Antifungal Synergy: Mechanistic Insights into the R-1-R Peptide and Bidens pilosa Extract as Potent Therapeutics against Candida spp. through Proteomics
Abstract
:1. Introduction
2. Results and Discussion
2.1. Susceptibility of C. albicans Mutant Strains to R-1-R and B. pilosa Extract
Systematic Name | Description 1 | Strain | R-1-R | B. pilosa Extract | FLC |
MIC/MFC (μg/mL) | |||||
Wild type | C. albicans ATCC SC5314 2 | 100/100 | 500/500 | 1 | |
Oral clinical isolate, FLC resistant | C. albicans 256 PUJ-HUSI 2 | 100/100 | 500/500 | 64 | |
orf19.6000 | Multidrug transporter of ABC superfamily; transports phospholipids in an in-to-out direction | cdr1∆/CDR1 | 100/100 | 1000/2000 | <0.25 |
orf19.5958 | Multidrug transporter, ATP-binding cassette (ABC) superfamily; transports phospholipids in an in-to-out direction; overexpressed in azole-resistant isolates | cdr2∆/CDR2 | 100/100 | 1000/>2000 | <0.25 |
orf19.895 | MAP kinase of osmotic-, heavy metal-, and core stress responses; role in regulation of glycerol and D-arabitol in response to stress | hog1∆/HOG1 | 50/100 | 1000/2000 | 4 |
hog1∆/hog1∆ | 12.5/25 | 500/2000 | ND | ||
orf19.7523 | MAP kinase, role in cell wall structure/maintenance and caspofungin response; phosphorylated on surface contact, membrane perturbation, or cell wall stress | mkc1∆/MKC1 | 50/100 | 1000/2000 | 2 |
mkc1∆/mkc1∆ | 25/50 | 1000/>2000 | ND | ||
orf19.1710 | Putative NADH-ubiquinone oxidoreductase; plasma membrane localized; protein decreases in stationary phase | ali1∆/ALI1 | 12.5/25 | >2000/>2000 | <0.5 |
ali1∆/ali1∆ | 50/100 | 500/500 | ND | ||
orf19.1471 | Putative cytochrome c oxidase subunit IV; Mig1 regulated | cox4∆/COX4 | 12.5/25 | >2000/>2000 | <0.5 |
cox4∆/cox4∆ | 50/200 | 500/2000 | ND | ||
orf19.2570 | Putative NADH-ubiquinone dehydrogenase | mci∆/mci∆ | 100/200 | 500/2000 | ND |
orf19.4758 | Putative reductase or dehydrogenase | orf19.4758∆/orf19.4758∆ | 100/200 | 500/1000 | ND |
orf19.7590 | Putative NADH-ubiquinone oxidoreductase; identified in detergent-resistant membrane fraction (possible lipid raft component) | orf19.7590∆/orf19.7590∆ | 100/100 | 500/500 | ND |
2.2. Identification of C. albicans Total Proteins
2.3. Proteomic Analysis of C. albicans SC5314 and 256 after Treatment with R-1-R
2.4. Important Proteins Regulated in SC5314 and 256 in Response to R-1-R
2.5. Effect of the Combination between R-1-R and B. pilosa Extract against C. albicans SC5314
2.6. Important Proteins Up- or Down-Regulated for SC5314 in Response to the Combination
2.7. Scanning Transmission Electron Microscopy (STEM)
2.8. Alteration of the Activity of Efflux Pumps
2.9. Induction of Cellular ROS Generation
2.10. Decreased Mitochondrial Membrane Potential
3. General Discussion
4. Materials and Methods
4.1. Peptide
4.2. B. pilosa Extract
4.3. Candida Strains
4.4. Antifungal Activity Assays with Mutant Strains
4.5. Sample Preparation for Proteomic Analysis
4.6. Proteomic Analysis
4.7. Label-Free Quantification
4.8. Bioinformatics Analysis
4.9. Scanning Transmission Electron Microscopy (STEM)
4.10. Efflux of Rhodamine 6G
4.11. Measurement of Intracellular ROS
4.12. Measurement of the Mitochondrial Membrane Potential
4.13. Statistical Analysis
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Lopes, J.P.; Lionakis, M.S. Pathogenesis and Virulence of Candida albicans. Virulence 2022, 13, 89–121. [Google Scholar] [CrossRef] [PubMed]
- Mayer, F.L.; Wilson, D.; Hube, B. Candida albicans Pathogenicity Mechanisms. Virulence 2013, 4, 119–128. [Google Scholar] [CrossRef] [PubMed]
- Dadar, M.; Tiwari, R.; Karthik, K.; Chakraborty, S.; Shahali, Y.; Dhama, K. Candida albicans—Biology, Molecular Characterization, Pathogenicity, and Advances in Diagnosis and Control—An Update. Microb. Pathog. 2018, 117, 128–138. [Google Scholar] [CrossRef] [PubMed]
- Lamoth, F.; Lockhart, S.R.; Berkow, E.L.; Calandra, T. Changes in the Epidemiological Landscape of Invasive Candidiasis. J. Antimicrob. Chemother. 2018, 73, i4–i13. [Google Scholar] [CrossRef] [PubMed]
- Wilson, D. Candida albicans. Trends Microbiol. 2019, 27, 188–189. [Google Scholar] [CrossRef] [PubMed]
- Ikuta, K.S.; Meštrović, T.; Naghavi, M. Global Incidence and Mortality of Severe Fungal Disease. Lancet Infect. Dis. 2024, 24, e268. [Google Scholar] [CrossRef] [PubMed]
- Lee, Y.; Puumala, E.; Robbins, N.; Cowen, L.E. Antifungal Drug Resistance: Molecular Mechanisms in Candida albicans and Beyond. Chem. Rev. 2021, 121, 3390–3411. [Google Scholar] [CrossRef]
- Berkow, E.L.; Lockhart, S.R. Fluconazole Resistance in Candida Species: A Current Perspective. Infect. Drug Resist. 2017, 10, 237–245. [Google Scholar] [CrossRef] [PubMed]
- Fisher, M.C.; Alastruey-Izquierdo, A.; Berman, J.; Bicanic, T.; Bignell, E.M.; Bowyer, P.; Bromley, M.; Brüggemann, R.; Garber, G.; Cornely, O.A.; et al. Tackling the Emerging Threat of Antifungal Resistance to Human Health. Nat. Rev. Microbiol. 2022, 20, 557–571. [Google Scholar] [CrossRef] [PubMed]
- Antimicrobial Resistance in Candida | Fungal Diseases | CDC. Available online: https://www.cdc.gov/fungal/diseases/candidiasis/antifungal-resistant.html (accessed on 14 May 2024).
