Analysis of HLA Alleles in Different Cohorts of Patients Infected by L. infantum from Southern Spain
Abstract
:1. Introduction
2. Results
2.1. Demographic Data
2.2. HLA Typing
2.3. Allele Frequencies
2.4. Haplotypes
2.5. Homozygosis
2.6. Bw4/Bw6 Epitopes and C1/C2 Groups
3. Discussion
4. Materials and Methods
4.1. Study Groups
4.2. Control Group
4.3. Asymptomatic Infection
4.4. Leishmania Disease
4.5. Infected Group
4.6. Cohabiting Group
4.7. Blood Collection
4.8. Serological Test
4.9. DNA Extraction
4.10. Leishmania PCR
4.11. HLA Class I and II Genotyping
4.12. Haplotypes, Bw4/Bw6 Epitopes and C1/C2 Groups Analysis
4.13. Statistical Analysis
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Akhoundi, M.; Downing, T.; Votýpka, J.; Kuhls, K.; Lukeš, J.; Cannet, A.; Ravel, C.; Marty, P.; Delaunay, P.; Kasbari, M. Leishmania Infections: Molecular Targets and Diagnosis. Mol. Asp. Med. 2017, 57, 1–29. [Google Scholar] [CrossRef] [PubMed]
- Pace, D. Leishmaniasis. J. Infect. 2014, 69 (Suppl. S1), S10–S18. [Google Scholar] [CrossRef] [PubMed]
- Berriatua, E.; Maia, C.; Conceição, C.; Özbel, Y.; Töz, S.; Baneth, G.; Pérez-Cutillas, P.; Ortuño, M.; Muñoz, C.; Jumakanova, Z. Leishmaniases in the European Union and Neighboring Countries. Emerg. Infect. Dis. 2021, 27, 1723. [Google Scholar] [CrossRef] [PubMed]
- Available online: https://www.Isciii.Es/QueHacemos/Servicios/VigilanciaSaludPublicaRENAVE/EnfermedadesTransmisibles/Paginas/Resultados_Vigilancia_Leishmania.Aspx (accessed on 24 July 2024).
- Maia, C.; Conceição, C.; Pereira, A.; Rocha, R.; Ortuño, M.; Muñoz, C.; Jumakanova, Z.; Pérez-Cutillas, P.; Özbel, Y.; Töz, S. The Estimated Distribution of Autochthonous Leishmaniasis by Leishmania Infantum in Europe in 2005–2020. PLoS Neglected Trop. Dis. 2023, 17, e0011497. [Google Scholar] [CrossRef]
- Aliaga, L.; Ceballos, J.; Sampedro, A.; Cobo, F.; López-Nevot, M.Á.; Merino-Espinosa, G.; Morillas-Márquez, F.; Martín-Sánchez, J. Asymptomatic Leishmania Infection in Blood Donors from the Southern of Spain. Infection 2019, 47, 739–747. [Google Scholar] [CrossRef] [PubMed]
- Díaz-Sáez, V.; Morillas-Mancilla, M.J.; Corpas-López, V.; Rodríguez-Granger, J.; Sampedro, A.; Morillas-Márquez, F.; Martín-Sánchez, J. Leishmaniasis Vectors in the Environment of Treated Leishmaniasis Cases in Spain. Transbound. Emerg. Dis. 2022, 69, 3247–3255. [Google Scholar] [CrossRef] [PubMed]
- Blackwell, J.M.; Fakiola, M.; Castellucci, L.C. Human Genetics of Leishmania Infections. Hum. Genet. 2020, 139, 813–819. [Google Scholar] [CrossRef] [PubMed]
- Castro-Santos, P.; Rojas-Martinez, A.; Riancho, J.A.; Lapunzina, P.; Flores, C.; Carracedo, Á.; Díaz-Peña, R.; Group, S.C.; Abellan, J.; Acosta-Isaac, R. HLA-A* 11: 01 and HLA-C* 04: 01 Are Associated with Severe COVID-19. HLA 2023, 102, 731–739. [Google Scholar] [CrossRef]
- Blackwell, J.M.; Jamieson, S.E.; Burgner, D. HLA and Infectious Diseases. Clin. Microbiol. Rev. 2009, 22, 370–385. [Google Scholar] [CrossRef] [PubMed]
- Dutta, M.; Dutta, P.; Medhi, S.; Borkakoty, B.; Biswas, D. Polymorphism of HLA Class I and Class II Alleles in Influenza A (H1N1) Pdm09 Virus Infected Population of Assam, Northeast India. J. Med. Virol. 2018, 90, 854–860. [Google Scholar] [CrossRef]
- Klein, J.A.N.; Sato, A. The HLA System. New Engl. J. Med. 2000, 343, 702–709. [Google Scholar] [CrossRef] [PubMed]
- Germain, R.N.; Margulies, D.H. The Biochemistry and Cell Biology of Antigen Processing and Presentation. Annu. Rev. Immunol. 1993, 11, 403–450. [Google Scholar] [CrossRef] [PubMed]
- Lutz, C.T. Human Leukocyte Antigen Bw4 and Bw6 Epitopes Recognized by Antibodies and Natural Killer Cells. Curr. Opin. Organ Transplant. 2014, 19, 436–441. [Google Scholar] [CrossRef] [PubMed]
- Parham, P. MHC Class I Molecules and KIRs in Human History, Health and Survival. Nat. Rev. Immunol. 2005, 5, 201–214. [Google Scholar] [CrossRef] [PubMed]
- Eimanzadeh, M.; Mohebali, M.; Zarrabi, M.; Foroushani, A.R.; Kazemi, M.; Hajjaran, H.; Zarei, Z.; Kakooei, Z.; Akhoundi, B. The Association of Human Leucocyte Antigen (HLA) Class I and II Genes with Cutaneous and Visceral Leishmaniasis in Iranian Patients: A Preliminary Case-Control Study. Iran. J. Parasitol. 2023, 18, 155. [Google Scholar] [CrossRef] [PubMed]
- Available online: https://www.Who.Int/Health-Topics/Leishmaniasis#tab=tab_1 (accessed on 24 July 2024).
