Molecular Mechanisms behind Obesity and Their Potential Exploitation in Current and Future Therapy
Abstract
:1. Introduction
2. Central Nervous System (CNS)
2.1. Satiation, Satiety, and Hunger
2.2. Central Regulation of Food Intake
2.3. Non-Homeostatic Appetite Control
2.4. Disorders Underlying Obesity
2.5. Dysregulation of the Reward System
2.6. The CNS—Site of Action of Anti-Obesity Medications
2.6.1. Centrally Acting Drugs Currently Approved by the FDA
2.6.2. New Possibilities in Obesity Management
3. Gastrointestinal (GI) Tract
3.1. Diminished Absorption
3.2. Motility
3.2.1. GI Signaling Hormones
Ghrelin
Gastrin
Pancreatic Polypeptide (PP)
Peptide YY (PYY)
Cholecystokinin (CCK)
Somatostatin (SST)
Glucagon
Glucose-Dependent Insulinotropic Peptide (GIP)
Glucagon-like Peptide 1 (GLP-1)
Glucagon-like Peptide 2 (GLP-2)
Vasoactive Intestinal Peptide (VIP)
Amylin
Oxyntomodulin
Leptin and NPY
3.2.2. Current Anti-Obesity Therapeutics Affecting GI Motility
3.2.3. Potential Novel Anti-Obesity Molecules Influencing GI Motility
Oral GLP-1 Receptor Analogues
Cagrilintide—A Novel Amylin Receptor Analogue
Novel Dual Incretin-Based Analogues
Maridebart Cafraglutide (AMG-133)—A Novel GLP-1 Receptor Agonist and GIP Receptor Antagonist
Novel Triple Incretin-Based Analogues
3.2.4. Adverse GI Motility Events Related to Anti-Obesity Therapy
3.3. Microbiome
3.3.1. Influence of Microbiota on Body Weight
Fermentation of Indigestible Carbohydrates
Short-Chain Fatty Acids (SCFAs) and Their Receptors
Bile Acids (BAs)
Gut–Brain Axis (GBA)
Metabolic Endotoxemia
Energy Storage and Expenditure
Influence on the Internal Clock
3.3.2. Potential Therapeutic Methods Primarily Affecting Microbiota
Prebiotics, Probiotics, and Synbiotics
Fecal Microbiota Transplantation (FMT)
Sodium Butyrate
4. Energy Expenditure
4.1. Adipose Tissue
Bone Morphogenetic Proteins (BMPs) and Other Adipokines
4.2. Liver
4.3. Muscles
4.4. Compounds Affecting Energy Expenditure
4.4.1. Conjugated Linoleic (CLA), Docosahexaenoic (DHA), and Eicosapentaenoic (EPA) Acids
4.4.2. β-Aminoisobutyric Acid (BAIBA)
4.4.3. Ginseng
4.4.4. Incretin-Based Drugs
4.4.5. Resveratrol and Epigallocatechin-3-Gallate
4.4.6. R,S-1,3-Butanediol Diacetoacetate (BD-AcAc2)
4.4.7. Methylphenidate
4.4.8. Other Substances
5. Future Prospects
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
α-MSH | α-Melanocyte-stimulating hormone |
Acaca/ACC | Acetyl-CoA carboxylase |
ACC1 | Acetyl-CoA carboxylase 1 |
ACOX1 | Acyl-CoA oxidase 1 |
ACS | Acyl-CoA synthetase |
ADHD | Attention deficit hyperactivity disorder |
AgRP | Agouti-related peptide |
AICAR | 5-Aminoimidazole-4-carboxamide ribonucleotide |
AMPK | AMP-activated protein kinase |
ATP | Adenosine triphosphate |
BAIBA | β-Aminoisobutyric acid |
BAs | Bile acids |
BAT | Brown adipose tissue |
BCAAs | Branched-chain amino acids |
BD-AcAc2 | R,S-1,3-Butanediol diacetoacetate |
BDNF | Brain-derived neurotrophic factor |
BED | Binge-eating disorder |
BMI | Body mass index |
BMPs | Bone morphogenetic proteins |
C/EBPs | CCAAT/enhancer-binding proteins |
CART | Cocaine- and amphetamine-regulated transcript |
CB1R/CB2R | Cannabinoid-1 receptor/cannabinoid-2 receptor |
CCK | Cholecystokinin |
CD36 | Cluster of differentiation 36 |
CDCA | Chenodeoxycholic acid |
ChREBP | Carbohydrate-responsive element-binding protein |
CLA | Conjugated linoleic acid |
CNS | Central nervous system |
COVID-19 | Novel human coronavirus disease |
Cox4i1 | Cytochrome C oxidase subunit 4 isoform 1 |
CPT1 | Carnitine palmitoyltransferase 1 |
CPT1b | Carnitine palmitoyltransferase 1b |
CRH | Corticotropin-releasing hormone |
DGAT1 | Diacylglycerol O-acyltransferase 1 |
DHA | Docosahexaenoic acid |
Dio2 | Iodothyronine deiodinase 2 |
DNA | Deoxyribonucleic acid |
EMA | European Medicines Agency |
EPA | Eicosapentaenoic acid |
F/B | Firmicutes/Bacteroidetes ratio |
FABP3 | Fatty acid-binding protein 3 |
FA | Fatty acid |
FAS | Fatty acid synthase |
FATP | Fatty acid transport protein |
FDA | Food and Drug Administration |
FFAR2 | Free fatty acid receptor 2 |
FFAR3 | Free fatty acid receptor 3 |
FGF21 | Fibroblast growth factor 21 |
FIAF | Fasting-induced adipose factor |
FMT | Fecal microbiota transplantation |
FO | Fish oil |
FXR | Farnesoid X receptor |
GABA | Gamma-aminobutyric acid |
GBA | Gut–brain axis |
GHS-R1a | Growth hormone secretagogue receptor 1a |
GI | Gastrointestinal |
GIP | Glucose-dependent insulinotropic polypeptide |
GLP-1 | Glucagon-like peptide 1 |
GLP-1RA | GLP-1 receptor agonist |
GLP-2 | Glucagon-like peptide 2 |
GLUT4 | Glucose transporter type 4 |
GPCRs | G-protein-coupled receptors |
GPR40 | G-protein-coupled receptor 40 |
HbA1c | Glycosylated hemoglobin |
HCAR2 | Hydrocarboxylic acid receptor 2 |
HDL | High-density lipoprotein |
IKK2 | Inhibitor of nuclear factor kappa-B kinase 2 |
IL-6 | Interleukin-6 |
IL-22 | Interleukin-22 |
JNK1 C | Jun N-terminal kinase 1 |
LCAD | Long-chain acyl-CoA dehydrogenase |
LCFA-CoA | Long-chain fatty acyl-CoA |
LEPR | Leptin receptor |
LPL | Lipoprotein lipase |
LPS | Lipopolysaccharide |
Mapk14 | Mitogen-activated protein kinase 14 |
MASH | Metabolic dysfunction-associated steatohepatitis |
MASLD | Metabolic dysfunction-associated steatotic liver disease |
MC3R | Melanocortin-3 receptor |
MC4R | Melanocortin-4 receptor |
MCAD | Medium-chain acyl-CoA dehydrogenase |
MGAT-2 | Monoacylglycerol acyltransferase-2 |
MGO | Methylglyoxal |
NGPs | Next-generation probiotics |
NPY | Neuropeptide Y |
NPY5R | NPY receptor type 5 |
OXPHOS | Oxidative phosphorylation |
PBEF | Pre-B-cell colony-enhancing factor |
PDE-5 | Phosphodiesterase-5 |
PGC-1α | Peroxisome proliferator-activated receptor gamma coactivator 1-alpha |
POMC | Proopiomelanocortin |
PP | Pancreatic polypeptide |
PPARα/γ | Peroxisome proliferator-activated receptor alpha/gamma |
PPARγ2 | Peroxisome proliferator-activated receptor gamma 2 |
PRDM16 | PR domain containing 16 |
PXR | Pregnane X receptor |
PYY | Peptide YY |
RBP4 | Retinol-binding protein 4 |
RCT | Randomized controlled trial |
RNA | Ribonucleic acid |
SCD1 | Stearoyl-CoA desaturase 1 |
SCFA | Short-chain fatty acid |
SD | Standard deviation |
SERCA | Sarco/endoplasmic reticulum Ca2+-ATPase |
SF-1 | Steroidogenic factor -1 |
SGLT-2 | Sodium–glucose transport protein-2 |
SIRT-1 | Sirtuin 1 |
SLC27A1 | Solute carrier family 27 member 1 (another name for FATP) |
SNAC | Salcaprozate sodium |
SREBP-1c | Sterol-regulatory element-binding protein 1c |
SST | Somatostatin |
TAG | Triacylglycerol |
T2DM | Type 2 diabetes mellitus |
TLR4 | Toll-like receptor 4 |
TNF-α | Tumor necrosis factor-α |
TRH | Thyrotropin-releasing hormone |
UCP1 | Uncoupling protein 1 |
VDR | Vitamin D receptor |
VIP | Vasoactive intestinal peptide |
VLDL | Very-low-density lipoprotein |
WAT | White adipose tissue |
WHO | World Health Organization |
References
- Chooi, Y.C.; Ding, C.; Magkos, F. The epidemiology of obesity. Metab. Clin. Exp. 2019, 92, 6–10. [Google Scholar] [CrossRef] [PubMed]
- Share of Adults Who Are Overweight or Obese. Available online: https://ourworldindata.org/grapher/share-of-adults-who-are-overweight (accessed on 31 May 2024).
- Restrepo, B.J. Obesity Prevalence among U.S. Adults during the COVID-19 Pandemic. Am. J. Prev. Med. 2022, 63, 102–106. [Google Scholar] [CrossRef]
- Anderson, L.N.; Yoshida-Montezuma, Y.; Dewart, N.; Jalil, E.; Khattar, J.; De Rubeis, V.; Carsley, S.; Griffith, L.E.; Mbuagbaw, L. Obesity and weight change during the COVID-19 pandemic in children and adults: A systematic review and meta-analysis. Obes. Rev. 2023, 24, e13550. [Google Scholar] [CrossRef] [PubMed]
- WHO. WHO Obesity: Preventing and Managing the Global Epidemic: Report of a WHO Consultation; World Health Organisation Technical Report Series; WHO: Geneva, Switzerland, 2000; Volume 894, pp. i–xii. [Google Scholar]
- Obesity and Overweight. Available online: https://www.who.int/news-room/fact-sheets/detail/obesity-and-overweight (accessed on 31 May 2024).