- Lee, Y.; Robbins, N.; Cowen, L.E. Molecular Mechanisms Governing Antifungal Drug Resistance. Npj Antimicrob. Resist. 2023, 1, 5. [Google Scholar] [CrossRef]
- Zhu, P.; Li, Y.; Guo, T.; Liu, S.; Tancer, R.J.; Hu, C.; Zhao, C.; Xue, C.; Liao, G. New Antifungal Strategies: Drug Combination and Co-Delivery. Adv. Drug Deliv. Rev. 2023, 198, 114874. [Google Scholar] [CrossRef] [PubMed]
- Vargas-Casanova, Y.; Bravo-Chaucanés, C.P.; Martínez, A.X.H.; Costa, G.M.; Contreras-Herrera, J.L.; Medina, R.F.; Rivera-Monroy, Z.J.; García-Castañeda, J.E.; Parra-Giraldo, C.M. Combining the Peptide RWQWRWQWR and an Ethanolic Extract of Bidens Pilosa Enhances the Activity against Sensitive and Resistant Candida albicans and C. auris Strains. J. Fungi 2023, 9, 817. [Google Scholar] [CrossRef]
- Barragán-Cárdenas, A.; Insuasty-Cepeda, D.S.; Niño-Ramírez, V.A.; Umaña-Pérez, A.; Ochoa-Zarzosa, A.; López-Meza, J.E.; Rivera-Monroy, Z.J.; García-Castañeda, J.E. The Nonapeptide RWQWRWQWR: A Promising Molecule for Breast Cancer Therapy. ChemistrySelect 2020, 5, 9691–9700. [Google Scholar] [CrossRef]
- Barragán-Cárdenas, A.; Urrea-Pelayo, M.; Niño-Ramírez, V.A.; Umaña-Pérez, A.; Vernot, J.P.; Parra-Giraldo, C.M.; Fierro-Medina, R.; Rivera-Monroy, Z.; García-Castañeda, J. Selective Cytotoxic Effect against the MDA-MB-468 Breast Cancer Cell Line of the Antibacterial Palindromic Peptide Derived from Bovine Lactoferricin. RSC Adv. 2020, 10, 17593–17601. [Google Scholar] [CrossRef] [PubMed]
- Insuasty-Cepeda, D.S.; Barragán-Cárdenas, A.C.; Ardila-Chantre, N.; Cárdenas-Martínez, K.J.; Rincón-Quiñones, I.; Vargas-Casanova, Y.; Ochoa-Zarzosa, A.; Lopez-Meza, J.E.; Parra-Giraldo, C.M.; Ospina-Giraldo, L.F.; et al. Non-Natural Amino Acids into LfcinB-Derived Peptides: Effect in Their (i) Proteolytic Degradation and (Ii) Cytotoxic Activity against Cancer Cells. R. Soc. Open Sci. 2023, 10, 221493. [Google Scholar] [CrossRef]
- Vargas-Casanova, Y.; Carlos Villamil Poveda, J.; Jenny Rivera-Monroy, Z.; Ceballos Garzón, A.; Fierro-Medina, R.; Le Pape, P.; Eduardo García-Castañeda, J.; Marcela Parra Giraldo, C. Palindromic Peptide LfcinB (21-25)Pal Exhibited Antifungal Activity against Multidrug-Resistant Candida. ChemistrySelect 2020, 5, 7236–7242. [Google Scholar] [CrossRef]
- Huertas Méndez, N.D.J.; Vargas Casanova, Y.; Gómez Chimbi, A.K.; Hernández, E.; Leal Castro, A.L.; Melo Diaz, J.M.; Rivera Monroy, Z.J.; García Castañeda, J.E. Synthetic Peptides Derived from Bovine Lactoferricin Exhibit Antimicrobial Activity against E. coli ATCC 11775, S. maltophilia ATCC 13636 and S. enteritidis ATCC 13076. Mol. J. Synth. Chem. Nat. Prod. Chem. 2017, 22, 452. [Google Scholar] [CrossRef] [PubMed]
