmann, S.L.; Ibrahim, I.F.; Shen, Y.-M.P.; Green, A.P.; Sarode, R. Tailoring Caplacizumab Administration Using ADAMTS13 Activity for Immune-mediated Thrombotic Thrombocytopenic Purpura. Blood Vessel. Thromb. Hemost. 2024, 1, 100010. [Google Scholar] [CrossRef]
- Caplacizumab Improves Platelet Normalization Time, Reduces Mortality in Acquired TTP. December 2021 [Online]. Available online: https://ashpublications.org/ashclinicalnews/news/4356/Caplacizumab-Improves-Platelet-Normalization-Time (accessed on 9 May 2024).
- Völker, L.A.; Kaufeld, J.; Miesbach, W.; Brähler, S.; Reinhardt, M.; Kühne, L.; Mühlfeld, A.; Schreiber, A.; Gaedeke, J.; Tölle, M.; et al. Real-world data confirm the effectiveness of caplacizumab in acquired thrombotic thrombocytopenic purpura. Blood Adv. 2020, 4, 3085–3092. [Google Scholar] [CrossRef]
- Dutt, T.; Shaw, R.J.; Stubbs, M.; Yong, J.; Bailiff, B.; Cranfield, T.; Crowley, M.P.; Desborough, M.; Eyre, T.A.; Gooding, R.; et al. Real-world experience with caplacizumab in the management of acute TTP. Blood 2021, 137, 1731–1740. [Google Scholar] [CrossRef]
- Scully, M.; Cataland, S.R.; Peyvandi, F.; Coppo, P.; Knöbl, P.; Kremer Hovinga, J.A.; Metjian, A.; de la Rubia, J.; Pavenski, K.; Callewaert, F.; et al. Caplacizumab Treatment for Acquired Thrombotic Thrombocytopenic Purpura. N. Engl. J. Med. 2019, 380, 335–346. [Google Scholar] [CrossRef]
- Peyvandi, F.; Scully, M.; Kremer Hovinga, J.A.; Cataland, S.; Knöbl, P.; Wu, H.; Artoni, A.; Westwood, J.-P.; Mansouri Taleghani, M.; Jilma, B.; et al. Caplacizumab for Acquired Thrombotic Thrombocytopenic Purpura. N. Engl. J. Med. 2016, 374, 511–522. [Google Scholar] [CrossRef] [PubMed]
- Peyvandi, F.; Cataland, S.; Scully, M.; Coppo, P.; Knoebl, P.; Kremer Hovinga, J.A.; Metjian, A.; de la Rubia, J.; Pavenski, K.; Minkue Mi Edou, J.; et al. Caplacizumab prevents refractoriness and mortality in acquired thrombotic thrombocytopenic purpura: Integrated analysis. Blood Adv. 2021, 5, 2137–2141. [Google Scholar] [CrossRef] [PubMed]
- Goshua, G.; Sinha, P.; Hendrickson, J.E.; Tormey, C.; Bendapudi, P.K.; Lee, A.I. Cost effectiveness of caplacizumab in acquired thrombotic thrombocytopenic purpura. Blood 2021, 137, 969–976. [Google Scholar] [CrossRef] [PubMed]
- Arnaud, A.; Schilsky, S.; Lucia, J.; Maia, M.; Laredo, F.; Marques, A.P.; Okada, H.; Roberts, A.W. Outcomes and Costs in Patients with Immune Thrombotic Thrombocytopenic Purpura Receiving Front-Line Versus Delayed Caplacizumab: A US Hospital Database Study. Clin. Appl. Thromb. Hemost. 2024, 30, 10760296241241524. [Google Scholar] [CrossRef]
- Carden, M.A.; Gaddh, M.; Hoskote, A.; Brown, M.; Merrill, V.; Stowell, S.R.; Chandrakasan, S.; Antun, A.; Kudchadkar, R.; Kotanchiyev, S.; et al. Rituximab leads to early elimination of circulating CD20+ T and B lymphocytes in patients with iTTP despite ongoing TPEx. Blood Adv. 2020, 4, 477–481. [Google Scholar] [CrossRef] [PubMed]