- Safaei, M.; Sundararajan, E.A.; Driss, M.; Boulila, W.; Shapi’i, A. A systematic literature review on obesity: Understanding the causes & consequences of obesity and reviewing various machine learning approaches used to predict obesity. Comput. Biol. Med. 2021, 136, 104754. [Google Scholar] [CrossRef]
- Lin, X.; Li, H. Obesity: Epidemiology, pathophysiology, and therapeutics. Front. Endocrinol. 2021, 12, 706978. [Google Scholar] [CrossRef] [PubMed]
- Sankararaman, S.; Noriega, K.; Velayuthan, S.; Sferra, T.; Martindale, R. Gut Microbiome and Its Impact on Obesity and Obesity-Related Disorders. Curr. Gastroenterol. Rep. 2023, 25, 31–44. [Google Scholar] [CrossRef] [PubMed]
- Cifuentes, L.; Acosta, A. Homeostatic regulation of food intake. Clin. Res. Hepatol. Gastroenterol. 2022, 46, 101794. [Google Scholar] [CrossRef] [PubMed]
- van de Wouw, M.; Schellekens, H.; Dinan, T.G.; Cryan, J.F. Microbiota-gut-brain axis: Modulator of host metabolism and appetite. J. Nutr. 2017, 147, 727–745. [Google Scholar] [CrossRef] [PubMed]
- Loos, R.J.F.; Janssens, A.C.J.W. Predicting polygenic obesity using genetic information. Cell Metab. 2017, 25, 535–543. [Google Scholar] [CrossRef]
- Loos, R.J.F.; Yeo, G.S.H. The genetics of obesity: From discovery to biology. Nat. Rev. Genet. 2022, 23, 120–133. [Google Scholar] [CrossRef]
- Ding, C.; Chan, Z.; Magkos, F. Lean, but not healthy: The “metabolically obese, normal-weight” phenotype. Curr. Opin. Clin. Nutr. Metab. Care 2016, 19, 408–417. [Google Scholar] [CrossRef] [PubMed]
- Coral, D.E.; Fernandez-Tajes, J.; Tsereteli, N.; Pomares-Millan, H.; Fitipaldi, H.; Mutie, P.M.; Atabaki-Pasdar, N.; Kalamajski, S.; Poveda, A.; Miller-Fleming, T.W.; et al. A phenome-wide comparative analysis of genetic discordance between obesity and type 2 diabetes. Nat. Metab. 2023, 5, 237–247. [Google Scholar] [CrossRef] [PubMed]
- Ling, C.; Rönn, T. Epigenetics in human obesity and type 2 diabetes. Cell Metab. 2019, 29, 1028–1044. [Google Scholar] [CrossRef] [PubMed]
- Yang, C.-H.; Fagnocchi, L.; Apostle, S.; Wegert, V.; Casaní-Galdón, S.; Landgraf, K.; Panzeri, I.; Dror, E.; Heyne, S.; Wörpel, T.; et al. Independent phenotypic plasticity axes define distinct obesity sub-types. Nat. Metab. 2022, 4, 1150–1165. [Google Scholar] [CrossRef] [PubMed]
- Murthy, V.L.; Mosley, J.D.; Perry, A.S.; Jacobs, D.R.; Tanriverdi, K.; Zhao, S.; Sawicki, K.T.; Carnethon, M.; Wilkins, J.T.; Nayor, M.; et al. Metabolic liability for weight gain in early adulthood. Cell Rep. Med. 2024, 5, 101548. [Google Scholar] [CrossRef] [PubMed]
- Cirulli, E.T.; Guo, L.; Leon Swisher, C.; Shah, N.; Huang, L.; Napier, L.A.; Kirkness, E.F.; Spector, T.D.; Caskey, C.T.; Thorens, B.; et al. Profound Perturbation of the Metabolome in Obesity Is Associated with Health Risk. Cell Metab. 2019, 29, 488–500.e2. [Google Scholar] [CrossRef] [PubMed]
- Ottosson, F.; Smith, E.; Ericson, U.; Brunkwall, L.; Orho-Melander, M.; Di Somma, S.; Antonini, P.; Nilsson, P.M.; Fernandez, C.; Melander, O. Metabolome-Defined Obesity and the Risk of Future Type 2 Diabetes and Mortality. Diabetes Care 2022, 45, 1260–1267. [Google Scholar] [CrossRef] [PubMed]
- Lemieux, I.; Després, J.-P. Metabolic syndrome: Past, present and future. Nutrients 2020, 12, 3501. [Google Scholar] [CrossRef] [PubMed]
- Cesaro, A.; De Michele, G.; Fimiani, F.; Acerbo, V.; Scherillo, G.; Signore, G.; Rotolo, F.P.; Scialla, F.; Raucci, G.; Panico, D.; et al. Visceral adipose tissue and residual cardiovascular risk: A pathological link and new therapeutic options. Front. Cardiovasc. Med. 2023, 10, 1187735. [Google Scholar] [CrossRef]
- Jiang, Z.; Wang, Y.; Zhao, X.; Cui, H.; Han, M.; Ren, X.; Gang, X.; Wang, G. Obesity and chronic kidney disease. Am. J. Physiol. Endocrinol. Metab. 2023, 324, E24–E41. [Google Scholar] [CrossRef]
- Huttasch, M.; Roden, M.; Kahl, S. Obesity and MASLD: Is weight loss the (only) key to treat metabolic liver disease? Metab. Clin. Exp. 2024, 157, 155937. [Google Scholar] [CrossRef]
- Liu, C.; Chen, M.-S.; Yu, H. The relationship between obstructive sleep apnea and obesity hypoventilation syndrome: A systematic review and meta-analysis. Oncotarget 2017, 8, 93168–93178. [Google Scholar] [CrossRef] [PubMed]
- Mojtahedi, Z.; Farjadian, S. Awareness of Obesity-Related Cancers: A Complex Issue. Int. J. Environ. Res. Public Health 2022, 19, 6617. [Google Scholar] [CrossRef] [PubMed]
- Kulkarni, K.; Karssiens, T.; Kumar, V.; Pandit, H. Obesity and osteoarthritis. Maturitas 2016, 89, 22–28. [Google Scholar] [CrossRef] [PubMed]
- Galler, A.; Thönnes, A.; Joas, J.; Joisten, C.; Körner, A.; Reinehr, T.; Röbl, M.; Schauerte, G.; Siegfried, W.; Weghuber, D.; et al. APV Initiative Clinical characteristics and outcomes of children, adolescents and young adults with overweight or obesity and mental health disorders. Int. J. Obes. 2024, 48, 423–432. [Google Scholar] [CrossRef] [PubMed]
- Ndumele, C.E.; Rangaswami, J.; Chow, S.L.; Neeland, I.J.; Tuttle, K.R.; Khan, S.S.; Coresh, J.; Mathew, R.O.; Baker-Smith, C.M.; Carnethon, M.R.; et al. American Heart Association Cardiovascular-Kidney-Metabolic Health: A Presidential Advisory from the American Heart Association. Circulation 2023, 148, 1606–1635. [Google Scholar] [CrossRef] [PubMed]
- Fontaine, K.R.; Redden, D.T.; Wang, C.; Westfall, A.O.; Allison, D.B. Years of life lost due to obesity. JAMA 2003, 289, 187–193. [Google Scholar] [CrossRef] [PubMed]
- Taylor, V.H.; Forhan, M.; Vigod, S.N.; McIntyre, R.S.; Morrison, K.M. The impact of obesity on quality of life. Best Pract. Res. Clin. Endocrinol. Metab. 2013, 27, 139–146. [Google Scholar] [CrossRef]
- Blundell, J.E.; Halford, J.C. Regulation of nutrient supply: The brain and appetite control. Proc. Nutr. Soc. 1994, 53, 407–418. [Google Scholar] [CrossRef]
- Ferreira-Hermosillo, A.; de Miguel Ibañez, R.; Pérez-Dionisio, E.K.; Villalobos-Mata, K.A. Obesity as a neuroendocrine disorder. Arch. Med. Res. 2023, 54, 102896. [Google Scholar] [CrossRef]
- Timper, K.; Brüning, J.C. Hypothalamic circuits regulating appetite and energy homeostasis: Pathways to obesity. Dis. Model. Mech. 2017, 10, 679–689. [Google Scholar] [CrossRef]
- Matafome, P.; Eickhoff, H.; Letra, L.; Seiça, R. Neuroendocrinology of Adipose Tissue and Gut-Brain Axis. Adv. Neurobiol. 2017, 19, 49–70. [Google Scholar] [CrossRef] [PubMed]
- Sobrino Crespo, C.; Perianes Cachero, A.; Puebla Jiménez, L.; Barrios, V.; Arilla Ferreiro, E. Peptides and food intake. Front. Endocrinol. 2014, 5, 58. [Google Scholar] [CrossRef]
- Alhadeff, A.L.; Rupprecht, L.E.; Hayes, M.R. GLP-1 neurons in the nucleus of the solitary tract project directly to the ventral tegmental area and nucleus accumbens to control for food intake. Endocrinology 2012, 153, 647–658. [Google Scholar] [CrossRef]
- Gruber, T.; Lechner, F.; Krieger, J.-P.; García-Cáceres, C. Neuroendocrine gut-brain signaling in obesity. Trends Endocrinol. Metab. 2024. [Google Scholar] [CrossRef] [PubMed]
- Schwartz, M.W. Central nervous system regulation of food intake. Obesity 2006, 14 (Suppl. S1), 1S–8S. [Google Scholar] [CrossRef] [PubMed]
- Kim, K.-S.; Seeley, R.J.; Sandoval, D.A. Signalling from the periphery to the brain that regulates energy homeostasis. Nat. Rev. Neurosci. 2018, 19, 185–196. [Google Scholar] [CrossRef]
- Stover, P.J.; Field, M.S.; Andermann, M.L.; Bailey, R.L.; Batterham, R.L.; Cauffman, E.; Frühbeck, G.; Iversen, P.O.; Starke-Reed, P.; Sternson, S.M.; et al. Neurobiology of eating behavior, nutrition, and health. J. Intern. Med. 2023, 294, 582–604. [Google Scholar] [CrossRef]
- Morton, G.J.; Meek, T.H.; Schwartz, M.W. Neurobiology of food intake in health and disease. Nat. Rev. Neurosci. 2014, 15, 367–378. [Google Scholar] [CrossRef]
- Ziauddeen, H.; Alonso-Alonso, M.; Hill, J.O.; Kelley, M.; Khan, N.A. Obesity and the neurocognitive basis of food reward and the control of intake. Adv. Nutr. 2015, 6, 474–486. [Google Scholar] [CrossRef]
- Sheng, Z.; Santiago, A.M.; Thomas, M.P.; Routh, V.H. Metabolic regulation of lateral hypothalamic glucose-inhibited orexin neurons may influence midbrain reward neurocircuitry. Mol. Cell. Neurosci. 2014, 62, 30–41. [Google Scholar] [CrossRef] [PubMed]
- Jennings, J.H.; Ung, R.L.; Resendez, S.L.; Stamatakis, A.M.; Taylor, J.G.; Huang, J.; Veleta, K.; Kantak, P.A.; Aita, M.; Shilling-Scrivo, K.; et al. Visualizing hypothalamic network dynamics for appetitive and consummatory behaviors. Cell 2015, 160, 516–527. [Google Scholar] [CrossRef] [PubMed]
- Kleinridders, A.; Könner, A.C.; Brüning, J.C. CNS-targets in control of energy and glucose homeostasis. Curr. Opin. Pharmacol. 2009, 9, 794–804. [Google Scholar] [CrossRef] [PubMed]
- Thaler, J.P.; Yi, C.-X.; Schur, E.A.; Guyenet, S.J.; Hwang, B.H.; Dietrich, M.O.; Zhao, X.; Sarruf, D.A.; Izgur, V.; Maravilla, K.R.; et al. Obesity is associated with hypothalamic injury in rodents and humans. J. Clin. Investig. 2012, 122, 153–162. [Google Scholar] [CrossRef] [PubMed]
- Tsaousidou, E.; Paeger, L.; Belgardt, B.F.; Pal, M.; Wunderlich, C.M.; Brönneke, H.; Collienne, U.; Hampel, B.; Wunderlich, F.T.; Schmidt-Supprian, M.; et al. Distinct Roles for JNK and IKK Activation in Agouti-Related Peptide Neurons in the Development of Obesity and Insulin Resistance. Cell Rep. 2014, 9, 1495–1506. [Google Scholar] [CrossRef] [PubMed]
- Gastelum, C.; Perez, L.; Hernandez, J.; Le, N.; Vahrson, I.; Sayers, S.; Wagner, E.J. Adaptive changes in the central control of energy homeostasis occur in response to variations in energy status. Int. J. Mol. Sci. 2021, 22, 2728. [Google Scholar] [CrossRef]
- Cui, H.; López, M.; Rahmouni, K. The cellular and molecular bases of leptin and ghrelin resistance in obesity. Nat. Rev. Endocrinol. 2017, 13, 338–351. [Google Scholar] [CrossRef] [PubMed]
- Yu, Y.H.; Vasselli, J.R.; Zhang, Y.; Mechanick, J.I.; Korner, J.; Peterli, R. Metabolic vs. hedonic obesity: A conceptual distinction and its clinical implications. Obes. Rev. 2015, 16, 234–247. [Google Scholar] [CrossRef]
- Latner, J.D.; Puhl, R.M.; Murakami, J.M.; O’Brien, K.S. Food addiction as a causal model of obesity. Effects on stigma, blame, and perceived psychopathology. Appetite 2014, 77, 77–82. [Google Scholar] [CrossRef]
- Lennerz, B.; Lennerz, J.K. Food Addiction, High-Glycemic-Index Carbohydrates, and Obesity. Clin. Chem. 2018, 64, 64–71. [Google Scholar] [CrossRef] [PubMed]
- Boswell, R.G.; Potenza, M.N.; Grilo, C.M. The Neurobiology of Binge-eating Disorder Compared with Obesity: Implications for Differential Therapeutics. Clin. Ther. 2021, 43, 50–69. [Google Scholar] [CrossRef] [PubMed]
- Walenda, A.; Bogusz, K.; Kopera, M.; Jakubczyk, A.; Wojnar, M.; Kucharska, K. Regulacja emocji w zaburzeniu z napadami objadania się. Psychiatr. Pol. 2021, 55, 1433–1448. [Google Scholar] [CrossRef]
- Angelidi, A.M.; Belanger, M.J.; Kokkinos, A.; Koliaki, C.C.; Mantzoros, C.S. Novel noninvasive approaches to the treatment of obesity: From pharmacotherapy to gene therapy. Endocr. Rev. 2022, 43, 507–557. [Google Scholar] [CrossRef]
- Bessesen, D.H.; Van Gaal, L.F. Progress and challenges in anti-obesity pharmacotherapy. Lancet Diabetes Endocrinol. 2018, 6, 237–248. [Google Scholar] [CrossRef]
- Husum, H.; Van Kammen, D.; Termeer, E.; Bolwig, G.; Mathé, A. Topiramate normalizes hippocampal NPY-LI in flinders sensitive line “depressed” rats and upregulates NPY, galanin, and CRH-LI in the hypothalamus: Implications for mood-stabilizing and weight loss-inducing effects. Neuropsychopharmacology 2003, 28, 1292–1299. [Google Scholar] [CrossRef] [PubMed]
- Gadde, K.M.; Martin, C.K.; Berthoud, H.-R.; Heymsfield, S.B. Obesity: Pathophysiology and Management. J. Am. Coll. Cardiol. 2018, 71, 69–84. [Google Scholar] [CrossRef] [PubMed]
- Billes, S.K.; Sinnayah, P.; Cowley, M.A. Naltrexone/bupropion for obesity: An investigational combination pharmacotherapy for weight loss. Pharmacol. Res. 2014, 84, 1–11. [Google Scholar] [CrossRef]