- Vargas-Casanova, Y.; Rodríguez-Mayor, A.V.; Cardenas, K.J.; Leal-Castro, A.L.; Muñoz-Molina, L.C.; Fierro-Medina, R.; Rivera-Monroy, Z.J.; García-Castañeda, J.E. Synergistic Bactericide and Antibiotic Effects of Dimeric, Tetrameric, or Palindromic Peptides Containing the RWQWR Motif against Gram-Positive and Gram-Negative Strains. RSC Adv. 2019, 9, 7239–7245. [Google Scholar] [CrossRef]
- Farnaud, S.; Evans, R.W. Lactoferrin—A Multifunctional Protein with Antimicrobial Properties. Mol. Immunol. 2003, 40, 395–405. [Google Scholar] [CrossRef]
- Afacan, N.J.; Yeung, A.T.Y.; Pena, O.M.; Hancock, R.E.W. Therapeutic Potential of Host Defense Peptides in Antibiotic-Resistant Infections. Curr. Pharm. Des. 2012; 18, 807–819. [Google Scholar] [CrossRef]
- Bellamy, W.; Yamauchi, K.; Wakabayashi, H.; Takase, M.; Takakura, N.; Shimamura, S.; Tomita, M. Antifungal Properties of Lactoferricin B, a Peptide Derived from the N-terminal Region of Bovine Lactoferrin. Lett. Appl. Microbiol. 1994, 18, 230–233. [Google Scholar] [CrossRef]
- Mishra, B.; Leishangthem, G.D.; Gill, K.; Singh, A.K.; Das, S.; Singh, K.; Xess, I.; Dinda, A.; Kapil, A.; Patro, I.K.; et al. A Novel Antimicrobial Peptide Derived from Modified N-Terminal Domain of Bovine Lactoferrin: Design, Synthesis, Activity against Multidrug-Resistant Bacteria and Candida. Biochim. Biophys. Acta BBA-Biomembr. 2013, 1828, 677–686. [Google Scholar] [CrossRef]
- van der Kraan, M.I.A.; van Marle, J.; Nazmi, K.; Groenink, J.; van ’t Hof, W.; Veerman, E.C.I.; Bolscher, J.G.M.; Amerongen, A.V.N. Ultrastructural Effects of Antimicrobial Peptides from Bovine Lactoferrin on the Membranes of Candida albicans and Escherichia coli. Peptides 2005, 26, 1537–1542. [Google Scholar] [CrossRef] [PubMed]
- Chang, C.-K.; Kao, M.-C.; Lan, C.-Y. Antimicrobial Activity of the Peptide LfcinB15 against Candida albicans. J. Fungi 2021, 7, 519. [Google Scholar] [CrossRef] [PubMed]
- Angelini, P.; Matei, F.; Flores, G.A.; Pellegrino, R.M.; Vuguziga, L.; Venanzoni, R.; Tirillini, B.; Emiliani, C.; Orlando, G.; Menghini, L.; et al. Metabolomic Profiling, Antioxidant and Antimicrobial Activity of Bidens Pilosa. Processes 2021, 9, 903. [Google Scholar] [CrossRef]
- Ueta, E.; Tanida, T.; Osaki, T. A Novel Bovine Lactoferrin Peptide, FKCRRWQWRM, Suppresses Candida Cell Growth and Activates Neutrophils. J. Pept. Res. 2001, 57, 240–249. [Google Scholar] [CrossRef]
- Argimón, S.; Fanning, S.; Blankenship, J.R.; Mitchell, A.P. Interaction between the Candida albicans High-Osmolarity Glycerol (HOG) Pathway and the Response to Human β-Defensins 2 and 3. Eukaryot. Cell 2011, 10, 272–275. [Google Scholar] [CrossRef]
- Vylkova, S.; Jang, W.S.; Li, W.; Nayyar, N.; Edgerton, M. Histatin 5 Initiates Osmotic Stress Response in Candida albicans via Activation of the Hog1 Mitogen-Activated Protein Kinase Pathway. Eukaryot. Cell 2007, 6, 1876–1888. [Google Scholar] [CrossRef] [PubMed]
- Candida Genome Database. Available online: http://www.candidagenome.org/ (accessed on 14 May 2024).