- Miyakawa, Y.; Imada, K.; Ichinohe, T.; Nishio, K.; Abe, T.; Murata, M.; Ueda, Y.; Fujimura, Y.; Matsumoto, M.; Okamoto, S. Efficacy and safety of rituximab in Japanese patients with acquired thrombotic thrombocytopenic purpura refractory to conventional therapy. Int. J. Hematol. 2016, 104, 228–235. [Google Scholar] [CrossRef] [PubMed]
- Vazquez-Mellado, A.; Pequeño-Luévano, M.; Cantu-Rodriguez, O.G.; Villarreal-Martínez, L.; Jaime-Pérez, J.C.; Gomez-De-Leon, A.; De La Garza-Salazar, F.; Gonzalez-Llano, O.; Colunga-Pedraza, P.; Sotomayor-Duque, G.; et al. More about low-dose rituximab and plasma exchange as front-line therapy for patients with thrombotic thrombocytopenic purpura. Hematology 2016, 21, 311–316. [Google Scholar] [CrossRef]
- Doyle, A.J.; Stubbs, M.J.; Lester, W.; Thomas, W.; Westwood, J.P.; Thomas, M.; Percy, C.; Prasannan, N.; Scully, M. The use of obinutuzumab and ofatumumab in the treatment of immune thrombotic thrombocytopenic purpura. Br. J. Haematol. 2022, 198, 391–396. [Google Scholar] [CrossRef]
- Al-Samkari, H.; Grace, R.F.; Connors, J.M. Ofatumumab for acute treatment and prophylaxis of a patient with multiple relapses of acquired thrombotic thrombocytopenic purpura. J. Thromb. Thrombolysis 2018, 46, 81–83. [Google Scholar] [CrossRef]
- Robertz, J.; Andres, M.; Mansouri Taleghani, B.; Koneth, I.; Binet, I.; Kremer Hovinga, J.A. Obinutuzumab in two patients suffering from immune-mediated thrombotic thrombocytopenic purpura intolerant to rituximab. Am. J. Hematol. 2019, 94, E259–E261. [Google Scholar] [CrossRef]
- van den Berg, J.; Kremer Hovinga, J.A.; Pfleger, C.; Hegemann, I.; Stehle, G.; Holbro, A.; Studt, J.-D. Daratumumab for immune thrombotic thrombocytopenic purpura. Blood Adv. 2022, 6, 993–997. [Google Scholar] [CrossRef] [PubMed]
- Azapağasi, E.; Uysal Yazici, M.; Eroğlu, N.; Albayrak, M.; Kucur, Ö.; Fettah, A. Successful Treatment With Bortezomib for Refractory and Complicated Acquired Thrombotic Thrombocytopenic Purpura in an Adolescent Girl. J. Pediatr. Hematol. Oncol. 2021, 43, e587–e591. [Google Scholar] [CrossRef] [PubMed]
- Gavriilaki, E. Hematology: The specialty with a record number of new approvals. Front. Med. 2024, 11, 1385052. [Google Scholar] [CrossRef]
- Scully, M.; Antun, A.; Cataland, S.R.; Coppo, P.; Dossier, C.; Biebuyck, N.; Hassenpflug, W.A.; Kentouche, K.; Knöbl, P.; Kremer Hovinga, J.A.; et al. Recombinant ADAMTS13 in Congenital Thrombotic Thrombocytopenic Purpura. N. Engl. J. Med. 2024, 390, 1584–1596. [Google Scholar] [CrossRef] [PubMed]
- Bendapudi, P.K.; Foy, B.H.; Mueller, S.B.; Liu, J.; Feingold, L.M.; Burke, K.E.; Cruz, W.; Chen, M.Y.; Lau, E.S.; Goldberg, R.L.; et al. Recombinant ADAMTS13 for Immune Thrombotic Thrombocytopenic Purpura. N. Engl. J. Med. 2024, 390, 1690–1698. [Google Scholar] [CrossRef]
- Dadoun, S.E.; Adam, K.; Hensch, L.; Boyd, T.K.; Ibrahimi, S.; George, J.N.; Scully, M.; Sukumar, S. Recombinant ADAMTS13: An effective Rescue Therapy for acute cTTP during Pregnancy. Blood Adv. 2024, bloodadvances.2024013265. [Google Scholar] [CrossRef] [PubMed]