- Greenway, F.L.; Fujioka, K.; Plodkowski, R.A.; Mudaliar, S.; Guttadauria, M.; Erickson, J.; Kim, D.D.; Dunayevich, E. COR-I Study Group Effect of naltrexone plus bupropion on weight loss in overweight and obese adults (COR-I): A multicentre, randomised, double-blind, placebo-controlled, phase 3 trial. Lancet 2010, 376, 595–605. [Google Scholar] [CrossRef]
- Bułdak, Ł.; Machnik, G.; Skudrzyk, E.; Bołdys, A.; Okopień, B. The impact of exenatide (a GLP-1 agonist) on markers of inflammation and oxidative stress in normal human astrocytes subjected to various glycemic conditions. Exp. Ther. Med. 2019, 17, 2861–2869. [Google Scholar] [CrossRef]
- Buldak, L.; Machnik, G.; Skudrzyk, E.; Boldys, A.; Maliglowka, M.; Kosowski, M.; Basiak, M.; Buldak, R.J.; Okopien, B. Exenatide prevents statin-related LDL receptor increase and improves insulin secretion in pancreatic beta cells (1.1E7) in a protein kinase A-dependent manner. J. Appl. Biomed. 2022, 20, 130–140. [Google Scholar] [CrossRef]
- Barakat, G.M.; Ramadan, W.; Assi, G.; Khoury, N.B.E. Satiety: A gut-brain-relationship. J. Physiol. Sci. 2024, 74, 11. [Google Scholar] [CrossRef] [PubMed]
- Boer, G.A.; Hay, D.L.; Tups, A. Obesity pharmacotherapy: Incretin action in the central nervous system. Trends Pharmacol. Sci. 2023, 44, 50–63. [Google Scholar] [CrossRef] [PubMed]
- Pi-Sunyer, X.; Astrup, A.; Fujioka, K.; Greenway, F.; Halpern, A.; Krempf, M.; Lau, D.C.W.; Le Roux, C.W.; Violante Ortiz, R.; Jensen, C.B.; et al. SCALE Obesity and Prediabetes NN8022-1839 Study Group A randomized, controlled trial of 3.0 mg of liraglutide in weight management. N. Engl. J. Med. 2015, 373, 11–22. [Google Scholar] [CrossRef] [PubMed]
- Chakhtoura, M.; Haber, R.; Ghezzawi, M.; Rhayem, C.; Tcheroyan, R.; Mantzoros, C.S. Pharmacotherapy of obesity: An update on the available medications and drugs under investigation. EClinicalMedicine 2023, 58, 101882. [Google Scholar] [CrossRef] [PubMed]
- Rosenstock, J.; Wysham, C.; Frías, J.P.; Kaneko, S.; Lee, C.J.; Fernández Landó, L.; Mao, H.; Cui, X.; Karanikas, C.A.; Thieu, V.T. Efficacy and safety of a novel dual GIP and GLP-1 receptor agonist tirzepatide in patients with type 2 diabetes (SURPASS-1): A double-blind, randomised, phase 3 trial. Lancet 2021, 398, 143–155. [Google Scholar] [CrossRef] [PubMed]
- Ludvik, B.; Giorgino, F.; Jódar, E.; Frias, J.P.; Fernández Landó, L.; Brown, K.; Bray, R.; Rodríguez, Á. Once-weekly tirzepatide versus once-daily insulin degludec as add-on to metformin with or without SGLT2 inhibitors in patients with type 2 diabetes (SURPASS-3): A randomised, open-label, parallel-group, phase 3 trial. Lancet 2021, 398, 583–598. [Google Scholar] [CrossRef] [PubMed]
- Del Prato, S.; Kahn, S.E.; Pavo, I.; Weerakkody, G.J.; Yang, Z.; Doupis, J.; Aizenberg, D.; Wynne, A.G.; Riesmeyer, J.S.; Heine, R.J.; et al. SURPASS-4 Investigators Tirzepatide versus insulin glargine in type 2 diabetes and increased cardiovascular risk (SURPASS-4): A randomised, open-label, parallel-group, multicentre, phase 3 trial. Lancet 2021, 398, 1811–1824. [Google Scholar] [CrossRef] [PubMed]
- Frías, J.P.; Davies, M.J.; Rosenstock, J.; Pérez Manghi, F.C.; Fernández Landó, L.; Bergman, B.K.; Liu, B.; Cui, X.; Brown, K. SURPASS-2 Investigators Tirzepatide versus Semaglutide Once Weekly in Patients with Type 2 Diabetes. N. Engl. J. Med. 2021, 385, 503–515. [Google Scholar] [CrossRef] [PubMed]
- Jastreboff, A.M.; Aronne, L.J.; Ahmad, N.N.; Wharton, S.; Connery, L.; Alves, B.; Kiyosue, A.; Zhang, S.; Liu, B.; Bunck, M.C.; et al. SURMOUNT-1 Investigators Tirzepatide once weekly for the treatment of obesity. N. Engl. J. Med. 2022, 387, 205–216. [Google Scholar] [CrossRef]
- Borner, T.; Geisler, C.E.; Fortin, S.M.; Cosgrove, R.; Alsina-Fernandez, J.; Dogra, M.; Doebley, S.; Sanchez-Navarro, M.J.; Leon, R.M.; Gaisinsky, J.; et al. GIP Receptor Agonism Attenuates GLP-1 Receptor Agonist-Induced Nausea and Emesis in Preclinical Models. Diabetes 2021, 70, 2545–2553. [Google Scholar] [CrossRef]
- Coskun, T.; Urva, S.; Roell, W.C.; Qu, H.; Loghin, C.; Moyers, J.S.; O’Farrell, L.S.; Briere, D.A.; Sloop, K.W.; Thomas, M.K.; et al. LY3437943, a novel triple glucagon, GIP, and GLP-1 receptor agonist for glycemic control and weight loss: From discovery to clinical proof of concept. Cell Metab. 2022, 34, 1234–1247.e9. [Google Scholar] [CrossRef] [PubMed]
- Tan, T.; Behary, P.; Tharakan, G.; Minnion, J.; Al-Najim, W.; Albrechtsen, N.J.W.; Holst, J.J.; Bloom, S.R. The Effect of a Subcutaneous Infusion of GLP-1, OXM, and PYY on Energy Intake and Expenditure in Obese Volunteers. J. Clin. Endocrinol. Metab. 2017, 102, 2364–2372. [Google Scholar] [CrossRef] [PubMed]
- Blüher, S.; Ziotopoulou, M.; Bullen, J.W.; Moschos, S.J.; Ungsunan, L.; Kokkotou, E.; Maratos-Flier, E.; Mantzoros, C.S. Responsiveness to peripherally administered melanocortins in lean and obese mice. Diabetes 2004, 53, 82–90. [Google Scholar] [CrossRef] [PubMed]
- Pierroz, D.D.; Ziotopoulou, M.; Ungsunan, L.; Moschos, S.; Flier, J.S.; Mantzoros, C.S. Effects of acute and chronic administration of the melanocortin agonist MTII in mice with diet-induced obesity. Diabetes 2002, 51, 1337–1345. [Google Scholar] [CrossRef]
- Clément, K.; van den Akker, E.; Argente, J.; Bahm, A.; Chung, W.K.; Connors, H.; De Waele, K.; Farooqi, I.S.; Gonneau-Lejeune, J.; Gordon, G.; et al. Setmelanotide POMC and LEPR Phase 3 Trial Investigators Efficacy and safety of setmelanotide, an MC4R agonist, in individuals with severe obesity due to LEPR or POMC deficiency: Single-arm, open-label, multicentre, phase 3 trials. Lancet Diabetes Endocrinol. 2020, 8, 960–970. [Google Scholar] [CrossRef]
- Grover, A.; Quaye, E.; Brychta, R.J.; Christensen, J.; Startzell, M.S.; Meehan, C.A.; Valencia, A.; Marshall, B.; Chen, K.Y.; Brown, R.J. Leptin decreases energy expenditure despite increased thyroid hormone in patients with lipodystrophy. J. Clin. Endocrinol. Metab. 2021, 106, e4163–e4178. [Google Scholar] [CrossRef]
- Astrup, A.; Meier, D.H.; Mikkelsen, B.O.; Villumsen, J.S.; Larsen, T.M. Weight loss produced by tesofensine in patients with Parkinson’s or Alzheimer’s disease. Obesity 2008, 16, 1363–1369. [Google Scholar] [CrossRef]
- Astrup, A.; Madsbad, S.; Breum, L.; Jensen, T.J.; Kroustrup, J.P.; Larsen, T.M. Effect of tesofensine on bodyweight loss, body composition, and quality of life in obese patients: A randomised, double-blind, placebo-controlled trial. Lancet 2008, 372, 1906–1913. [Google Scholar] [CrossRef]
- Bentzen, B.H.; Grunnet, M.; Hyveled-Nielsen, L.; Sundgreen, C.; Lassen, J.B.; Hansen, H.H. Anti-hypertensive treatment preserves appetite suppression while preventing cardiovascular adverse effects of tesofensine in rats. Obesity 2013, 21, 985–992. [Google Scholar] [CrossRef]
- Saniona’s Tesofensine Meets Primary and Secondary Endpoints. Available online: https://www.globenewswire.com/news-release/2018/12/17/1667781/0/en/Saniona-s-tesofensine-meets-primary-and-secondary-endpoints-in-Phase-3-obesity-registration-trial.html (accessed on 16 June 2024).
- Blevins, J.E.; Graham, J.L.; Morton, G.J.; Bales, K.L.; Schwartz, M.W.; Baskin, D.G.; Havel, P.J. Chronic oxytocin administration inhibits food intake, increases energy expenditure, and produces weight loss in fructose-fed obese rhesus monkeys. Am. J. Physiol. Regul. Integr. Comp. Physiol. 2015, 308, R431–R438. [Google Scholar] [CrossRef]
- Blevins, J.E.; Baskin, D.G. Translational and therapeutic potential of oxytocin as an anti-obesity strategy: Insights from rodents, nonhuman primates and humans. Physiol. Behav. 2015, 152, 438–449. [Google Scholar] [CrossRef]
- Plessow, F.; Kerem, L.; Wronski, M.-L.; Asanza, E.; O’Donoghue, M.L.; Stanford, F.C.; Eddy, K.T.; Holmes, T.M.; Misra, M.; Thomas, J.J.; et al. Intranasal oxytocin for obesity. NEJM Evid. 2024, 3, EVIDoa2300349. [Google Scholar] [CrossRef] [PubMed]
- The Effects of Oxytocin in Obese Adults. Available online: https://ctv.veeva.com/study/the-effects-of-oxytocin-in-obese-adults (accessed on 27 June 2024).
- Levine, A.S.; Jewett, D.C.; Cleary, J.P.; Kotz, C.M.; Billington, C.J. Our journey with neuropeptide Y: Effects on ingestive behaviors and energy expenditure. Peptides 2004, 25, 505–510. [Google Scholar] [CrossRef] [PubMed]
- Sargent, B.J.; Moore, N.A. New central targets for the treatment of obesity. Br. J. Clin. Pharmacol. 2009, 68, 852–860. [Google Scholar] [CrossRef]
- Dehestani, B.; Stratford, N.R.; le Roux, C.W. Amylin as a future obesity treatment. J. Obes. Metab. Syndr. 2021, 30, 320–325. [Google Scholar] [CrossRef] [PubMed]
- A Research Study of How NNC0174-0833 Behaves in Chinese Volunteers Who Are Normal Weight, Overweight or with Obesity. Available online: https://ctv.veeva.com/study/a-research-study-of-how-nnc0174-0833-behaves-in-chinese-volunteers-who-are-normal-weight-overweight (accessed on 27 June 2024).
- D’Ascanio, A.M.; Mullally, J.A.; Frishman, W.H. Cagrilintide: A Long-Acting Amylin Analog for the Treatment of Obesity. Cardiol. Rev. 2024, 32, 83–90. [Google Scholar] [CrossRef]
- Enebo, L.B.; Berthelsen, K.K.; Kankam, M.; Lund, M.T.; Rubino, D.M.; Satylganova, A.; Lau, D.C.W. Safety, tolerability, pharmacokinetics, and pharmacodynamics of concomitant administration of multiple doses of cagrilintide with semaglutide 24 mg for weight management: A randomised, controlled, phase 1b trial. Lancet 2021, 397, 1736–1748. [Google Scholar] [CrossRef]
- Howlett, A.C.; Barth, F.; Bonner, T.I.; Cabral, G.; Casellas, P.; Devane, W.A.; Felder, C.C.; Herkenham, M.; Mackie, K.; Martin, B.R.; et al. International Union of Pharmacology. XXVII. Classification of cannabinoid receptors. Pharmacol. Rev. 2002, 54, 161–202. [Google Scholar] [CrossRef]
- Richey, J.M.; Woolcott, O. Re-visiting the Endocannabinoid System and Its Therapeutic Potential in Obesity and Associated Diseases. Curr. Diab. Rep. 2017, 17, 99. [Google Scholar] [CrossRef]
- Christensen, R.; Kristensen, P.K.; Bartels, E.M.; Bliddal, H.; Astrup, A. Efficacy and safety of the weight-loss drug rimonabant: A meta-analysis of randomised trials. Lancet 2007, 370, 1706–1713. [Google Scholar] [CrossRef]
- Chambers, A.P.; Vemuri, V.K.; Peng, Y.; Wood, J.T.; Olszewska, T.; Pittman, Q.J.; Makriyannis, A.; Sharkey, K.A. A neutral CB1 receptor antagonist reduces weight gain in rat. Am. J. Physiol. Regul. Integr. Comp. Physiol. 2007, 293, R2185–R2193. [Google Scholar] [CrossRef] [PubMed]
- Sink, K.S.; McLaughlin, P.J.; Wood, J.A.T.; Brown, C.; Fan, P.; Vemuri, V.K.; Peng, Y.; Olszewska, T.; Thakur, G.A.; Makriyannis, A.; et al. The novel cannabinoid CB1 receptor neutral antagonist AM4113 suppresses food intake and food-reinforced behavior but does not induce signs of nausea in rats. Neuropsychopharmacology 2008, 33, 946–955. [Google Scholar] [CrossRef] [PubMed]
- Moose, J.E.; Leets, K.A.; Mate, N.A.; Chisholm, J.D.; Hougland, J.L. An overview of ghrelin O-acyltransferase inhibitors: A literature and patent review for 2010–2019. Expert Opin. Ther. Pat. 2020, 30, 581–593. [Google Scholar] [CrossRef] [PubMed]
- Bianzano, S.; Henrich, A.; Herich, L.; Kalsch, B.; Sarubbi, D.; Seitz, F.; Forst, T. Efficacy and safety of the ghrelin-O-acyltransferase inhibitor BI 1356225 in overweight/obesity: Data from two Phase I, randomised, placebo-controlled studies. Metab. Clin. Exp. 2023, 143, 155550. [Google Scholar] [CrossRef]
- Sjöström, L.; Rissanen, A.; Andersen, T.; Boldrin, M.; Golay, A.; Koppeschaar, H.P.; Krempf, M.; European Multicentre Orlistat Study Group. Randomised placebo-controlled trial of orlistat for weight loss and prevention of weight regain in obese patients. Lancet 1998, 352, 167–172. [Google Scholar] [CrossRef] [PubMed]
- Holmbäck, U.; Grudén, S.; Litorp, H.; Willhems, D.; Kuusk, S.; Alderborn, G.; Söderhäll, A.; Forslund, A. Effects of a novel weight-loss combination product containing orlistat and acarbose on obesity: A randomized, placebo-controlled trial. Obesity 2022, 30, 2222–2232. [Google Scholar] [CrossRef]