- Xu, D.; Jiang, B.; Ketela, T.; Lemieux, S.; Veillette, K.; Martel, N.; Davison, J.; Sillaots, S.; Trosok, S.; Bachewich, C.; et al. Genome-Wide Fitness Test and Mechanism-of-Action Studies of Inhibitory Compounds in Candida albicans. PLoS Pathog. 2007, 3, e92. [Google Scholar] [CrossRef]
- Ibe, C.; Munro, C.A. Fungal Cell Wall Proteins and Signaling Pathways Form a Cytoprotective Network to Combat Stresses. J. Fungi 2021, 7, 739. [Google Scholar] [CrossRef]
- Zaidi, K.U.; Mani, A.; Thawani, V.; Mehra, A. Total Protein Profile and Drug Resistance in Candida albicans Isolated from Clinical Samples. Mol. Biol. Int. 2016, 2016, 4982131. [Google Scholar] [CrossRef]
- Zarzosa-Moreno, D.; Avalos-Gómez, C.; Ramírez-Texcalco, L.S.; Torres-López, E.; Ramírez-Mondragón, R.; Hernández-Ramírez, J.O.; Serrano-Luna, J.; De La Garza, M. Lactoferrin and Its Derived Peptides: An Alternative for Combating Virulence Mechanisms Developed by Pathogens. Molecules 2020, 25, 5763. [Google Scholar] [CrossRef] [PubMed]
- Polonelli, L.; Ciociola, T.; Sperindè, M.; Giovati, L.; D’Adda, T.; Galati, S.; Travassos, L.R.; Magliani, W.; Conti, S. Fungicidal Activity of Peptides Encoded by Immunoglobulin Genes. Sci. Rep. 2017, 7, 10896. [Google Scholar] [CrossRef]
- Pang, C.; Chen, J.; Liu, S.; Cao, Y.; Miao, H. In Vitro Antifungal Activity of Shikonin against Candida albicans by Inducing Cellular Apoptosis and Necrosis. Mol. Biol. Rep. 2023, 50, 1079–1087. [Google Scholar] [CrossRef]
- Gbelska, Y.; Hervay, N.T.; Dzugasova, V.; Konecna, A. Measurement of Energy-Dependent Rhodamine 6G Efflux in Yeast Species. Bio-Protoc. 2017, 7, e2428. [Google Scholar] [CrossRef]
- Kuipers, M.E.; de Vries, H.G.; Eikelboom, M.C.; Meijer, D.K.F.; Swart, P.J. Synergistic Fungistatic Effects of Lactoferrin in Combination with Antifungal Drugs against ClinicalCandida Isolates. Antimicrob. Agents Chemother. 1999, 43, 2635–2641. [Google Scholar] [CrossRef]
- Wakabayashi, H.; Abe, S.; Teraguchi, S.; Hayasawa, H.; Yamaguchi, H. Inhibition of Hyphal Growth of Azole-Resistant Strains of Candida albicans by Triazole Antifungal Agents in the Presence of Lactoferrin-Related Compounds. Antimicrob. Agents Chemother. 1998, 42, 1587–1591. [Google Scholar] [CrossRef] [PubMed]
- Rodaki, A.; Bohovych, I.M.; Enjalbert, B.; Young, T.; Odds, F.C.; Gow, N.A.R.; Brown, A.J.P. Glucose Promotes Stress Resistance in the Fungal Pathogen Candida albicans. Mol. Biol. Cell 2009, 20, 4845–4855. [Google Scholar] [CrossRef]
- Gomaa, S.E.; Abbas, H.A.; Mohamed, F.A.; Ali, M.A.M.; Ibrahim, T.M.; Abdel Halim, A.S.; Alghamdi, M.A.; Mansour, B.; Chaudhary, A.A.; Elkelish, A.; et al. The Anti-Staphylococcal Fusidic Acid as an Efflux Pump Inhibitor Combined with Fluconazole against Vaginal Candidiasis in Mouse Model. BMC Microbiol. 2024, 24, 54. [Google Scholar] [CrossRef] [PubMed]
- Gonzalez-Jimenez, I.; Perlin, D.S.; Shor, E. Reactive Oxidant Species Induced by Antifungal Drugs: Identity, Origins, Functions, and Connection to Stress-Induced Cell Death. Front. Cell. Infect. Microbiol. 2023, 13, 1276406. [Google Scholar] [CrossRef]
- Wang, K.; Dang, W.; Xie, J.; Zhu, R.; Sun, M.; Jia, F.; Zhao, Y.; An, X.; Qiu, S.; Li, X.; et al. Antimicrobial Peptide Protonectin Disturbs the Membrane Integrity and Induces ROS Production in Yeast Cells. Biochim. Biophys. Acta BBA-Biomembr. 2015, 1848, 2365–2373. [Google Scholar] [CrossRef]
- Seyedjavadi, S.S.; Khani, S.; Eslamifar, A.; Ajdary, S.; Goudarzi, M.; Halabian, R.; Akbari, R.; Zare-Zardini, H.; Imani Fooladi, A.A.; Amani, J.; et al. The Antifungal Peptide MCh-AMP1 Derived from Matricaria Chamomilla Inhibits Candida albicans Growth via Inducing ROS Generation and Altering Fungal Cell Membrane Permeability. Front. Microbiol. 2020, 10, 3150. [Google Scholar] [CrossRef]
- Kim, S.; Lee, D.G. Role of Calcium in Reactive Oxygen Species-Induced Apoptosis in Candida albicans: An Antifungal Mechanism of Antimicrobial Peptide, PMAP-23. Free Radic. Res. 2019, 53, 8–17. [Google Scholar] [CrossRef] [PubMed]
- Bravo-Chaucanés, C.P.; Chitiva, L.C.; Vargas-Casanova, Y.; Diaz-Santoyo, V.; Hernández, A.X.; Costa, G.M.; Parra-Giraldo, C.M. Exploring the Potential Mechanism of Action of Piperine against Candida albicans and Targeting Its Virulence Factors. Biomolecules 2023, 13, 1729. [Google Scholar] [CrossRef] [PubMed]
- Stagos, D. Antioxidant Activity of Polyphenolic Plant Extracts. Antioxidants 2019, 9, 19. [Google Scholar] [CrossRef] [PubMed]
- Enjalbert, B.; Smith, D.A.; Cornell, M.J.; Alam, I.; Nicholls, S.; Brown, A.J.P.; Quinn, J. Role of the Hog1 Stress-Activated Protein Kinase in the Global Transcriptional Response to Stress in the Fungal Pathogen Candida albicans. Mol. Biol. Cell 2006, 17, 1018–1032. [Google Scholar] [CrossRef] [PubMed]
- Farrugia, G.; Balzan, R. Oxidative Stress and Programmed Cell Death in Yeast. Front. Oncol. 2012, 2, 64. [Google Scholar] [CrossRef] [PubMed]
- Perrone, G.G.; Tan, S.-X.; Dawes, I.W. Reactive Oxygen Species and Yeast Apoptosis. Biochim. Biophys. Acta BBA-Mol. Cell Res. 2008, 1783, 1354–1368. [Google Scholar] [CrossRef]
- Molecular Biology of the Cell—NCBI Bookshelf. Available online: https://www.ncbi.nlm.nih.gov/books/NBK21054/ (accessed on 14 May 2024).