- Available online: https://www.Who.Int/Publications/i/Item/9789240095571 (accessed on 24 July 2024).
- ABDEL-SALAM, E.; Khalik, A.A.; Abdel-Meguid, A.; Barakat, W.; Mahmoud, A.A.F. Association of HLA Class I Antigens (Al, B5, B8 and CW2) with Disease Manifestations and Infection in Human Schistosomiasis Mansoni in Egypt. Tissue Antigens 1986, 27, 142–146. [Google Scholar] [CrossRef]
- Sasazuki, T.; Nrshimura, Y.; Muto, M.; Ohta, N. HLA-Linked Genes Controlling Immune Response and Disease Susceptibility 1. Immunol. Rev. 1983, 70, 51–75. [Google Scholar] [CrossRef]
- Vadas, M.A. Parasite Immunity and the Major Histocompatibility Complex. Immunogenetics 1980, 11, 215–223. [Google Scholar] [CrossRef]
- Schneeberger, E.E.; Citera, G.; Rodríguez Gil, G.; Granel, A.; Arturi, A.; Rosemffet, G.M.; Maldonado Cocco, J.A.; Berman, A.; Spindler, A.; Morales, V.H. Clinical and Immunogenetic Characterization in Psoriatic Arthritis Patients. Clin. Rheumatol. 2015, 34, 1413–1418. [Google Scholar] [CrossRef]
- Reshef, R.; Luskin, M.R.; Kamoun, M.; Vardhanabhuti, S.; Tomaszewski, J.E.; Stadtmauer, E.A.; Porter, D.L.; Heitjan, D.F.; Tsai, D.E. Association of HLA Polymorphisms with Post-Transplant Lymphoproliferative Disorder in Solid-Organ Transplant Recipients. Am. J. Transplant. 2011, 11, 817–825. [Google Scholar] [CrossRef]
- Lara, M.L.; Layrisse, Z.; Scorza, J.V.; Garcia, E.; Stoikow, Z.; Granados, J.; Bias, W. Immunogenetics of Human American Cutaneous Leishmaniasis: Study of HLA Haplotypes in 24 Families from Venezuela. Hum. Immunol. 1991, 30, 129–135. [Google Scholar] [CrossRef]
- Samaranayake, N.; Fernando, S.D.; Neththikumara, N.F.; Rodrigo, C.; Karunaweera, N.D.; Dissanayake, V.H.W. Association of HLA Class I and II Genes with Cutaneous Leishmaniasis: A Case Control Study from Sri Lanka and a Systematic Review. BMC Infect. Dis. 2016, 16, 292. [Google Scholar] [CrossRef] [PubMed]
- Singh, T.; Fakiola, M.; Oommen, J.; Singh, A.P.; Singh, A.K.; Smith, N.; Chakravarty, J.; Sundar, S.; Blackwell, J.M. Epitope-Binding Characteristics for Risk versus Protective DRB1 Alleles for Visceral Leishmaniasis. J. Immunol. 2018, 200, 2727–2737. [Google Scholar] [CrossRef]
- Consortium, L.; Wellcome Trust Case Control Consortium 2; Fakiola, M.; Strange, A.; Cordell, H.J.; Miller, E.N.; Pirinen, M.; Su, Z.; Mishra, A.; Mehrotra, S. Common Variants in the HLA-DRB1–HLA-DQA1 HLA Class II Region Are Associated with Susceptibility to Visceral Leishmaniasis. Nat. Genet. 2013, 45, 208–213. [Google Scholar]
- rPetzl-Erler, M.L.; Belich, M.P.; Queiroz-Telles, F. Association of Mucosal Leishmaniasis with HLA. Hum. Immunol. 1991, 32, 254–260. [Google Scholar] [CrossRef]
- Ribas-Silva, R.C.; Ribas, A.D.; Ferreira, E.C.; Silveira, T.G.; Borelli, S.D. Association between HLA-C* 04 and American Cutaneous Leishmaniasis in Endemic Region of Southern Brazil. Genet. Mol. Res. 2015, 14, 14929–14935. [Google Scholar] [CrossRef]