- Fineman, M.S.; Bryant, C.L.N.; Colbert, K.; Jozefiak, T.H.; Petersen, J.S.; Horowitz, M.; Vora, J.; Rayner, C.K.; Wabnitz, P.; Nimgaonkar, A. First-in-human study of a pharmacological duodenal exclusion therapy shows reduced postprandial glucose and insulin and increased bile acid and gut hormone concentrations. Diabetes Obes. Metab. 2023, 25, 2447–2456. [Google Scholar] [CrossRef] [PubMed]
- Bauer, P.V.; Hamr, S.C.; Duca, F.A. Regulation of energy balance by a gut-brain axis and involvement of the gut microbiota. Cell. Mol. Life Sci. 2016, 73, 737–755. [Google Scholar] [CrossRef] [PubMed]
- Wu, T.; Rayner, C.K.; Young, R.L.; Horowitz, M. Gut motility and enteroendocrine secretion. Curr. Opin. Pharmacol. 2013, 13, 928–934. [Google Scholar] [CrossRef]
- Mori, H.; Verbeure, W.; Schol, J.; Carbone, F.; Tack, J. Gastrointestinal hormones and regulation of gastric emptying. Curr. Opin. Endocrinol. Diabetes Obes. 2022, 29, 191–199. [Google Scholar] [CrossRef]
- Koutouratsas, T.; Kalli, T.; Karamanolis, G.; Gazouli, M. Contribution of ghrelin to functional gastrointestinal disorders’ pathogenesis. World J. Gastroenterol. 2019, 25, 539–551. [Google Scholar] [CrossRef]
- Miron, I.; Dumitrascu, D.L. Gastrointestinal motility disorders in obesity. Acta Endocrinol. 2019, 15, 497–504. [Google Scholar] [CrossRef] [PubMed]
- Zeng, Q.; Ou, L.; Wang, W.; Guo, D.-Y. Gastrin, cholecystokinin, signaling, and biological activities in cellular processes. Front. Endocrinol. 2020, 11, 112. [Google Scholar] [CrossRef]
- Verbeure, W.; Rotondo, A.; Janssen, P.; Carbone, F.; Tack, J. Supraphysiological effects of pancreatic polypeptide on gastric motor function and nutrient tolerance in humans. Physiol. Rep. 2021, 9, e15002. [Google Scholar] [CrossRef] [PubMed]
- Moriya, R.; Fujikawa, T.; Ito, J.; Shirakura, T.; Hirose, H.; Suzuki, J.; Fukuroda, T.; Macneil, D.J.; Kanatani, A. Pancreatic polypeptide enhances colonic muscle contraction and fecal output through neuropeptide Y Y4 receptor in mice. Eur. J. Pharmacol. 2010, 627, 258–264. [Google Scholar] [CrossRef]
- Adamska, E.; Ostrowska, L.; Górska, M.; Krętowski, A. The role of gastrointestinal hormones in the pathogenesis of obesity and type 2 diabetes. Prz. Gastroenterol. 2014, 9, 69–76. [Google Scholar] [CrossRef] [PubMed]
- Shamsi, B.H.; Chatoo, M.; Xu, X.K.; Xu, X.; Chen, X.Q. Versatile functions of somatostatin and somatostatin receptors in the gastrointestinal system. Front. Endocrinol. 2021, 12, 652363. [Google Scholar] [CrossRef] [PubMed]
- Christensen, M.; Bagger, J.I.; Vilsbøll, T.; Knop, F.K. The alpha-cell as target for type 2 diabetes therapy. Rev. Diabet. Stud. 2011, 8, 369–381. [Google Scholar] [CrossRef]
- Suppli, M.P.; Lund, A.; Bagger, J.I.; Vilsbøll, T.; Knop, F.K. Involvement of steatosis-induced glucagon resistance in hyperglucagonaemia. Med. Hypotheses 2016, 86, 100–103. [Google Scholar] [CrossRef]
- Suppli, M.P.; Bagger, J.I.; Lund, A.; Demant, M.; van Hall, G.; Strandberg, C.; Kønig, M.J.; Rigbolt, K.; Langhoff, J.L.; Wewer Albrechtsen, N.J.; et al. Glucagon resistance at the level of amino acid turnover in obese subjects with hepatic steatosis. Diabetes 2020, 69, 1090–1099. [Google Scholar] [CrossRef]
- Wang, F.; Yoder, S.M.; Yang, Q.; Kohan, A.B.; Kindel, T.L.; Wang, J.; Tso, P. Chronic high-fat feeding increases GIP and GLP-1 secretion without altering body weight. Am. J. Physiol. Gastrointest. Liver Physiol. 2015, 309, G807–G815. [Google Scholar] [CrossRef] [PubMed]
- Baggio, L.L.; Drucker, D.J. Biology of incretins: GLP-1 and GIP. Gastroenterology 2007, 132, 2131–2157. [Google Scholar] [CrossRef] [PubMed]
- Flint, A.; Raben, A.; Ersbøll, A.K.; Holst, J.J.; Astrup, A. The effect of physiological levels of glucagon-like peptide-1 on appetite, gastric emptying, energy and substrate metabolism in obesity. Int. J. Obes. Relat. Metab. Disord. 2001, 25, 781–792. [Google Scholar] [CrossRef] [PubMed]
- Halim, M.A.; Degerblad, M.; Sundbom, M.; Karlbom, U.; Holst, J.J.; Webb, D.-L.; Hellström, P.M. Glucagon-Like Peptide-1 Inhibits Prandial Gastrointestinal Motility Through Myenteric Neuronal Mechanisms in Humans. J. Clin. Endocrinol. Metab. 2018, 103, 575–585. [Google Scholar] [CrossRef] [PubMed]
- Costa, M.; Furness, J.B. The origins, pathways and terminations of neurons with VIP-like immunoreactivity in the guinea-pig small intestine. Neuroscience 1983, 8, 665–676. [Google Scholar] [CrossRef] [PubMed]
- Larsson, L.I.; Fahrenkrug, J.; Schaffalitzky De Muckadell, O.; Sundler, F.; Håkanson, R.; Rehfeld, J.R. Localization of vasoactive intestinal polypeptide (VIP) to central and peripheral neurons. Proc. Natl. Acad. Sci. USA 1976, 73, 3197–3200. [Google Scholar] [CrossRef] [PubMed]
- Severi, C.; Tattoli, I.; Corleto, V.D.; Maselli, M.A.; Trisolini, P.; Delle Fave, G. Vasoactive intestinal peptide receptor subtypes and signalling pathways involved in relaxation of human stomach. Neurogastroenterol. Motil. 2006, 18, 1009–1018. [Google Scholar] [CrossRef] [PubMed]
- Iwasaki, M.; Akiba, Y.; Kaunitz, J.D. Recent advances in vasoactive intestinal peptide physiology and pathophysiology: Focus on the gastrointestinal system. F1000Research 2019, 8, 1629. [Google Scholar] [CrossRef]
- Eržen, S.; Tonin, G.; Jurišić Eržen, D.; Klen, J. Amylin, another important neuroendocrine hormone for the treatment of diabesity. Int. J. Mol. Sci. 2024, 25, 1517. [Google Scholar] [CrossRef]
- Lutz, T.A. The role of amylin in the control of energy homeostasis. Am. J. Physiol. Regul. Integr. Comp. Physiol. 2010, 298, R1475–R1484. [Google Scholar] [CrossRef]
- Melson, E.; Ashraf, U.; Papamargaritis, D.; Davies, M.J. What is the pipeline for future medications for obesity? Int. J. Obes. 2024. [Google Scholar] [CrossRef] [PubMed]
- Lutz, T.A. Effects of amylin on eating and adiposity. In Handbook of Experimental Pharmacology; Springer: Berlin/Heidelberg, Germany, 2012; pp. 231–250. [Google Scholar] [CrossRef]
- Holst, J.J.; Albrechtsen, N.J.W.; Gabe, M.B.N.; Rosenkilde, M.M. Oxyntomodulin: Actions and role in diabetes. Peptides 2018, 100, 48–53. [Google Scholar] [CrossRef]
- Pocai, A. Unraveling oxyntomodulin, GLP1’s enigmatic brother. J. Endocrinol. 2012, 215, 335–346. [Google Scholar] [CrossRef] [PubMed]
- Schjoldager, B.; Mortensen, P.E.; Myhre, J.; Christiansen, J.; Holst, J.J. Oxyntomodulin from distal gut. Role in regulation of gastric and pancreatic functions. Dig. Dis. Sci. 1989, 34, 1411–1419. [Google Scholar] [CrossRef] [PubMed]
- Wewer Albrechtsen, N.J.; Hornburg, D.; Albrechtsen, R.; Svendsen, B.; Toräng, S.; Jepsen, S.L.; Kuhre, R.E.; Hansen, M.; Janus, C.; Floyd, A.; et al. Oxyntomodulin Identified as a Marker of Type 2 Diabetes and Gastric Bypass Surgery by Mass-spectrometry Based Profiling of Human Plasma. EBioMedicine 2016, 7, 112–120. [Google Scholar] [CrossRef]
- Misch, M.; Puthanveetil, P. The Head-to-Toe Hormone: Leptin as an Extensive Modulator of Physiologic Systems. Int. J. Mol. Sci. 2022, 23, 5439. [Google Scholar] [CrossRef] [PubMed]
- Côté-Daigneault, J.; Poitras, P.; Rabasa-Lhoret, R.; Bouin, M. Plasma leptin concentrations and esophageal hypomotility in obese patients. Can. J. Gastroenterol. Hepatol. 2015, 29, 49–51. [Google Scholar] [CrossRef]
- Cakir, B.; Kasimay, O.; Devseren, E.; Yeğen, B.C. Leptin inhibits gastric emptying in rats: Role of CCK receptors and vagal afferent fibers. Physiol. Res. 2007, 56, 315–322. [Google Scholar] [CrossRef]
- Shi, Y.-C.; Baldock, P.A. Central and peripheral mechanisms of the NPY system in the regulation of bone and adipose tissue. Bone 2012, 50, 430–436. [Google Scholar] [CrossRef] [PubMed]
- Jepsen, M.M.; Christensen, M.B. Emerging glucagon-like peptide 1 receptor agonists for the treatment of obesity. Expert Opin. Emerg. Drugs 2021, 26, 231–243. [Google Scholar] [CrossRef]
- Frias, J.P.; Bonora, E.; Nevarez Ruiz, L.; Li, Y.G.; Yu, Z.; Milicevic, Z.; Malik, R.; Bethel, M.A.; Cox, D.A. Efficacy and Safety of Dulaglutide 3.0 mg and 4.5 mg Versus Dulaglutide 1.5 mg in Metformin-Treated Patients with Type 2 Diabetes in a Randomized Controlled Trial (AWARD-11). Diabetes Care 2021, 44, 765–773. [Google Scholar] [CrossRef] [PubMed]
- Powell, J.; Taylor, J. Use of dulaglutide, semaglutide, and tirzepatide in diabetes and weight management. Clin. Ther. 2024, 46, 289–292. [Google Scholar] [CrossRef] [PubMed]
- Tirzepatide (Zepbound) for chronic weight management. Med. Lett. Drugs Ther. 2023, 65, 205–207. [CrossRef] [PubMed]
- Tayyaba; Siddiqui, T.; Doultani, P.R. Tirzepatide (Mounjaro)—A novel Pharmacotherapeutic Agent for Obesity. J. Pak. Med. Assoc. 2023, 73, 1171. [Google Scholar] [CrossRef]
- Rodriguez, P.J.; Goodwin Cartwright, B.M.; Gratzl, S.; Brar, R.; Baker, C.; Gluckman, T.J.; Stucky, N.L. Comparative Effectiveness of Semaglutide and Tirzepatide for Weight Loss in Adults with Overweight and Obesity in the US: A Real-World Evidence Study. medRxiv 2023. [Google Scholar] [CrossRef]
- Jain, S.S.; Ramanand, S.J.; Ramanand, J.B.; Akat, P.B.; Patwardhan, M.H.; Joshi, S.R. Evaluation of efficacy and safety of orlistat in obese patients. Indian J. Endocrinol. Metab. 2011, 15, 99–104. [Google Scholar] [CrossRef] [PubMed]
- Johnson, D.B.; Quick, J. Topiramate and Phentermine. In StatPearls; StatPearls Publishing: Treasure Island, FL, USA, 2024. [Google Scholar]
- Lin, Q.; Xue, Y.; Zou, H.; Ruan, Z.; Ung, C.O.L.; Hu, H. Efficacy and safety of liraglutide for obesity and people who are overweight: A systematic review and meta-analysis of randomized controlled trials. Expert Rev. Clin. Pharmacol. 2022, 15, 1461–1469. [Google Scholar] [CrossRef] [PubMed]
- Chao, A.M.; Tronieri, J.S.; Amaro, A.; Wadden, T.A. Semaglutide for the treatment of obesity. Trends Cardiovasc. Med. 2023, 33, 159–166. [Google Scholar] [CrossRef]
- Imcivree (Setmelanotide) Dosing, Indications, Interactions, Adverse Effects, and More. Available online: https://reference.medscape.com/drug/imcivree-setmelanotide-4000110 (accessed on 27 June 2024).
- Myalept (Metreleptin) Dosing, Indications, Interactions, Adverse Effects, and More. Available online: https://reference.medscape.com/drug/myalept-metreleptin-999894 (accessed on 27 June 2024).
- Camilleri, M.; Acosta, A. Newer pharmacological interventions directed at gut hormones for obesity. Br. J. Pharmacol. 2024, 181, 1153–1164. [Google Scholar] [CrossRef]
- Nicze, M.; Borówka, M.; Dec, A.; Niemiec, A.; Bułdak, Ł.; Okopień, B. The Current and Promising Oral Delivery Methods for Protein- and Peptide-Based Drugs. Int. J. Mol. Sci. 2024, 25, 815. [Google Scholar] [CrossRef]
- Knop, F.K.; Aroda, V.R.; do Vale, R.D.; Holst-Hansen, T.; Laursen, P.N.; Rosenstock, J.; Rubino, D.M.; Garvey, W.T. OASIS 1 Investigators Oral semaglutide 50 mg taken once per day in adults with overweight or obesity (OASIS 1): A randomised, double-blind, placebo-controlled, phase 3 trial. Lancet 2023, 402, 705–719. [Google Scholar] [CrossRef] [PubMed]
- Saxena, A.R.; Frias, J.P.; Brown, L.S.; Gorman, D.N.; Vasas, S.; Tsamandouras, N.; Birnbaum, M.J. Efficacy and Safety of Oral Small Molecule Glucagon-Like Peptide 1 Receptor Agonist Danuglipron for Glycemic Control among Patients with Type 2 Diabetes: A Randomized Clinical Trial. JAMA Netw. Open 2023, 6, e2314493. [Google Scholar] [CrossRef]
- Wharton, S.; Blevins, T.; Connery, L.; Rosenstock, J.; Raha, S.; Liu, R.; Ma, X.; Mather, K.J.; Haupt, A.; Robins, D.; et al. GZGI Investigators Daily Oral GLP-1 Receptor Agonist Orforglipron for Adults with Obesity. N. Engl. J. Med. 2023, 389, 877–888. [Google Scholar] [CrossRef] [PubMed]
- A Research Study to See How Well CagriSema Helps People with Type 2 Diabetes and Excess Body Weight Lose Weight—Full Text View. Available online: https://classic.clinicaltrials.gov/ct2/show/NCT05394519 (accessed on 23 June 2024).