- Reyna-Beltrán, E.; Méndez, C.I.B.; Iranzo, M.; Mormeneo, S.; Luna-Arias, J.P.; Reyna-Beltrán, E.; Méndez, C.I.B.; Iranzo, M.; Mormeneo, S.; Luna-Arias, J.P. The Cell Wall of Candida albicans: A Proteomics View. In Candida albicans; IntechOpen: London, UK, 2019; ISBN 978-1-83880-160-1. [Google Scholar]
- Ciumac, D.; Gong, H.; Hu, X.; Lu, J.R. Membrane Targeting Cationic Antimicrobial Peptides. J. Colloid Interface Sci. 2019, 537, 163–185. [Google Scholar] [CrossRef] [PubMed]
- Mishra, P.; Prasad, R. An Overview of Lipids of Candida albicans. Prog. Lipid Res. 1990, 29, 65–85. [Google Scholar] [CrossRef]
- Novaes, R.D.; Teixeira, A.L.; de Miranda, A.S. Oxidative Stress in Microbial Diseases: Pathogen, Host, and Therapeutics. Oxid. Med. Cell. Longev. 2019, 2019, 8159562. [Google Scholar] [CrossRef]
- Dantas, A.D.S.; Day, A.; Ikeh, M.; Kos, I.; Achan, B.; Quinn, J. Oxidative Stress Responses in the Human Fungal Pathogen, Candida albicans. Biomolecules 2015, 5, 142–165. [Google Scholar] [CrossRef]
- Barragán-Cárdenas, A.; Insuasty-Cepeda, D.; Cárdenas Martínez, K.; López-Meza, J.; Ochoa-Zarzosa, A.; Umana-Perez, A.; Rivera Monroy, Z.; García-Castañeda, J. LfcinB-Derived Peptides: Specific and Punctual Change of an Amino Acid in Monomeric and Dimeric Sequences Increase Selective Cytotoxicity in Colon Cancer Cell Lines. Arab. J. Chem. 2022, 15, 103998. [Google Scholar] [CrossRef]
- Barragán-Cárdenas, A.C.; Insuasty-Cepeda, D.S.; Vargas-Casanova, Y.; López-Meza, J.E.; Parra-Giraldo, C.M.; Fierro-Medina, R.; Rivera-Monroy, Z.J.; García-Castañeda, J.E. Changes in Length and Positive Charge of Palindromic Sequence RWQWRWQWR Enhance Cytotoxic Activity against Breast Cancer Cell Lines. ACS Omega 2023, 8, 2712–2722. [Google Scholar] [CrossRef] [PubMed]
- CLSI M27-A3—Reference Method for Broth Dilution Antifungal Susceptibility Testing of Yeasts; Approved Standard-Third Edition. Available online: https://webstore.ansi.org/standards/clsi/clsim27a3 (accessed on 14 May 2024).
- CLSI M27-S4—Reference Method for Broth Dilution Antifungal Susceptibility Testing of Yeasts; Fourth Informational Supplement. Available online: https://webstore.ansi.org/standards/clsi/clsim27s4 (accessed on 14 May 2024).
- Ceballos-Garzon, A.; Monteoliva, L.; Gil, C.; Alvarez-Moreno, C.; Vega-Vela, N.E.; Engelthaler, D.M.; Bowers, J.; Le Pape, P.; Parra-Giraldo, C.M. Genotypic, Proteomic, and Phenotypic Approaches to Decipher the Response to Caspofungin and Calcineurin Inhibitors in Clinical Isolates of Echinocandin-Resistant Candida Glabrata. J. Antimicrob. Chemother. 2022, 77, 585–597. [Google Scholar] [CrossRef]
- Proteomics Sample Preparation | LC-MS Sample Preparation. Available online: https://www.preomics.com/products/ist (accessed on 14 May 2024).