- Page, E.E.; Kremer Hovinga, J.A.; Terrell, D.R.; Vesely, S.K.; George, J.N. Thrombotic thrombocytopenic purpura: Diagnostic criteria, clinical features, and long-term outcomes from 1995 through 2015. Blood Adv. 2017, 1, 590–600. [Google Scholar] [CrossRef] [PubMed]
- Galindo-Calvillo, C.D.; Rodríguez-Roque, C.S.; Gómez-De León, A.; Tarín-Arzaga, L.; Gómez-Almaguer, D. Treating thrombotic thrombocytopenic purpura without plasma exchange during the COVID-19 pandemic. A case report and a brief literature review. Transfus. Apher. Sci. 2021, 60, 103107. [Google Scholar] [CrossRef]
- Chander, D.P.; Loch, M.M.; Cataland, S.R.; George, J.N. Caplacizumab Therapy without Plasma Exchange for Acquired Thrombotic Thrombocytopenic Purpura. N. Engl. J. Med. 2019, 381, 92–94. [Google Scholar] [CrossRef]
- Verhenne, S.; Vandeputte, N.; Pareyn, I.; Izsvák, Z.; Rottensteiner, H.; Deckmyn, H.; De Meyer, S.F.; Vanhoorelbeke, K. Long-Term Prevention of Congenital Thrombotic Thrombocytopenic Purpura in ADAMTS13 Knockout Mice by Sleeping Beauty Transposon-Mediated Gene Therapy. Arter. Thromb. Vasc. Biol. 2017, 37, 836–844. [Google Scholar] [CrossRef] [PubMed]
- Veyradier, A. A new drug for an old concept: Aptamer to von Willebrand factor for prevention of arterial and microvascular thrombosis. Haematologica 2020, 105, 2512–2515. [Google Scholar] [CrossRef] [PubMed]
- Zheng, X.L. Novel mechanisms of action of emerging therapies of hereditary thrombotic thrombocytopenic purpura. Expert. Rev. Hematol. 2024, 1–11. [Google Scholar] [CrossRef] [PubMed]
- Cataland, S.R.; Scully, M.A.; Paskavitz, J.; Maruff, P.; Witkoff, L.; Jin, M.; Uva, N.; Gilbert, J.C.; Wu, H.M. Evidence of persistent neurologic injury following thrombotic thrombocytopenic purpura. Am. J. Hematol. 2011, 86, 87–89. [Google Scholar] [CrossRef] [PubMed]
- Afzali, M.; Oveisgharan, S.; Rajabkhah, S.; Abdi, S. Complications of therapeutic plasma exchange in patients with neurological disorders. Curr. J. Neurol. 2020, 19, 8–12. [Google Scholar] [CrossRef]
- Jestin, M.; Benhamou, Y.; Schelpe, A.-S.; Roose, E.; Provôt, F.; Galicier, L.; Hié, M.; Presne, C.; Poullin, P.; Wynckel, A.; et al. Preemptive rituximab prevents long-term relapses in immune-mediated thrombotic thrombocytopenic purpura. Blood 2018, 132, 2143–2153. [Google Scholar] [CrossRef]
- Özpolat, H.T.; Stolla, M. Rituximab in the treatment of immune-mediated thrombotic thrombocytopenic purpura. Blood Transfus. 2023, 21, 369–374. [Google Scholar] [CrossRef] [PubMed]
- Cuker, A. Adjuvant rituximab to prevent TTP relapse. Blood 2016, 127, 2952–2953. [Google Scholar] [CrossRef] [PubMed]
- Dane, K.; Chaturvedi, S. Beyond plasma exchange: Novel therapies for thrombotic thrombocytopenic purpura. Hematol. Am. Soc. Hematol. Educ. Program. 2018, 2018, 539–547. [Google Scholar] [CrossRef]
- Westwood, J.P.; Scully, M. Management of acquired, immune thrombocytopenic purpura (iTTP): Beyond the acute phase. Ther. Adv. Hematol. 2022, 13, 20406207221112216. [Google Scholar] [CrossRef]