- Zimmermann, T.; Thomas, L.; Baader-Pagler, T.; Haebel, P.; Simon, E.; Reindl, W.; Bajrami, B.; Rist, W.; Uphues, I.; Drucker, D.J.; et al. BI 456906: Discovery and preclinical pharmacology of a novel GCGR/GLP-1R dual agonist with robust anti-obesity efficacy. Mol. Metab. 2022, 66, 101633. [Google Scholar] [CrossRef] [PubMed]
- le Roux, C.W.; Steen, O.; Lucas, K.J.; Startseva, E.; Unseld, A.; Hennige, A.M. Glucagon and GLP-1 receptor dual agonist survodutide for obesity: A randomised, double-blind, placebo-controlled, dose-finding phase 2 trial. Lancet Diabetes Endocrinol. 2024, 12, 162–173. [Google Scholar] [CrossRef] [PubMed]
- Deng, B.; Ruan, T.; Lu, W.; Ying, J.; Li, S.; Zhou, R.; Mu, D. Safety and efficacy of GLP-1 and glucagon receptor dual agonist for the treatment of type 2 diabetes and obesity: A systematic review and meta-analysis of randomized controlled trials. Endocrine 2024. [Google Scholar] [CrossRef]
- Klein, S.; Nestor, J.J.; Harris, M.S.; Suyundikov, A.; Casper, R.O.B.; Steele, S.M.; Payne, J.D.; Krishnan, V.; Roberts, M.S.; Browne, S.K. 334-OR: Pemvidutide (ALT-801), a Balanced (1:1) GLP-1/Glucagon Dual Receptor Agonist, Induces Rapid and Marked Weight Loss without the Need for Dose Titration in People with Overweight/Obesity. Diabetes 2022, 71, 334. [Google Scholar] [CrossRef]
- Véniant, M.M.; Lu, S.-C.; Atangan, L.; Komorowski, R.; Stanislaus, S.; Cheng, Y.; Wu, B.; Falsey, J.R.; Hager, T.; Thomas, V.A.; et al. A GIPR antagonist conjugated to GLP-1 analogues promotes weight loss with improved metabolic parameters in preclinical and phase 1 settings. Nat. Metab. 2024, 6, 290–303. [Google Scholar] [CrossRef]
- Hammoud, R.; Drucker, D.J. Beyond the pancreas: Contrasting cardiometabolic actions of GIP and GLP1. Nat. Rev. Endocrinol. 2023, 19, 201–216. [Google Scholar] [CrossRef]
- Novikoff, A.; Müller, T.D. Antagonizing GIPR adds fire to the GLP-1R flame. Trends Endocrinol. Metab. 2024, 35, 566–568. [Google Scholar] [CrossRef]
- Dose-Ranging Study to Evaluate the Efficacy, Safety, and Tolerability of AMG 133 in Adult Subjects With Overweight or Obesity, With or Without Type 2 Diabetes Mellitus. Available online: https://clinicaltrials.gov/study/NCT05669599 (accessed on 27 June 2024).
- Dissanayake, H.A.; Somasundaram, N.P. Polyagonists in type 2 diabetes management. Curr. Diab. Rep. 2024, 24, 1–12. [Google Scholar] [CrossRef]
- Urva, S.; O’Farrell, L.; Du, Y.; Loh, M.T.; Hemmingway, A.; Qu, H.; Alsina-Fernandez, J.; Haupt, A.; Milicevic, Z.; Coskun, T. The novel GIP, GLP-1 and glucagon receptor agonist retatrutide delays gastric emptying. Diabetes Obes. Metab. 2023, 25, 2784–2788. [Google Scholar] [CrossRef] [PubMed]
- Jastreboff, A.M.; Kaplan, L.M.; Frías, J.P.; Wu, Q.; Du, Y.; Gurbuz, S.; Coskun, T.; Haupt, A.; Milicevic, Z.; Hartman, M.L. Retatrutide Phase 2 Obesity Trial Investigators Triple-Hormone-Receptor Agonist Retatrutide for Obesity—A Phase 2 Trial. N. Engl. J. Med. 2023, 389, 514–526. [Google Scholar] [CrossRef]
- Rosenstock, J.; Frias, J.; Jastreboff, A.M.; Du, Y.; Lou, J.; Gurbuz, S.; Thomas, M.K.; Hartman, M.L.; Haupt, A.; Milicevic, Z.; et al. Retatrutide, a GIP, GLP-1 and glucagon receptor agonist, for people with type 2 diabetes: A randomised, double-blind, placebo and active-controlled, parallel-group, phase 2 trial conducted in the USA. Lancet 2023, 402, 529–544. [Google Scholar] [CrossRef] [PubMed]
- Jakubowska, A.; Le Roux, C.W.; Viljoen, A. The Road towards Triple Agonists: Glucagon-Like Peptide 1, Glucose-Dependent Insulinotropic Polypeptide and Glucagon Receptor—An Update. Endocrinol. Metab. 2024, 39, 12–22. [Google Scholar] [CrossRef]
- Choi, I.; Lee, J.; Kim, J.; Park, Y.; Lee, S. Potent body weight loss, and therapeutic efficacy in a NASH animal model by a novel long-acting GLP-1/Glucagon/GIPtri-agonist (HM15211). In Diabetologia; Springer: Berlin/Heidelberg, Germany, 2017. [Google Scholar]
- Behary, P.; Alessimii, H.; Miras, A.D.; Tharakan, G.; Alexiadou, K.; Aldhwayan, M.M.; Purkayastha, S.; Moorthy, K.; Ahmed, A.R.; Bloom, S.R.; et al. Tripeptide gut hormone infusion does not alter food preferences or sweet taste function in volunteers with obesity and prediabetes/diabetes but promotes restraint eating: A secondary analysis of a randomized single-blind placebo-controlled study. Diabetes Obes. Metab. 2023, 25, 1731–1739. [Google Scholar] [CrossRef]
- Zhao, S.; Yan, Z.; Du, Y.; Li, Z.; Tang, C.; Jing, L.; Sun, L.; Yang, Q.; Tang, X.; Yuan, Y.; et al. A GLP-1/glucagon (GCG)/CCK2 receptors tri-agonist provides new therapy for obesity and diabetes. Br. J. Pharmacol. 2022, 179, 4360–4377. [Google Scholar] [CrossRef]
- Papamargaritis, D.; le Roux, C.W.; Holst, J.J.; Davies, M.J. New therapies for obesity. Cardiovasc. Res. 2024, 119, 2825–2842. [Google Scholar] [CrossRef] [PubMed]
- Chaudhry, A.; Gabriel, B.; Noor, J.; Jawad, S.; Challa, S.R. Tendency of semaglutide to induce gastroparesis: A case report. Cureus 2024, 16, e52564. [Google Scholar] [CrossRef]
- Yeo, Y.H.; Gaddam, S.; Ng, W.H.; Huang, P.-C.; Motility and Metabolic Pharmacoepidemiology Group; Ma, K.S.-K.; Rezaie, A. Increased Risk of Aspiration Pneumonia Associated With Endoscopic Procedures Among Patients With Glucagon-like Peptide 1 Receptor Agonist Use. Gastroenterology 2024, 167, 402–404.e3. [Google Scholar] [CrossRef] [PubMed]
- Filippatos, T.D.; Derdemezis, C.S.; Gazi, I.F.; Nakou, E.S.; Mikhailidis, D.P.; Elisaf, M.S. Orlistat-associated adverse effects and drug interactions: A critical review. Drug Saf. 2008, 31, 53–65. [Google Scholar] [CrossRef]
- Kuziel, G.A.; Rakoff-Nahoum, S. The gut microbiome. Curr. Biol. 2022, 32, R257–R264. [Google Scholar] [CrossRef]
- Aagaard, K.; Ma, J.; Antony, K.M.; Ganu, R.; Petrosino, J.; Versalovic, J. The placenta harbors a unique microbiome. Sci. Transl. Med. 2014, 6, 237ra65. [Google Scholar] [CrossRef]
- DiGiulio, D.B. Diversity of microbes in amniotic fluid. Semin. Fetal Neonatal Med. 2012, 17, 2–11. [Google Scholar] [CrossRef] [PubMed]
- Jiménez, E.; Fernández, L.; Marín, M.L.; Martín, R.; Odriozola, J.M.; Nueno-Palop, C.; Narbad, A.; Olivares, M.; Xaus, J.; Rodríguez, J.M. Isolation of commensal bacteria from umbilical cord blood of healthy neonates born by cesarean section. Curr. Microbiol. 2005, 51, 270–274. [Google Scholar] [CrossRef] [PubMed]
- Jiménez, E.; Marín, M.L.; Martín, R.; Odriozola, J.M.; Olivares, M.; Xaus, J.; Fernández, L.; Rodríguez, J.M. Is meconium from healthy newborns actually sterile? Res. Microbiol. 2008, 159, 187–193. [Google Scholar] [CrossRef] [PubMed]
- Ding, T.; Schloss, P.D. Dynamics and associations of microbial community types across the human body. Nature 2014, 509, 357–360. [Google Scholar] [CrossRef]
- Jakobsson, H.E.; Abrahamsson, T.R.; Jenmalm, M.C.; Harris, K.; Quince, C.; Jernberg, C.; Björkstén, B.; Engstrand, L.; Andersson, A.F. Decreased gut microbiota diversity, delayed Bacteroidetes colonisation and reduced Th1 responses in infants delivered by caesarean section. Gut 2014, 63, 559–566. [Google Scholar] [CrossRef]
- Martín, R.; Jiménez, E.; Heilig, H.; Fernández, L.; Marín, M.L.; Zoetendal, E.G.; Rodríguez, J.M. Isolation of bifidobacteria from breast milk and assessment of the bifidobacterial population by PCR-denaturing gradient gel electrophoresis and quantitative real-time PCR. Appl. Environ. Microbiol. 2009, 75, 965–969. [Google Scholar] [CrossRef]
- Schmidt, T.S.B.; Raes, J.; Bork, P. The human gut microbiome: From association to modulation. Cell 2018, 172, 1198–1215. [Google Scholar] [CrossRef]
- Clarke, S.F.; Murphy, E.F.; O’Sullivan, O.; Lucey, A.J.; Humphreys, M.; Hogan, A.; Hayes, P.; O’Reilly, M.; Jeffery, I.B.; Wood-Martin, R.; et al. Exercise and associated dietary extremes impact on gut microbial diversity. Gut 2014, 63, 1913–1920. [Google Scholar] [CrossRef] [PubMed]
- Barton, W.; Penney, N.C.; Cronin, O.; Garcia-Perez, I.; Molloy, M.G.; Holmes, E.; Shanahan, F.; Cotter, P.D.; O’Sullivan, O. The microbiome of professional athletes differs from that of more sedentary subjects in composition and particularly at the functional metabolic level. Gut 2018, 67, 625–633. [Google Scholar] [CrossRef] [PubMed]
- David, L.A.; Maurice, C.F.; Carmody, R.N.; Gootenberg, D.B.; Button, J.E.; Wolfe, B.E.; Ling, A.V.; Devlin, A.S.; Varma, Y.; Fischbach, M.A.; et al. Diet rapidly and reproducibly alters the human gut microbiome. Nature 2014, 505, 559–563. [Google Scholar] [CrossRef] [PubMed]
- Muegge, B.D.; Kuczynski, J.; Knights, D.; Clemente, J.C.; González, A.; Fontana, L.; Henrissat, B.; Knight, R.; Gordon, J.I. Diet drives convergence in gut microbiome functions across mammalian phylogeny and within humans. Science 2011, 332, 970–974. [Google Scholar] [CrossRef] [PubMed]
- Smits, S.A.; Leach, J.; Sonnenburg, E.D.; Gonzalez, C.G.; Lichtman, J.S.; Reid, G.; Knight, R.; Manjurano, A.; Changalucha, J.; Elias, J.E.; et al. Seasonal cycling in the gut microbiome of the Hadza hunter-gatherers of Tanzania. Science 2017, 357, 802–806. [Google Scholar] [CrossRef]
- Becattini, S.; Taur, Y.; Pamer, E.G. Antibiotic-Induced Changes in the Intestinal Microbiota and Disease. Trends Mol. Med. 2016, 22, 458–478. [Google Scholar] [CrossRef] [PubMed]
- Langdon, A.; Crook, N.; Dantas, G. The effects of antibiotics on the microbiome throughout development and alternative approaches for therapeutic modulation. Genome Med. 2016, 8, 39. [Google Scholar] [CrossRef] [PubMed]
- Le Bastard, Q.; Al-Ghalith, G.A.; Grégoire, M.; Chapelet, G.; Javaudin, F.; Dailly, E.; Batard, E.; Knights, D.; Montassier, E. Systematic review: Human gut dysbiosis induced by non-antibiotic prescription medications. Aliment. Pharmacol. Ther. 2018, 47, 332–345. [Google Scholar] [CrossRef] [PubMed]
- Kurilshikov, A.; Wijmenga, C.; Fu, J.; Zhernakova, A. Host genetics and gut microbiome: Challenges and perspectives. Trends Immunol. 2017, 38, 633–647. [Google Scholar] [CrossRef]
- Shanahan, F.; Ghosh, T.S.; O’Toole, P.W. The Healthy Microbiome-What Is the Definition of a Healthy Gut Microbiome? Gastroenterology 2021, 160, 483–494. [Google Scholar] [CrossRef]
- Manor, O.; Dai, C.L.; Kornilov, S.A.; Smith, B.; Price, N.D.; Lovejoy, J.C.; Gibbons, S.M.; Magis, A.T. Health and disease markers correlate with gut microbiome composition across thousands of people. Nat. Commun. 2020, 11, 5206. [Google Scholar] [CrossRef]
- Sze, M.A.; Schloss, P.D. Looking for a signal in the noise: Revisiting obesity and the microbiome. mBio 2016, 7. [Google Scholar] [CrossRef] [PubMed]
- Turnbaugh, P.J.; Hamady, M.; Yatsunenko, T.; Cantarel, B.L.; Duncan, A.; Ley, R.E.; Sogin, M.L.; Jones, W.J.; Roe, B.A.; Affourtit, J.P.; et al. A core gut microbiome in obese and lean twins. Nature 2009, 457, 480–484. [Google Scholar] [CrossRef]
- Ley, R.E.; Bäckhed, F.; Turnbaugh, P.; Lozupone, C.A.; Knight, R.D.; Gordon, J.I. Obesity alters gut microbial ecology. Proc. Natl. Acad. Sci. USA 2005, 102, 11070–11075. [Google Scholar] [CrossRef] [PubMed]
- Koliada, A.; Syzenko, G.; Moseiko, V.; Budovska, L.; Puchkov, K.; Perederiy, V.; Gavalko, Y.; Dorofeyev, A.; Romanenko, M.; Tkach, S.; et al. Association between body mass index and Firmicutes/Bacteroidetes ratio in an adult Ukrainian population. BMC Microbiol. 2017, 17, 120. [Google Scholar] [CrossRef]
- Indiani, C.M.D.S.P.; Rizzardi, K.F.; Castelo, P.M.; Ferraz, L.F.C.; Darrieux, M.; Parisotto, T.M. Childhood obesity and firmicutes/bacteroidetes ratio in the gut microbiota: A systematic review. Child. Obes. 2018, 14, 501–509. [Google Scholar] [CrossRef]