- Zybailov, B.L.; Florens, L.; Washburn, M.P. Quantitative Shotgun Proteomics Using a Protease with Broad Specificity and Normalized Spectral Abundance Factors. Mol. Biosyst. 2007, 3, 354–360. [Google Scholar] [CrossRef]
- Kolberg, L.; Raudvere, U.; Kuzmin, I.; Vilo, J.; Peterson, H. Gprofiler2—An R Package for Gene List Functional Enrichment Analysis and Namespace Conversion Toolset g:Profiler 2020. F1000Research 2020, 9, ELIXIR-709. [Google Scholar] [CrossRef] [PubMed]
- Quejada, L.F.; Hernandez, A.X.; Chitiva, L.C.; Bravo-Chaucanés, C.P.; Vargas-Casanova, Y.; Faria, R.X.; Costa, G.M.; Parra-Giraldo, C.M. Unmasking the Antifungal Activity of Anacardium Occidentale Leaf Extract against Candida albicans. J. Fungi 2024, 10, 464. [Google Scholar] [CrossRef]
- Xin, Y.; Kynoch, J.; Han, K.; Liang, Z.; Lee, P.J.; Larbalestier, D.C.; Su, Y.-F.; Nagahata, K.; Aoki, T.; Longo, P. Facility Implementation and Comparative Performance Evaluation of Probe-Corrected TEM/STEM with Schottky and Cold Field Emission Illumination. Microsc. Microanal. 2013, 19, 487–495. [Google Scholar] [CrossRef] [PubMed]
- Li, X.; Zhao, Y.; Huang, X.; Yu, C.; Yang, Y.; Sun, S. Ambroxol Hydrochloride Combined with Fluconazole Reverses the Resistance of Candida albicans to Fluconazole. Front. Cell. Infect. Microbiol. 2017, 7, 124. [Google Scholar] [CrossRef]
- Xue, Y.-P.; Kao, M.-C.; Lan, C.-Y. Novel Mitochondrial Complex I-Inhibiting Peptides Restrain NADH Dehydrogenase Activity. Sci. Rep. 2019, 9, 13694. [Google Scholar] [CrossRef]
- Perez-Riverol, Y.; Bai, J.; Bandla, C.; García-Seisdedos, D.; Hewapathirana, S.; Kamatchinathan, S.; Kundu, D.J.; Prakash, A.; Frericks-Zipper, A.; Eisenacher, M.; et al. The PRIDE Database Resources in 2022: A Hub for Mass Spectrometry-Based Proteomics Evidences. Nucleic Acids Res. 2021, 50, D543–D552. [Google Scholar] [CrossRef] [PubMed]
- Deutsch, E.W.; Bandeira, N.; Perez-Riverol, Y.; Sharma, V.; Carver, J.J.; Mendoza, L.; Kundu, D.J.; Wang, S.; Bandla, C.; Kamatchinathan, S.; et al. The ProteomeXchange Consortium at 10 Years: 2023 Update. Nucleic Acids Res. 2022, 51, D1539–D1548. [Google Scholar] [CrossRef] [PubMed]
C. albicans SC5314 | C. albicans 256 | |||||
---|---|---|---|---|---|---|
Systemic Name | Function | Regulation Type | Systemic Name | Function | Regulation Type | |
Cell wall | Cell wall | |||||
C1_11270wp_a | Up | Acf2p | Endo-1,3-beta-glucanase | Up | ||
Dpm1p | Mannoprotein biosynthesis | Up | Ada2p | Integrity | Up | |
Gda1p | Cell wall and cell surface charge | Up | Alg2p | Mannoprotein biosynthesis | Up | |
Mnn2p | Mannoprotein biosynthesis | Up | C2_08580wp_b | Up | ||
Pmt4p | Mannoprotein biosynthesis | Up | C2_10740cp_a | Integrity | Up | |
Rbe1p | Regulator of cell wall dynamics | Up | Cht3p | Chitin | Up | |
Sim1p | Maintenance | Up | CHrr25p | Stress | Up | |
Spf1p | Formation | Up | Mns1p | Mannoprotein biosynthesis | Up | |
Ssr1p | Beta-glucan | Up | Cwt1p | Up | ||
Atc1p | Formation | Up | Rom2p | Biogenesis | Up | |
Als2p | Regeneration | Up | Sac1p | Integrity Integrity | Up | |
Cis2p | Biogenesis | Up | Bck1p | Down | ||
Fgr15p | Damage response | Up | Evp1p | Organization | Down | |
Sac7p | Organization | Up | Pde2p | Down | ||
Smi1bp | Assembly | Up | Msb2p | Cell wall stress | Down | |
C3_03300cp_a | Up | C1_10540cp_a | Cytoskeleton | Up | ||
Pmr1p | Maintenance | Up | Cr_08980cp_a | Up | ||
Xog1p | Exo-1,3-beta-glucanase-chitin | Up | C5_04890cp_a | Down | ||
Ecm15p | Organization | Down | Nce102p | Cytoskeleton, actin | Down | |
Rhb1p | Integrity | Down | ||||
Cell membrane | Cell membrane | |||||
Erg11p | Ergosterol biosynthesis | Up | Dnf1p | Sphingolipid translocation | Up | |
Erg27p | Up | Sct1p | Phospholipid biosynthesis | Up | ||
Stt3p | Up | Stt4p | Kinase | Up | ||
Erg26p | Ergosterol biosynthesis | Up | C1_03690wp_a | Ergosterol biosynthesis | Up | |
Erg2p | Up | Cht3p | Biosynthesis+C39:C44 ergosterol | Up | ||
Erg5p | Up | Sld1p | Ergosterol biosynthesis | Up | ||
Ecrv29p | Up | Ost1p | Down | |||
Git2p | Up | C1_02270cp_a | Fatty acid catabolism | Down | ||