- Bae, S.H.; Kim, S.-H.; Bang, S.-M. Recent advances in the management of immune-mediated thrombotic thrombocytopenic purpura. Blood Res. 2022, 57, S37–S43. [Google Scholar] [CrossRef] [PubMed]
- Kappers-Klunne, M.C.; Wijermans, P.; Fijnheer, R.; Croockewit, A.J.; van der Holt, B.; de Wolf, J.T.M.; Löwenberg, B.; Brand, A. Splenectomy for the treatment of thrombotic thrombocytopenic purpura. Br. J. Haematol. 2005, 130, 768–776. [Google Scholar] [CrossRef] [PubMed]
- Shaw, R.J.; Bell, J.; Poole, J.; Feely, C.; Chetter, J.; Dutt, T. Integrating psychology services for patients with thrombotic thrombocytopenic purpura: A specialist centre experience. EJHaem 2023, 4, 872–875. [Google Scholar] [CrossRef] [PubMed]
- George, J.N. TTP: Long-term outcomes following recovery. Hematol. Am. Soc. Hematol. Educ. Program. 2018, 2018, 548–552. [Google Scholar] [CrossRef] [PubMed]
- Khalil, F.; Ali, M.; Ellithi, M. Impact of Acute Coronary Syndrome on Clinical Outcomes in Patients With Thrombotic Thrombocytopenic Purpura. Cureus 2023, 15, e35878. [Google Scholar] [CrossRef] [PubMed]
- Gandhi, K.; Aronow, W.S.; Desai, H.; Amin, H.; Sharma, M.; Lai, H.M.; Singh, P. Cardiovascular Manifestations in Patients With Thrombotic Thrombocytopenic Purpura: A Single-center Experience. Clin. Cardiol. 2010, 33, 213–216. [Google Scholar] [CrossRef] [PubMed]
- Long-term Impact|Understanding Your TTP Diagnosis | HCP. Available online: https://hcp.understandingttp.com/monitoring-ttp/long_term_consequences (accessed on 14 July 2024).
- Brodsky, M.A.; Sukumar, S.; Selvakumar, S.; Yanek, L.; Hussain, S.; Mazepa, M.A.; Braunstein, E.M.; Moliterno, A.R.; Kickler, T.S.; Brodsky, R.A.; et al. Major adverse cardiovascular events in survivors of immune-mediated thrombotic thrombocytopenic purpura. Am. J. Hematol. 2021, 96, 1587–1594. [Google Scholar] [CrossRef] [PubMed]
- Deford, C.C.; Reese, J.A.; Schwartz, L.H.; Perdue, J.J.; Kremer Hovinga, J.A.; Lämmle, B.; Terrell, D.R.; Vesely, S.K.; George, J.N. Multiple major morbidities and increased mortality during long-term follow-up after recovery from thrombotic thrombocytopenic purpura. Blood 2013, 122, 2023–2029, quiz 2142. [Google Scholar] [CrossRef] [PubMed]
- Perez Botero, J.; Reese, J.A.; George, J.N.; McIntosh, J.J. Severe thrombocytopenia and microangiopathic hemolytic anemia in pregnancy: A guide for the consulting hematologist. Am. J. Hematol. 2021, 96, 1655–1665. [Google Scholar] [CrossRef]
- Bradbury, J.; Bell, J. The TTP specialist nurse: An advocate for patients and professionals. Br. J. Nurs. 2024, 33, 284–290. [Google Scholar] [CrossRef]
- Oladapo, A.O.; Ito, D.; Hibbard, C.; Bean, S.E.; Krupnick, R.N.; Ewenstein, B.M. Patient Experience with Congenital (Hereditary) Thrombotic Thrombocytopenic Purpura: A Conceptual Framework of Symptoms and Impacts. Patient 2019, 12, 503–512. [Google Scholar] [CrossRef]
- Heeke, A.L.; Kessler, C.M.; Broome, C. Relapsing Thrombotic Thrombocytopenic Purpura: A Single Center Experience. Blood 2016, 128, 3732. [Google Scholar] [CrossRef]