- Houtman, T.A.; Eckermann, H.A.; Smidt, H.; de Weerth, C. Gut microbiota and BMI throughout childhood: The role of firmicutes, bacteroidetes, and short-chain fatty acid producers. Sci. Rep. 2022, 12, 3140. [Google Scholar] [CrossRef] [PubMed]
- Li, X.; Li, Z.; He, Y.; Li, P.; Zhou, H.; Zeng, N. Regional distribution of Christensenellaceae and its associations with metabolic syndrome based on a population-level analysis. PeerJ 2020, 8, e9591. [Google Scholar] [CrossRef]
- Alcazar, M.; Escribano, J.; Ferré, N.; Closa-Monasterolo, R.; Selma-Royo, M.; Feliu, A.; Castillejo, G.; Luque, V. Obemat2.0 Study Group Gut microbiota is associated with metabolic health in children with obesity. Clin. Nutr. 2022, 41, 1680–1688. [Google Scholar] [CrossRef]
- Waters, J.L.; Ley, R.E. The human gut bacteria Christensenellaceae are widespread, heritable, and associated with health. BMC Biol. 2019, 17, 83. [Google Scholar] [CrossRef]
- Million, M.; Maraninchi, M.; Henry, M.; Armougom, F.; Richet, H.; Carrieri, P.; Valero, R.; Raccah, D.; Vialettes, B.; Raoult, D. Obesity-associated gut microbiota is enriched in Lactobacillus reuteri and depleted in Bifidobacterium animalis and Methanobrevibacter smithii. Int. J. Obes. 2012, 36, 817–825. [Google Scholar] [CrossRef] [PubMed]
- Liu, B.-N.; Liu, X.-T.; Liang, Z.-H.; Wang, J.-H. Gut microbiota in obesity. World J. Gastroenterol. 2021, 27, 3837–3850. [Google Scholar] [CrossRef] [PubMed]
- Krajmalnik-Brown, R.; Ilhan, Z.-E.; Kang, D.-W.; DiBaise, J.K. Effects of gut microbes on nutrient absorption and energy regulation. Nutr. Clin. Pract. 2012, 27, 201–214. [Google Scholar] [CrossRef] [PubMed]
- Macfarlane, G.T.; Macfarlane, S. Bacteria, colonic fermentation, and gastrointestinal health. J. AOAC Int. 2012, 95, 50–60. [Google Scholar] [CrossRef] [PubMed]
- Nakamura, N.; Lin, H.C.; McSweeney, C.S.; Mackie, R.I.; Gaskins, H.R. Mechanisms of microbial hydrogen disposal in the human colon and implications for health and disease. Annu. Rev. Food Sci. Technol. 2010, 1, 363–395. [Google Scholar] [CrossRef] [PubMed]
- Cummings, J.H.; Macfarlane, G.T. The control and consequences of bacterial fermentation in the human colon. J. Appl. Bacteriol. 1991, 70, 443–459. [Google Scholar] [CrossRef]
- Wong, J.M.W.; de Souza, R.; Kendall, C.W.C.; Emam, A.; Jenkins, D.J.A. Colonic health: Fermentation and short chain fatty acids. J. Clin. Gastroenterol. 2006, 40, 235–243. [Google Scholar] [CrossRef] [PubMed]
- Portincasa, P.; Bonfrate, L.; Vacca, M.; De Angelis, M.; Farella, I.; Lanza, E.; Khalil, M.; Wang, D.Q.-H.; Sperandio, M.; Di Ciaula, A. Gut microbiota and short chain fatty acids: Implications in glucose homeostasis. Int. J. Mol. Sci. 2022, 23, 1105. [Google Scholar] [CrossRef] [PubMed]
- Morrison, D.J.; Preston, T. Formation of short chain fatty acids by the gut microbiota and their impact on human metabolism. Gut Microbes 2016, 7, 189–200. [Google Scholar] [CrossRef]
- Hong, Y.-H.; Nishimura, Y.; Hishikawa, D.; Tsuzuki, H.; Miyahara, H.; Gotoh, C.; Choi, K.-C.; Feng, D.D.; Chen, C.; Lee, H.-G.; et al. Acetate and propionate short chain fatty acids stimulate adipogenesis via GPCR43. Endocrinology 2005, 146, 5092–5099. [Google Scholar] [CrossRef]
- Le Poul, E.; Loison, C.; Struyf, S.; Springael, J.-Y.; Lannoy, V.; Decobecq, M.-E.; Brezillon, S.; Dupriez, V.; Vassart, G.; Van Damme, J.; et al. Functional characterization of human receptors for short chain fatty acids and their role in polymorphonuclear cell activation. J. Biol. Chem. 2003, 278, 25481–25489. [Google Scholar] [CrossRef] [PubMed]
- Nilsson, N.E.; Kotarsky, K.; Owman, C.; Olde, B. Identification of a free fatty acid receptor, FFA2R, expressed on leukocytes and activated by short-chain fatty acids. Biochem. Biophys. Res. Commun. 2003, 303, 1047–1052. [Google Scholar] [CrossRef] [PubMed]
- Al Mahri, S.; Malik, S.S.; Al Ibrahim, M.; Haji, E.; Dairi, G.; Mohammad, S. Free fatty acid receptors (ffars) in adipose: Physiological role and therapeutic outlook. Cells 2022, 11, 750. [Google Scholar] [CrossRef] [PubMed]
- Inoue, D.; Tsujimoto, G.; Kimura, I. Regulation of energy homeostasis by GPR41. Front. Endocrinol. 2014, 5, 81. [Google Scholar] [CrossRef] [PubMed]
- Chiang, J.Y.L. Bile acid metabolism and signaling. Compr. Physiol. 2013, 3, 1191–1212. [Google Scholar] [CrossRef]
- Ticho, A.L.; Malhotra, P.; Dudeja, P.K.; Gill, R.K.; Alrefai, W.A. Bile acid receptors and gastrointestinal functions. Liver Res. 2019, 3, 31–39. [Google Scholar] [CrossRef]
- Chávez-Talavera, O.; Haas, J.; Grzych, G.; Tailleux, A.; Staels, B. Bile acid alterations in nonalcoholic fatty liver disease, obesity, insulin resistance and type 2 diabetes: What do the human studies tell? Curr. Opin. Lipidol. 2019, 30, 244–254. [Google Scholar] [CrossRef] [PubMed]
- Asadi, A.; Shadab Mehr, N.; Mohamadi, M.H.; Shokri, F.; Heidary, M.; Sadeghifard, N.; Khoshnood, S. Obesity and gut-microbiota-brain axis: A narrative review. J. Clin. Lab. Anal. 2022, 36, e24420. [Google Scholar] [CrossRef]
- Cussotto, S.; Sandhu, K.V.; Dinan, T.G.; Cryan, J.F. The Neuroendocrinology of the Microbiota-Gut-Brain Axis: A Behavioural Perspective. Front. Neuroendocrinol. 2018, 51, 80–101. [Google Scholar] [CrossRef]
- Duca, F.A.; Swartz, T.D.; Sakar, Y.; Covasa, M. Increased oral detection, but decreased intestinal signaling for fats in mice lacking gut microbiota. PLoS ONE 2012, 7, e39748. [Google Scholar] [CrossRef]
- Breton, J.; Tennoune, N.; Lucas, N.; Francois, M.; Legrand, R.; Jacquemot, J.; Goichon, A.; Guérin, C.; Peltier, J.; Pestel-Caron, M.; et al. Gut Commensal E. coli Proteins Activate Host Satiety Pathways following Nutrient-Induced Bacterial Growth. Cell Metab. 2016, 23, 324–334. [Google Scholar] [CrossRef] [PubMed]
- Lu, Y.-C.; Yeh, W.-C.; Ohashi, P.S. LPS/TLR4 signal transduction pathway. Cytokine 2008, 42, 145–151. [Google Scholar] [CrossRef] [PubMed]
- Cani, P.D.; Amar, J.; Iglesias, M.A.; Poggi, M.; Knauf, C.; Bastelica, D.; Neyrinck, A.M.; Fava, F.; Tuohy, K.M.; Chabo, C.; et al. Metabolic endotoxemia initiates obesity and insulin resistance. Diabetes 2007, 56, 1761–1772. [Google Scholar] [CrossRef] [PubMed]
- Boutagy, N.E.; McMillan, R.P.; Frisard, M.I.; Hulver, M.W. Metabolic endotoxemia with obesity: Is it real and is it relevant? Biochimie 2016, 124, 11–20. [Google Scholar] [CrossRef] [PubMed]
- Cani, P.D.; Possemiers, S.; Van de Wiele, T.; Guiot, Y.; Everard, A.; Rottier, O.; Geurts, L.; Naslain, D.; Neyrinck, A.; Lambert, D.M.; et al. Changes in gut microbiota control inflammation in obese mice through a mechanism involving GLP-2-driven improvement of gut permeability. Gut 2009, 58, 1091–1103. [Google Scholar] [CrossRef] [PubMed]
- Bäckhed, F.; Manchester, J.K.; Semenkovich, C.F.; Gordon, J.I. Mechanisms underlying the resistance to diet-induced obesity in germ-free mice. Proc. Natl. Acad. Sci. USA 2007, 104, 979–984. [Google Scholar] [CrossRef]
- Kobyliak, N.; Virchenko, O.; Falalyeyeva, T. Pathophysiological role of host microbiota in the development of obesity. Nutr. J. 2016, 15, 43. [Google Scholar] [CrossRef] [PubMed]
- Muccioli, G.G.; Naslain, D.; Bäckhed, F.; Reigstad, C.S.; Lambert, D.M.; Delzenne, N.M.; Cani, P.D. The endocannabinoid system links gut microbiota to adipogenesis. Mol. Syst. Biol. 2010, 6, 392. [Google Scholar] [CrossRef] [PubMed]
- Engeli, S. Dysregulation of the endocannabinoid system in obesity. J. Neuroendocrinol. 2008, 20 (Suppl. S1), 110–115. [Google Scholar] [CrossRef]
- Leone, V.; Gibbons, S.M.; Martinez, K.; Hutchison, A.L.; Huang, E.Y.; Cham, C.M.; Pierre, J.F.; Heneghan, A.F.; Nadimpalli, A.; Hubert, N.; et al. Effects of diurnal variation of gut microbes and high-fat feeding on host circadian clock function and metabolism. Cell Host Microbe 2015, 17, 681–689. [Google Scholar] [CrossRef]
- Huang, W.; Ramsey, K.M.; Marcheva, B.; Bass, J. Circadian rhythms, sleep, and metabolism. J. Clin. Investig. 2011, 121, 2133–2141. [Google Scholar] [CrossRef] [PubMed]
- Gibson, G.R.; Roberfroid, M.B. Dietary modulation of the human colonic microbiota: Introducing the concept of prebiotics. J. Nutr. 1995, 125, 1401–1412. [Google Scholar] [CrossRef] [PubMed]
- Yadav, M.K.; Kumari, I.; Singh, B.; Sharma, K.K.; Tiwari, S.K. Probiotics, prebiotics and synbiotics: Safe options for next-generation therapeutics. Appl. Microbiol. Biotechnol. 2022, 106, 505–521. [Google Scholar] [CrossRef] [PubMed]
- Rasaei, N.; Heidari, M.; Esmaeili, F.; Khosravi, S.; Baeeri, M.; Tabatabaei-Malazy, O.; Emamgholipour, S. The effects of prebiotic, probiotic or synbiotic supplementation on overweight/obesity indicators: An umbrella review of the trials’ meta-analyses. Front. Endocrinol. 2024, 15, 1277921. [Google Scholar] [CrossRef]
- da Silva Pontes, K.S.; Guedes, M.R.; da Cunha, M.R.; de Souza Mattos, S.; Silva, M.I.B.; Neves, M.F.; Marques, B.C.A.A.; Klein, M.R.S.T. Effects of probiotics on body adiposity and cardiovascular risk markers in individuals with overweight and obesity: A systematic review and meta-analysis of randomized controlled trials. Clin. Nutr. 2021, 40, 4915–4931. [Google Scholar] [CrossRef]
- Perna, S.; Ilyas, Z.; Giacosa, A.; Gasparri, C.; Peroni, G.; Faliva, M.A.; Rigon, C.; Naso, M.; Riva, A.; Petrangolini, G.; et al. Is Probiotic Supplementation Useful for the Management of Body Weight and Other Anthropometric Measures in Adults Affected by Overweight and Obesity with Metabolic Related Diseases? A Systematic Review and Meta-Analysis. Nutrients 2021, 13, 666. [Google Scholar] [CrossRef]
- Hamed Riveros, N.F.; García-Corredor, L.; Martínez-Solarte, M.A.; González-Clavijo, A. Effect of Bifidobacterium Intake on Body Weight and Body Fat in Overweight and Obese Adult Subjects: A Systematic Review and Meta-Analysis. J. Am. Nutr. Assoc. 2024, 43, 519–531. [Google Scholar] [CrossRef]
- Million, M.; Angelakis, E.; Paul, M.; Armougom, F.; Leibovici, L.; Raoult, D. Comparative meta-analysis of the effect of Lactobacillus species on weight gain in humans and animals. Microb. Pathog. 2012, 53, 100–108. [Google Scholar] [CrossRef]
- Qiu, X.; Wu, Q.; Li, W.; Tang, K.; Zhang, J. Effects of Lactobacillus supplementation on glycemic and lipid indices in overweight or obese adults: A systematic review and meta-analysis. Clin. Nutr. 2022, 41, 1787–1797. [Google Scholar] [CrossRef]
- Abouelela, M.E.; Helmy, Y.A. Next-Generation Probiotics as Novel Therapeutics for Improving Human Health: Current Trends and Future Perspectives. Microorganisms 2024, 12, 430. [Google Scholar] [CrossRef]
- Dao, M.C.; Everard, A.; Aron-Wisnewsky, J.; Sokolovska, N.; Prifti, E.; Verger, E.O.; Kayser, B.D.; Levenez, F.; Chilloux, J.; Hoyles, L.; et al. Akkermansia muciniphila and improved metabolic health during a dietary intervention in obesity: Relationship with gut microbiome richness and ecology. Gut 2016, 65, 426–436. [Google Scholar] [CrossRef] [PubMed]
- Aggarwal, V.; Sunder, S.; Verma, S.R. Disease-associated dysbiosis and potential therapeutic role of Akkermansia muciniphila, a mucus degrading bacteria of gut microbiome. Folia Microbiol. 2022, 67, 811–824. [Google Scholar] [CrossRef] [PubMed]
- Vallianou, N.G.; Kounatidis, D.; Tsilingiris, D.; Panagopoulos, F.; Christodoulatos, G.S.; Evangelopoulos, A.; Karampela, I.; Dalamaga, M. The Role of Next-Generation Probiotics in Obesity and Obesity-Associated Disorders: Current Knowledge and Future Perspectives. Int. J. Mol. Sci. 2023, 24, 6755. [Google Scholar] [CrossRef] [PubMed]
- A Phase 1b Study to Evaluate the Safety of XEN-101. Available online: https://ctv.veeva.com/study/a-phase-1b-study-to-evaluate-the-safety-of-xen101 (accessed on 21 July 2024).