cPga10p | Up | Ece1p | Integrity | Down | ||
Scw11p | Up | |||||
C6_03240wp_a | Down | |||||
C3_00570cp_a | Phosphoprotein | Up | ||||
Cds1p | Phospholipid biosynthesis | Up | ||||
Ino1p | Inositol-3-phosphate | Up | ||||
Osh2p | Sterol transfer | Up | ||||
C2_05290cp_a | Component fatty acids | Up | ||||
C2_10010cp_a | Up | |||||
C5_05440cp_a | Phospholipid binding | Up | ||||
Cdc24p | Up | |||||
C5_01420wp_a | Up | |||||
Fmp45p | Up | |||||
Rac1p | G-protein of RAC subfamily | Up | ||||
Slc1p | Glycerolipid biosynthesis | Up | ||||
Fas1p | Biosynthesis fatty acids | Down | ||||
Fas2p | Down | |||||
Icl1p | Catabolism fatty acids | Down | ||||
Mitochondria, oxidative stress | Mitochondria, oxidative stress | |||||
C5_01290cp_a | Coenzyme Q biosynthesis Oxidoreductase | Up | Met1p | Oxidative stress, Hog1 | Up | |
Cr_09110cp_a | Up | Rck2p | Up | |||
Kis2p | Oxidative stress, Hog1 | Up | Ssk2p | Up | ||
Mas1p | Mitochondrial respiration Peroxisome | Up | C7_00910cp_a | Oxidative stress, Cap1 | Up | |
Pex1p | Up | Cr_01300wp_a | Oxidative stress | Up | ||
C1_05180cp_a | Oxidative stress, Cap1 | Up | Cmk1p | Up | ||
Fzo1p | Oxidative stress, Hog1 | Up | Met10p | Reductase, Hog1 induced | Up | |
C1_05180cp_a | Oxidoreductase antioxidant | Up | Alp1p | Up | ||
Cr_09110cp_a | Oxidoreductase activity Oxidative stress response to ROS | Up | Ero1p | Oxidoreductases, homeostasis | Up | |
Sur2p | Up | C5_00170wp_a | Oxidative stress | Down | ||
Sod1p | Oxidoreductase activity Oxidative stress | Up | C6_02100wp_a | Down | ||
Sod4p | Up | C1_05990cp_a | Oxidoreductases | Down | ||
C3_00940wp_a | Oxidoreductase activity | Down | C1_11290wp_a | Down | ||
C5_00170wp_a | Down | C4_00380wp_a | Down | |||
C5_02690wp_a | Oxidoreductase activity | Down | C5_05140wp_a | Down | ||
Dao2p | Down | Cfl2p | Down | |||
Fdh1p | Down | Fre7p | Down | |||
Sdh1p | Down | Ifd6p | Down | |||
Str2p | Down | |||||
C3_00940wp_a | Oxidative stress, Cap1 | Down | ||||
Mitochondrial membrane potential | Mitochondrial membrane potential | |||||
Cox1p | Up | C7_02480wp_a | Respiration, cytochrome C | Up | ||
C3_06700cp_a | Respiratory chain | Up | C4_04130wp_a | Up | ||
C7_03380wp_a | Up | C1_08470wp_a | Mitochondrial respiration, complex III | Up | ||
C3_00620cp_a | Respiratory chain, Cytochrome C | Up | C3_01540wp_a | Mitochondrial respiration, complex IV | Up | |
C5_02740wp_a | Up | C5_02590cp_b | Respiration | Up | ||
Cr_10760cp_a | Cytochrome C | Down | Mss116p | Up | ||
Aep1p | Down | |||||
C5_00850cp_a | Down | |||||
Transport | Transport | |||||
Cdr4p | ABC transporters | Up | Ycf1p | ABC-MDR transporters | Up | |
Pdr16p | Activates CDR1/CDR2 | Up | Mig2p | Up | ||
Ndt80p | Activates CDR1 | Up | Hgt17p | MFS transporters | Up | |
Hgt7p | MFS transporters | Up | Flu1p | Up | ||
Git3p | Carbohydrate transport | Up | Gca2p | Carbohydrate transport | Up | |
Gnp1p | Up | Hgt6p | Up | |||
Hsp30p | Up | C1_07980cp_a | Down | |||
Hgt19p | Carbohydrate transport | Up | Dfi1p | Down | ||
Hgt19p | Up | C1_09980cp_a | Down | |||
Aox2p | Carbohydrate transport | Down | C5_04480cp_a | Down | ||
C2_10630wp_a | Down | Hpd1p | Down | |||
Cr_04870cp_a | Down | Aqy1p | Water canal | Up | ||
C1_09980cp_a | Carbohydrate transport | Down | C2_00320wp_a | Up | ||
C5_04480cp_a | Down | C2_04500wp_a | Ion | Up | ||
Sfc1p | Down | Sec62p | Proteins | Up | ||
C7_01510wp_a | Up | C2_02180wp_a | Metals | Down | ||
Ptr22p | Peptides | Up | Ena2p | Potassium ion | Down | |
Ptk2p | Up | Smf11p | Metals | Down | ||
Sng4p | Up | |||||
C7_03590cp_a | Antiport | Up | ||||
Ftr1p | Fe ion | Up | ||||
Ftr2p | Fe ion | Up | ||||
Pho84p | Cations | Up | ||||
Vrg4p | Up | |||||
Flc1p | FAD | Down | ||||
Yvc1p | Calcium | Down | ||||
Nag1p | Down | |||||
Vacuole–mitochondria connection | Mitochondrial cell death | |||||
Vma6p | Mitochondria binding complex | Up | Bck1p | Mitophagy | Down | |
Ypt52p | Up | C6_03430cp_a | Autophagy mitochondria | Up | ||
Rpd3p | Autophagy mitochondria | Up | Ybp1p | Up | ||
Gpx2p | Up | |||||
DNA–RNA | DNA–RNA | |||||