- Jin, M.; Casper, T.C.; Cataland, S.R.; Kennedy, M.S.; Lin, S.; Li, Y.J.; Wu, H.M. Relationship between ADAMTS13 activity in clinical remission and the risk of TTP relapse. Br. J. Haematol. 2008, 141, 651–658. [Google Scholar] [CrossRef] [PubMed]
- Peyvandi, F.; Lavoretano, S.; Palla, R.; Feys, H.B.; Vanhoorelbeke, K.; Battaglioli, T.; Valsecchi, C.; Canciani, M.T.; Fabris, F.; Zver, S.; et al. ADAMTS13 and anti-ADAMTS13 antibodies as markers for recurrence of acquired thrombotic thrombocytopenic purpura during remission. Haematologica 2008, 93, 232–239. [Google Scholar] [CrossRef] [PubMed]
- Upreti, H.; Kasmani, J.; Dane, K.; Braunstein, E.M.; Streiff, M.B.; Shanbhag, S.; Moliterno, A.R.; Sperati, C.J.; Gottesman, R.F.; Brodsky, R.A.; et al. Reduced ADAMTS13 activity during TTP remission is associated with stroke in TTP survivors. Blood 2019, 134, 1037–1045. [Google Scholar] [CrossRef]
- Sukumar, S.; Brodsky, M.; Hussain, S.; Cataland, S.; Chaturvedi, S. Cardiovascular Disease Is a Leading Cause of Death in Thrombotic Thrombocytopenic Purpura (TTP) Survivors. Blood 2020, 136, 22–23. [Google Scholar] [CrossRef]
- Zheng, X.L.; Vesely, S.K.; Cataland, S.R.; Coppo, P.; Geldziler, B.; Iorio, A.; Matsumoto, M.; Mustafa, R.A.; Pai, M.; Rock, G.; et al. Good practice statements (GPS) for the clinical care of patients with thrombotic thrombocytopenic purpura. J. Thromb. Haemost. 2020, 18, 2503–2512. [Google Scholar] [CrossRef]
- Cataland, S.R. Not So BenignThis Is Not Your Father’s Thrombotic Thrombocytopenic Purpura. Hematologist 2024, 21. [Google Scholar] [CrossRef]
ELISA | FRETS-VWF73 | AcuSTAR | Ceveron FRET | |
---|---|---|---|---|
Time to results | 6 h | 1.5 h | 1 h | 1 h |
Requirements | ELISA plate readers [30] | specific analytical platforms | fully automated- needs specialized equipment | specific analytical platforms |
Disadvantages | manual and time-consuming | reduced reaction rates in hyper-bilirubinermic plasmas [27] | Underestimates ADAMTS13 levels in the high assay range values (>40%) [31,32] | gold-standard |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Papakonstantinou, A.; Kalmoukos, P.; Mpalaska, A.; Koravou, E.-E.; Gavriilaki, E. ADAMTS13 in the New Era of TTP. Int. J. Mol. Sci. 2024, 25, 8137. https://doi.org/10.3390/ijms25158137
Papakonstantinou A, Kalmoukos P, Mpalaska A, Koravou E-E, Gavriilaki E. ADAMTS13 in the New Era of TTP. International Journal of Molecular Sciences. 2024; 25(15):8137. https://doi.org/10.3390/ijms25158137
Chicago/Turabian StylePapakonstantinou, Anna, Panagiotis Kalmoukos, Aikaterini Mpalaska, Evaggelia-Evdoxia Koravou, and Eleni Gavriilaki. 2024. "ADAMTS13 in the New Era of TTP" International Journal of Molecular Sciences 25, no. 15: 8137. https://doi.org/10.3390/ijms25158137
APA StylePapakonstantinou, A., Kalmoukos, P., Mpalaska, A., Koravou, E. -E., & Gavriilaki, E. (2024). ADAMTS13 in the New Era of TTP. International Journal of Molecular Sciences, 25(15), 8137. https://doi.org/10.3390/ijms25158137