- Aron-Wisnewsky, J.; Clément, K.; Nieuwdorp, M. Fecal microbiota transplantation: A future therapeutic option for obesity/diabetes? Curr. Diab. Rep. 2019, 19, 51. [Google Scholar] [CrossRef] [PubMed]
- Proença, I.M.; Allegretti, J.R.; Bernardo, W.M.; de Moura, D.T.H.; Ponte Neto, A.M.; Matsubayashi, C.O.; Flor, M.M.; Kotinda, A.P.S.T.; de Moura, E.G.H. Fecal microbiota transplantation improves metabolic syndrome parameters: Systematic review with meta-analysis based on randomized clinical trials. Nutr. Res. 2020, 83, 1–14. [Google Scholar] [CrossRef]
- Qiu, B.; Liang, J.; Li, C. Effects of fecal microbiota transplantation in metabolic syndrome: A meta-analysis of randomized controlled trials. PLoS ONE 2023, 18, e0288718. [Google Scholar] [CrossRef]
- Zecheng, L.; Donghai, L.; Runchuan, G.; Yuan, Q.; Qi, J.; Yijia, Z.; Shuaman, R.; Xiaoqi, L.; Yi, W.; Ni, M.; et al. Fecal microbiota transplantation in obesity metabolism: A meta analysis and systematic review. Diabetes Res. Clin. Pract. 2023, 202, 110803. [Google Scholar] [CrossRef]
- Peng, K.; Dong, W.; Luo, T.; Tang, H.; Zhu, W.; Huang, Y.; Yang, X. Butyrate and obesity: Current research status and future prospect. Front. Endocrinol. 2023, 14, 1098881. [Google Scholar] [CrossRef]
- Beisner, J.; Filipe Rosa, L.; Kaden-Volynets, V.; Stolzer, I.; Günther, C.; Bischoff, S.C. Prebiotic Inulin and Sodium Butyrate Attenuate Obesity-Induced Intestinal Barrier Dysfunction by Induction of Antimicrobial Peptides. Front. Immunol. 2021, 12, 678360. [Google Scholar] [CrossRef]
- Coppola, S.; Nocerino, R.; Paparo, L.; Bedogni, G.; Calignano, A.; Di Scala, C.; de Giovanni di Santa Severina, A.F.; De Filippis, F.; Ercolini, D.; Berni Canani, R. Therapeutic effects of butyrate on pediatric obesity: A randomized clinical trial. JAMA Netw. Open 2022, 5, e2244912. [Google Scholar] [CrossRef]
- Gesta, S.; Tseng, Y.-H.; Kahn, C.R. Developmental origin of fat: Tracking obesity to its source. Cell 2007, 131, 242–256. [Google Scholar] [CrossRef] [PubMed]
- Tseng, Y.-H.; Kokkotou, E.; Schulz, T.J.; Huang, T.L.; Winnay, J.N.; Taniguchi, C.M.; Tran, T.T.; Suzuki, R.; Espinoza, D.O.; Yamamoto, Y.; et al. New role of bone morphogenetic protein 7 in brown adipogenesis and energy expenditure. Nature 2008, 454, 1000–1004. [Google Scholar] [CrossRef] [PubMed]
- Frayn, K.N.; Arner, P.; Yki-Järvinen, H. Fatty acid metabolism in adipose tissue, muscle and liver in health and disease. Essays Biochem. 2006, 42, 89–103. [Google Scholar] [CrossRef] [PubMed]
- Fasshauer, M.; Blüher, M. Adipokines in health and disease. Trends Pharmacol. Sci. 2015, 36, 461–470. [Google Scholar] [CrossRef] [PubMed]
- Blüher, M. Adipokines—Removing road blocks to obesity and diabetes therapy. Mol. Metab. 2014, 3, 230–240. [Google Scholar] [CrossRef] [PubMed]
- Rui, L. Energy metabolism in the liver. Compr. Physiol. 2014, 4, 177–197. [Google Scholar] [CrossRef]
- Wang, M. Energy metabolism in skeletal muscle and its link to insulin resistance. In Metabolic Syndrome: Underlying Mechanisms and Drug Therapies; Wang, M., Ed.; Wiley: Hoboken, NJ, USA, 2011; pp. 157–176. ISBN 9780470343425. [Google Scholar]
- Mukund, K.; Subramaniam, S. Skeletal muscle: A review of molecular structure and function, in health and disease. Wiley Interdiscip. Rev. Syst. Biol. Med. 2020, 12, e1462. [Google Scholar] [CrossRef] [PubMed]
- Musi, N.; Goodyear, L.J. AMP-activated protein kinase and muscle glucose uptake. Acta Physiol. Scand. 2003, 178, 337–345. [Google Scholar] [CrossRef] [PubMed]
- Mengeste, A.M.; Rustan, A.C.; Lund, J. Skeletal muscle energy metabolism in obesity. Obesity 2021, 29, 1582–1595. [Google Scholar] [CrossRef]
- Rossignoli, C.P.; Dechandt, C.R.P.; Souza, A.O.; Sampaio, I.H.; Vicentini, T.M.; Teodoro, B.G.; Neto, M.P.C.; Ferrari, G.D.; Couto-Lima, C.A.; Alberici, L.C. Effects of intermittent dietary supplementation with conjugated linoleic acid and fish oil (EPA/DHA) on body metabolism and mitochondrial energetics in mice. J. Nutr. Biochem. 2018, 60, 16–23. [Google Scholar] [CrossRef]
- Logan, S.L.; Spriet, L.L. Omega-3 Fatty Acid Supplementation for 12 Weeks Increases Resting and Exercise Metabolic Rate in Healthy Community-Dwelling Older Females. PLoS ONE 2015, 10, e0144828. [Google Scholar] [CrossRef] [PubMed]
- Jannas-Vela, S.; Roke, K.; Boville, S.; Mutch, D.M.; Spriet, L.L. Lack of effects of fish oil supplementation for 12 weeks on resting metabolic rate and substrate oxidation in healthy young men: A randomized controlled trial. PLoS ONE 2017, 12, e0172576. [Google Scholar] [CrossRef] [PubMed]
- Ginter, E.; Simko, V. Recent data on obesity research: β-aminoisobutyric acid. Bratisl. Lek. Listy 2014, 115, 492–493. [Google Scholar] [CrossRef] [PubMed]
- Lee, Y.-S.; Cha, B.-Y.; Yamaguchi, K.; Choi, S.-S.; Yonezawa, T.; Teruya, T.; Nagai, K.; Woo, J.-T. Effects of Korean white ginseng extracts on obesity in high-fat diet-induced obese mice. Cytotechnology 2010, 62, 367–376. [Google Scholar] [CrossRef] [PubMed]
- Li, Z.; Ji, G.E. Ginseng and obesity. J. Ginseng Res. 2018, 42, 1–8. [Google Scholar] [CrossRef] [PubMed]
- Salem, V.; Izzi-Engbeaya, C.; Coello, C.; Thomas, D.B.; Chambers, E.S.; Comninos, A.N.; Buckley, A.; Win, Z.; Al-Nahhas, A.; Rabiner, E.A.; et al. Glucagon increases energy expenditure independently of brown adipose tissue activation in humans. Diabetes Obes. Metab. 2016, 18, 72–81. [Google Scholar] [CrossRef] [PubMed]
- Decara, J.; Arrabal, S.; Beiroa, D.; Rivera, P.; Vargas, A.; Serrano, A.; Pavón, F.J.; Ballesteros, J.; Dieguez, C.; Nogueiras, R.; et al. Antiobesity efficacy of GLP-1 receptor agonist liraglutide is associated with peripheral tissue-specific modulation of lipid metabolic regulators. Biofactors 2016, 42, 600–611. [Google Scholar] [CrossRef]
- Gimeno-Mallench, L.; Mas-Bargues, C.; Inglés, M.; Olaso, G.; Borras, C.; Gambini, J.; Vina, J. Resveratrol shifts energy metabolism to increase lipid oxidation in healthy old mice. Biomed. Pharmacother. 2019, 118, 109130. [Google Scholar] [CrossRef]
- Most, J.; Timmers, S.; Warnke, I.; Jocken, J.W.; van Boekschoten, M.; de Groot, P.; Bendik, I.; Schrauwen, P.; Goossens, G.H.; Blaak, E.E. Combined epigallocatechin-3-gallate and resveratrol supplementation for 12 wk increases mitochondrial capacity and fat oxidation, but not insulin sensitivity, in obese humans: A randomized controlled trial. Am. J. Clin. Nutr. 2016, 104, 215–227. [Google Scholar] [CrossRef]
- Davis, R.A.H.; Deemer, S.E.; Bergeron, J.M.; Little, J.T.; Warren, J.L.; Fisher, G.; Smith, D.L.; Fontaine, K.R.; Dickinson, S.L.; Allison, D.B.; et al. Dietary R, S-1,3-butanediol diacetoacetate reduces body weight and adiposity in obese mice fed a high-fat diet. FASEB J. 2019, 33, 2409–2421. [Google Scholar] [CrossRef]
- Tripp, G.; Wickens, J.R. Neurobiology of ADHD. Neuropharmacology 2009, 57, 579–589. [Google Scholar] [CrossRef] [PubMed]
- Lorello, C.; Goldfield, G.S.; Doucet, E. Methylphenidate hydrochloride increases energy expenditure in healthy adults. Obesity 2008, 16, 470–472. [Google Scholar] [CrossRef] [PubMed]
- Goldfield, G.S.; Lorello, C.; Doucet, E. Methylphenidate reduces energy intake and dietary fat intake in adults: A mechanism of reduced reinforcing value of food? Am. J. Clin. Nutr. 2007, 86, 308–315. [Google Scholar] [CrossRef] [PubMed]
- Butte, N.F.; Treuth, M.S.; Voigt, R.G.; Llorente, A.M.; Heird, W.C. Stimulant medications decrease energy expenditure and physical activity in children with attention-deficit/hyperactivity disorder. J. Pediatr. 1999, 135, 203–207. [Google Scholar] [CrossRef] [PubMed]
- Danilovich, N.; Mastrandrea, L.D.; Cataldi, L.; Quattrin, T. Methylphenidate decreases fat and carbohydrate intake in obese teenagers. Obesity 2014, 22, 781–785. [Google Scholar] [CrossRef] [PubMed]
- Hernández, M.A.G.; Canfora, E.E.; Jocken, J.W.E.; Blaak, E.E. The Short-Chain Fatty Acid Acetate in Body Weight Control and Insulin Sensitivity. Nutrients 2019, 11, 1943. [Google Scholar] [CrossRef] [PubMed]
- Lee, Y.; Lee, J.; Lee, M.-S.; Chang, E.; Kim, Y. Chrysanthemum morifolium Flower Extract Ameliorates Obesity-Induced Inflammation and Increases the Muscle Mitochondria Content and AMPK/SIRT1 Activities in Obese Rats. Nutrients 2021, 13, 3660. [Google Scholar] [CrossRef] [PubMed]
- McQueen, A.E.; Kanamaluru, D.; Yan, K.; Gray, N.E.; Wu, L.; Li, M.-L.; Chang, A.; Hasan, A.; Stifler, D.; Koliwad, S.K.; et al. The C-terminal fibrinogen-like domain of angiopoietin-like 4 stimulates adipose tissue lipolysis and promotes energy expenditure. J. Biol. Chem. 2017, 292, 16122–16134. [Google Scholar] [CrossRef]
- Liu, J.; Lee, J.; Salazar Hernandez, M.A.; Mazitschek, R.; Ozcan, U. Treatment of obesity with celastrol. Cell 2015, 161, 999–1011. [Google Scholar] [CrossRef] [PubMed]
- Jung, Y.; Park, J.; Kim, H.-L.; Sim, J.-E.; Youn, D.-H.; Kang, J.; Lim, S.; Jeong, M.-Y.; Yang, W.M.; Lee, S.-G.; et al. Vanillic acid attenuates obesity via activation of the AMPK pathway and thermogenic factors in vivo and in vitro. FASEB J. 2018, 32, 1388–1402. [Google Scholar] [CrossRef]
- Angiotensin-(1–7) and Energy Expenditure in Human Obesity. Available online: https://clinicaltrials.gov/study/NCT03777215 (accessed on 19 July 2024).
- The Physiological Responses and Adaptation of Brown Adipose Tissue to Chronic Treatment with Beta3-Adrenergic Receptor Agonists. Available online: https://clinicaltrials.gov/study/NCT03049462 (accessed on 19 July 2024).
- The Regulatory Function of Inhaled Asthma Medication Salbutamol on Thermogenesis. Available online: https://clinicaltrials.gov/study/NCT06319183 (accessed on 19 July 2024).
- ADI-PEG20, Obesity and Prediabetes. Available online: https://clinicaltrials.gov/study/NCT05829239 (accessed on 19 July 2024).
- Mechanistic Insights to Weight Loss Maintenance through SGLT2 Inhibitors. Available online: https://clinicaltrials.gov/study/NCT05885074 (accessed on 19 July 2024).
- Effect of PDE5 Inhibition on Adipose Metabolism in Humans. Available online: https://clinicaltrials.gov/study/NCT04684589 (accessed on 19 July 2024).