Nup84p | Repair DNA damage due to oxidation | Up | Ccr4p | RNA degradation | Up | |
Hys2p | Up | Rrp6p | Up | |||
Utp4p | Ribosome biogenesis | Up | Cdc54p | Replication | Up | |
Utp22p | Up | Pol1p | Up | |||
Nup49p | Up | Pol5p | Up | |||
Nup85p | Nuclear export | Up | Rfc1p | Up | ||
Rfa1p | DNA damage repair | Up | Rfc3p | Up | ||
C1_00330cp_a | RNA degradation | Up | Utp15p1 | Ribosome biogenesis | Up | |
Pol1p | DNA Replication | Down | Nam2 | tRNA biosynthesis | Down | |
Mrpl19p | Ribosome subunit | Down | Nam7p | Nucleocytoplasmic transport | Down | |
Mss11p | Transcription factor, MAPK signaling pathway (HOG1) | Down | Rat1p | Ribosome biogenesis | Down |
Systemic Name | Function | Regulation Type |
---|---|---|
Cell wall | ||
Ecm331p | Cell surface GPI anchor | Up |
Ihd1p | Up | |
Cr_08980cp_a | Cytoskeleton organization | Up |
C1_10540cp_a | Cytoskeleton, actin | Down |
C4_06230cp_a | Down | |
Slm2p | Down | |
Cht2p | Chitinase | Down |
Ada2p | Wall integrity | Down |
Membrane cell | ||
Erg1p | Ergosterol biosynthesis | Down |
Osh3p | Sterol transfer | Down |
Mitochondria, oxidative stress | ||
Ebp1p | Oxidative stress | Up |
Plb4.5p | Oxidative stress, HOG1 | Up |
Pos5p | Oxidative stress | Down |
Rad50p | Down | |
C5_05140wp_a | Oxidoreductases, mitochondrial matrix | Down |
Cr_01300wp_a | Oxidoreductases, mitochondrial inner membrane | Down |
Dre2p, Gnd1p | Oxidoreductases, redox homeostasis | Down |
Ilv5p | Oxidoreductases | Down |
C5_04530wp_a | Antioxidant activity | Down |
Ald5p | Antioxidant activity, degradation of fatty acids | Down |
Mitochondrial membrane potential | ||
Qce1p | Expression of complex III of the respiratory chain | Up |
Nuo1p | Complex I of the respiratory chain | Down |
C6_00090wp_a | Complex II of the respiratory chain | Down |
C6_02740wp_a | Electron transport | Down |
C1_02290cp_a | ATP synthesis | Down |
Transporters | ||
Alr1p | Cation transport | Up |
Ehd3p | Carbohydrate transport | Down |
Gdh2p | Down | |
Hpd1p | Down | |
Put1p | Down | |
C2_05130wp_a | Carbohydrate transport, oxidoreductase | Down |
Asm3p | MDR1 transporters | Down |
DNA–RNA | ||
Rps1p | Ribosome | Down |
Tsr1p | Down | |
Nop15p | rRNA maturation | Down |
Nam7p | Nucleocytoplasmic transport | Down |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Vargas-Casanova, Y.; Bravo-Chaucanés, C.P.; Fuentes, S.d.l.C.; Martinez-Lopez, R.; Monteoliva, L.; Gil, C.; Rivera-Monroy, Z.J.; Costa, G.M.; Castañeda, J.E.G.; Parra-Giraldo, C.M. Antifungal Synergy: Mechanistic Insights into the R-1-R Peptide and Bidens pilosa Extract as Potent Therapeutics against Candida spp. through Proteomics. Int. J. Mol. Sci. 2024, 25, 8938. https://doi.org/10.3390/ijms25168938
Vargas-Casanova Y, Bravo-Chaucanés CP, Fuentes SdlC, Martinez-Lopez R, Monteoliva L, Gil C, Rivera-Monroy ZJ, Costa GM, Castañeda JEG, Parra-Giraldo CM. Antifungal Synergy: Mechanistic Insights into the R-1-R Peptide and Bidens pilosa Extract as Potent Therapeutics against Candida spp. through Proteomics. International Journal of Molecular Sciences. 2024; 25(16):8938. https://doi.org/10.3390/ijms25168938
Chicago/Turabian StyleVargas-Casanova, Yerly, Claudia Patricia Bravo-Chaucanés, Samuel de la Cámara Fuentes, Raquel Martinez-Lopez, Lucía Monteoliva, Concha Gil, Zuly Jenny Rivera-Monroy, Geison Modesti Costa, Javier Eduardo García Castañeda, and Claudia Marcela Parra-Giraldo. 2024. "Antifungal Synergy: Mechanistic Insights into the R-1-R Peptide and Bidens pilosa Extract as Potent Therapeutics against Candida spp. through Proteomics" International Journal of Molecular Sciences 25, no. 16: 8938. https://doi.org/10.3390/ijms25168938
APA StyleVargas-Casanova, Y., Bravo-Chaucanés, C. P., Fuentes, S. d. l. C., Martinez-Lopez, R., Monteoliva, L., Gil, C., Rivera-Monroy, Z. J., Costa, G. M., Castañeda, J. E. G., & Parra-Giraldo, C. M. (2024). Antifungal Synergy: Mechanistic Insights into the R-1-R Peptide and Bidens pilosa Extract as Potent Therapeutics against Candida spp. through Proteomics. International Journal of Molecular Sciences, 25(16), 8938. https://doi.org/10.3390/ijms25168938