- VITAL-IMPACT: Improving Cardiometabolic Health in Black Individuals through Therapeutic Augmentation of Cyclic Guanosine Mono-Phosphate Signaling Pathway (VITAL-IMPACT). Available online: https://clinicaltrials.gov/study/NCT06320951 (accessed on 19 July 2024).
- Effect of Triticum Aestivum on Appetite, Ghrelin, Leptin, Adiponectin Hormonal Axis in Patients with Obesity. Available online: https://clinicaltrials.gov/study/NCT06496100 (accessed on 19 July 2024).
- LEAP2 on Postprandial Glucose Metabolism and Food Intake n Obese Males (LEAP2-OBCT). Available online: https://clinicaltrials.gov/study/NCT05603598 (accessed on 19 July 2024).
- Brown Fat as Therapeutic Strategy for Obesity and Associated Metabolic Diseases via Functional Food/Nutraceutical Approach—Molecular Mechanisms of Pentacyclic Triterpenes (BRACE). Available online: https://clinicaltrials.gov/study/NCT06484543 (accessed on 19 July 2024).
- Effect of Nicotinamide Riboside on Ketosis, Fat Oxidation & Metabolic Rate. Available online: https://clinicaltrials.gov/study/NCT06044935 (accessed on 19 July 2024).
- Impact of Olfactory Odour StimulatioN on Energy EXpenditure (SNEEX). Available online: https://clinicaltrials.gov/study/NCT05472168 (accessed on 19 July 2024).
- Effects of Almonds in Glucose-Intolerant Adults (AGAMEMNON) (AGAMEMNON). Available online: https://clinicaltrials.gov/study/NCT06413069 (accessed on 19 July 2024).
- The Effect of Weekly Semaglutide Treatment on Energy Expenditure. Available online: https://clinicaltrials.gov/study/NCT06390501 (accessed on 19 July 2024).
Drug | Approval Date | Mechanism of Action | Route of Administration | Dose | Contraindications | Common Side Effects |
---|---|---|---|---|---|---|
Orlistat [143] | FDA 1999 EMA 1998 | Lipase inhibitor [143] | Oral | 3 × 120 mg/day [143] | Chronic malabsorption syndrome, cholestasis, pregnancy [143] | Oily/fatty feces, bloating, fecal urgency [143] |
Phentermine/topiramate [144] | FDA 2012 | Serotonin-, norepinephrine-, and dopamine-releasing agent; GABA agonist [144] | Oral | From 3.75 mg/23 mg daily for 2 weeks (starting dose) to recommended 7.5 mg/46 mg, maximum dose: 15 mg/92 mg [144] | Glaucoma, pregnancy, hyperthyroidism, hypersensitivity to sympathomimetics, pregnancy [144] | Dizziness, insomnia, constipation [144] |
Naltrexone/bupropion [60] | FDA 2014 EMA 2015 | Opioid antagonist/ norepinephrine and dopamine reuptake inhibitor [60] | Oral | 8 mg/90 mg daily (1 tablet), dose increased each week until maintenance dose: 2 tablets twice a day [60] | Uncontrolled hypertension, eating disorders (anorexia, bulimia), opioids use, seizure disorders, pregnancy [60] | Nausea, vomiting, constipation, diarrhea, dizziness [60] |
Liraglutide [145] Semaglutide [146] | FDA 2014 EMA 2015 FDA 2021 EMA 2021 | GLP-1 receptor agonists | Subcutaneous | Liraglutide: 0.6 mg daily (starting dose) increased weekly by 0.6 mg, target dose 3 mg [145] Semaglutide: from 0.25 mg once a week to full dose of 2.4 mg once a week [146] | Personal or family history of medullary thyroid carcinoma or in patients with multiple endocrine neoplasia syndrome type 2, acute pancreatitis, serious hypersensitivity, pregnancy [145,146] | Nausea, vomiting, constipation, diarrhea, abdominal pain [145,146] |
Tirzepatide [140] | FDA 2023 EMA 2024 | Dual GLP-1 and GIP receptor agonist | Subcutaneous | Initial dose: 2.5 mg once weekly, increasing in 2.5 mg increments after at least 4 weeks; recommended maintenance dose: 5/10/15 mg, max. 15 mg [140] | Personal or family history of medullary thyroid carcinoma or in patients with multiple endocrine neoplasia syndrome type 2, serious hypersensitivity [140] | Nausea, diarrhea, vomiting, constipation, abdominal pain, dyspepsia, injection site reactions, fatigue [140] |
Setmelanotide [147] | FDA 2020 EMA 2021 | MC4 receptor agonist | Subcutaneous | Starting dose: 2 mg/daily for 2 weeks, further depending on drug tolerance [147] | Prior serious hypersensitivity to setmelanotide [147] | Injection site reaction, skin hyperpigmentation, nausea, diarrhea, headache [147] |
Metreleptin [148] | FDA 2014 EMA 2018 | Leptin analogue | Subcutaneous | Females > 40 kg: initial 5 mg, max. 10 mg/daily, males > 40 kg: initial 2.5 mg, max. 10 mg/daily [148] | General obesity, severe hypersensitivity reactions [148] | Headache, hypoglycemia, abdominal pain [148] |
Mechanism of Action | Clinical Trial Phase | Compound Names | Number of Compounds According to Mechanism of Action (%) | Reference |
---|---|---|---|---|
Incretin-Based Therapies (41.57%) | ||||
GLP-1 receptor agonists | I | ZT002 | 16 (17.98%) | NCT06371326 |
I | CT-996 | NCT05814107 | ||
I | XW-004 | NCT05184322 | ||
II | Lotiglipron (PF-07081532) | NCT05579977 | ||
II | Danuglipron (PF-06882961) | NCT04617275 | ||
II | Noiiglutide (SHR2004) | NCT04799327 | ||
II | GSBR-1290 | NCT05762471 | ||
II | HDM1002 | NCT06500299 | ||
II | HRS-7535 | NCT06250946 | ||
II | PB-119 | NCT06350812 | ||
II | RGT001-075 | NCT06277934 | ||
II | GZR-18 | NCT06256562 | ||
III | Ecnoglutide (XW-003) | NCT05813795 | ||
III | Orforglipron (LY3502970) | NCT05869903 | ||
III | HM11260C | NCT06174779 | ||
III | TG103 | NCT05997576 | ||
GLP-1 + GIP receptor agonists | II | Olatorepatide (HS-20094) | 6 (6.74%) | NCT06118021 |
II | RAY1225 | NCT06254274 | ||
II | HRS9531 | NCT06054698 | ||
II | VK2735 | NCT06068946 | ||
II | NN0519-0130 | NCT06326060 | ||
III | HRS9531 | NCT06396429 | ||
GLP-1 + glucagon receptor agonists | II | Pemvidutid (ALT-801) | 4 (4.49%) | NCT05295875 |
II | PB-718 | NCT06147544 | ||
III | Mazdutide (IBI362; LY3305677) | NCT06164873 | ||
III | Survodutide (BI 456906) | NCT06077864 | ||
GLP-1 receptor agonist + GIP receptor antagonist | II | Cafraglutide (AMG 133) | 1 (1.12%) | NCT05669599 |
GLP-1 + GIP + glucagon receptor agonists | I | BI 3034701 (receptor specificity not yet disclosed) | 2 (2.25%) | NCT06352437 |
III | Retatrutide (LY3437943) | NCT06383390 | ||
GLP-1 + glucagon + FGF21 receptor agonist | I | DR10624 | 1 (1.12%) | NCT05378893 |
GLP-1 + GLP-2 receptor agonist | III | Dapiglutide | 1 (1.12%) | NCT05788601 |
GLP-1 + amylin receptor agonists | II | Amycretin (NNC0487-0111) | 2 (2.25%) | NCT06064006 |
III | CagriSema (cagrilintide + semaglutide) | NCT06131437 | ||
Amylin analogues | I | Petrelintide (ZP8396) | 4 (4.49%) | NCT05613387 |
I | GUB014295 | NCT06144684 | ||
I | AZD6234 | NCT06132841 | ||
II | Eloralintide (LY3841136) | NCT06230523 | ||
Central Nervous System-Targeted Therapies (19.10%) | ||||
Leptin receptor activators | I | ERX1000 | 2 (2.25%) | NCT04890873 |
II | Mibavademab | NCT06373146 | ||
MC4R agonists | I | RM-718 | 2 (2.25%) | NCT06239116 |
II | LB54640 | NCT06046443 | ||
NPY receptor agonists | I | Nisotirostide (LY3457263) | 3 (3.37%) | NCT05582096 |
I | BI 1820237 | NCT05751226 | ||
II | NNC0165-1875 | NCT04969939 | ||
Oxytocin analogues | II | Oxytocin (TNX-1900) | 2 (2.25%) | NCT05664516 |
III | Carbetocin | NCT06420297 | ||
GPR40 agonists | II | K-757 | 2 (2.25%) | NCT05900531 |
II | K-833 | NCT06019559 | ||
Ghrelin-O-acyltransferase inhibitor | I | BI 1356225 | 1 (1.12%) | NCT04065295 |
CB1R antagonist | I | GFB-024 | 1 (1.12%) | NCT04880291 |
CB1R agonist | II | Nabilone | 1 (1.12%) | NCT04801641 |
CB1R inverse agonist | II | Monlunabant (INV-202) | 1 (1.12%) | NCT05891834 |
Dopamine receptor agonist | II | NG101 | 1 (1.12%) | NCT06500429 |
Complex mechanism | III | Sibutramine/topiramate XR | 1 (1.12%) | NCT05209984 |
Gastrointestinal Tract-Targeted Therapies (15.73%) | ||||
Orally administered compounds reducing ingestion | II | GLY-200 | 2 (2.25%) | NCT06259981 |
II | Acarbose + orlistat | NCT04521751 | ||
Microbiota-associated approach | I | XEN-101 | 6 (6.74%) | NCT06417697 |
I | Probiotics/fecal microbiota transplantation | NCT05076656 | ||
II | Probiotic blend | NCT05676229 | ||
II | Fecal microbiota transplantation | NCT05253768 | ||
II | Akkermansia Muciniphila WST01 | NCT04797442 | ||
II | Labisia pumila standardized extract (SKF7®) | NCT04557267 | ||
Bile acid-based approach | I | Ileocolonic-release conjugated bile acid | 2 (2.25%) | NCT05314374 |
I | Spermine–bile acid | NCT05925920 | ||
Glabridin analogue | II | Vutiglabridin (HSG4112) | 1 (1.12%) | NCT05197556 |
Liver-targeted approach | I | TLC-6740 | 2 (2.25%) | NCT05822544 |
I | ASC-41 | NCT04686994 | ||
Dietary branched-chain amino acids (BCAAs) | I | Low-BCAAs diet | 1 (1.12%) | NCT04424537 |
Drugs Potentially Modifying Energy Expenditure (15.73%) | ||||
Renin–angiotensin system | I | Angiotensin-(1-7) | 14 (15.73%) | NCT03777215 |
β3-Adrenergic receptor agonists | I | Mirabegron | NCT03049462 | |
β2-Adrenergic receptor agonist | I | Salbutamol | NCT06319183 | |
PEGylated arginine deiminase | II | ADI-PEG20 | NCT05829239 | |
Sodium–glucose transport protein-2 (SGLT-2) inhibitor | II | Empagliflozin | NCT05885074 | |
Phosphodiesterase-5 (PDE-5) inhibitor | II | Tadalafil | NCT04684589 | |
Guanylate cyclase stimulator | II | Vericiguat | NCT06320951 | |
Unknown | III | Triticum aestivum | NCT06496100 | |
Liver-enriched antimicrobial peptide | Not Applicable | LEAP-2 Protein | NCT05603598 | |
Potent PPARγ binder nutraceutical | Not Applicable | Maslinic acid | NCT06484543 | |
Form of vitamin B3, NAD+ precursor | Not Applicable | Nicotinamide riboside | NCT06044935 | |
Nerve stimulation | Not Applicable | Olfactory stimulation with distinct odors | NCT05472168 | |
Unknown | Not Applicable | Raw whole almonds | NCT06413069 | |
GLP-1 receptor agonist | Not Applicable | Semaglutide | NCT06390501 | |
Other Therapeutic Targets (7.87%) | ||||
Antioxidant therapy | II | Methylglyoxal (MGO)-lowering cocktail | 1 (1.12%) | NCT05083546 |
Monoacylglycerol acyltransferase-2 (MGAT-2) inhibitor | II | S-309309 | 1 (1.12%) | NCT05247970 |
Bitter taste (TAS2) receptor agonist (taste perception) | II | Eliapixant (ARD-101) | 1 (1.12%) | NCT05121441 |
Interleukin-22 (IL-22) | II | CK-0045 | 1 (1.12%) | NCT05712876 |
Unknown | II | Sodium pentaborate pentahydrate | 1 (1.12%) | NCT05741606 |
SGLT-2 inhibitors | III | Dapagliflozin | 2 (2.25%) | NCT06000462 |
IV | Henagliflozin | NCT06216340 | ||
Total number | 89 (100%) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Nicze, M.; Dec, A.; Borówka, M.; Krzyżak, D.; Bołdys, A.; Bułdak, Ł.; Okopień, B. Molecular Mechanisms behind Obesity and Their Potential Exploitation in Current and Future Therapy. Int. J. Mol. Sci. 2024, 25, 8202. https://doi.org/10.3390/ijms25158202
Nicze M, Dec A, Borówka M, Krzyżak D, Bołdys A, Bułdak Ł, Okopień B. Molecular Mechanisms behind Obesity and Their Potential Exploitation in Current and Future Therapy. International Journal of Molecular Sciences. 2024; 25(15):8202. https://doi.org/10.3390/ijms25158202
Chicago/Turabian StyleNicze, Michał, Adrianna Dec, Maciej Borówka, Damian Krzyżak, Aleksandra Bołdys, Łukasz Bułdak, and Bogusław Okopień. 2024. "Molecular Mechanisms behind Obesity and Their Potential Exploitation in Current and Future Therapy" International Journal of Molecular Sciences 25, no. 15: 8202. https://doi.org/10.3390/ijms25158202
APA StyleNicze, M., Dec, A., Borówka, M., Krzyżak, D., Bołdys, A., Bułdak, Ł., & Okopień, B. (2024). Molecular Mechanisms behind Obesity and Their Potential Exploitation in Current and Future Therapy. International Journal of Molecular Sciences, 25(15), 8202. https://doi.org/10.3390/ijms25158202