- Tang, J.; Costello, C.; Keet, I.P.M.; Rivers, C.; Leblanc, S.; Karita, E.; Allen, S.; Kaslow, R.A. HLA Class I Homozygosity Accelerates Disease Progression in Human Immunodeficiency Virus Type 1 Infection. AIDS Res. Hum. Retroviruses 1999, 15, 317–324. [Google Scholar] [CrossRef]
- De Marco, R.; Faria, T.C.; Mine, K.L.; Cristelli, M.; Medina-Pestana, J.O.; Tedesco-Silva, H.; Gerbase-DeLima, M. HLA-A Homozygosis Is Associated with Susceptibility to COVID-19. HLA 2021, 98, 122–131. [Google Scholar] [CrossRef]
- Ugolotti, E.; Vanni, I.; Raso, A.; Benzi, F.; Malnati, M.; Biassoni, R. Human Leukocyte Antigen–B (-Bw6/-Bw4 I80, T80) and Human Leukocyte Antigen–C (-C1/-C2) Subgrouping Using Pyrosequence Analysis. Hum. Immunol. 2011, 72, 859–868. [Google Scholar] [CrossRef]
- Jiang, Y.; Chen, O.; Cui, C.; Zhao, B.; Han, X.; Zhang, Z.; Liu, J.; Xu, J.; Hu, Q.; Liao, C. KIR3DS1/L1 and HLA-Bw4-80I Are Associated with HIV Disease Progression among HIV Typical Progressors and Long-Term Nonprogressors. BMC Infect. Dis. 2013, 13, 1–11. [Google Scholar] [CrossRef]
- Rajagopalan, S.; Long, E.O. Understanding How Combinations of HLA and KIR Genes Influence Disease. J. Exp. Med. 2005, 201, 1025. [Google Scholar] [CrossRef] [PubMed]
- Gutiérrez-Bautista, J.F.; Sampedro, A.; Gómez-Vicente, E.; Rodríguez-Granger, J.; Reguera, J.A.; Cobo, F.; Ruiz-Cabello, F.; López-Nevot, M.Á. HLA Class II Polymorphism and Humoral Immunity Induced by the SARS-CoV-2 MRNA-1273 Vaccine. Vaccines 2022, 10, 402. [Google Scholar] [CrossRef] [PubMed]
- Elmahallawy, E.K.; Martínez, A.S.; Rodriguez-Granger, J.; Hoyos-Mallecot, Y.; Agil, A.; Mari, J.M.N.; Fernández, J.G. Diagnosis of Leishmaniasis. J. Infect. Dev. Ctries. 2014, 8, 961–972. [Google Scholar] [CrossRef] [PubMed]
- Dorak, M.T.; Shao, W.; Machulla, H.K.G.; Lobashevsky, E.S.; Tang, J.; Park, M.H.; Kaslow, R.A. Conserved Extended Haplotypes of the Major Histocompatibility Complex: Further Characterization. Genes. Immun. 2006, 7, 450–467. [Google Scholar] [CrossRef] [PubMed]
- Müller, C.A.; Engler-Blum, G.; Gekeler, V.; Steiert, I.; Weiss, E.; Schmidt, H. Genetic and Serological Heterogeneity of the Supertypic HLA-B Locus Specificities Bw4 and Bw6. Immunogenetics 1989, 30, 200–207. [Google Scholar] [CrossRef]
LD (n = 26) | Cohabitants (n = 32) | Asymptomatic (n = 55) | Infected (n = 81) | Controls (n = 636) | P1(Pc) | P2(Pc) | P3(Pc) | |
---|---|---|---|---|---|---|---|---|
HLA-A*24 | 0.173 | 0.172 | 0.164 | 0.167 | 0.108 | 0.029 (n.s) | n.s | n.s |
HLA-A*34 | 0.038 | 0 | 0 | 0.012 | 0.050 | n.s | 0.020 (n.s) | n.s |
HLA-B*07 | 0.154 | 0.203 | 0.100 | 0.117 | 0.097 | n.s | n.s | 0.007 (n.s) |
HLA-B*15 | 0.058 | 0.125 | 0.100 | 0.086 | 0.052 | n.s | n.s | 0.013 (n.s) |
HLA-B*38 | 0.019 | 0.094 | 0.055 | 0.043 | 0.025 | n.s | n.s | 0.001 (0.026) |
HLA-B*44 | 0.115 | 0.063 | 0.127 | 0.123 | 0.154 | n.s | n.s | 0.045 (n.s) |
HLA-C*03 | 0.077 | 0.173 | 0.091 | 0.086 | 0.045 | n.s | n.s | 6 × 10−6 (8.4 × 10−5) |
HLA-DR*11 | 0.135 | 0.234 | 0.164 | 0.167 | 0.108 | n.s | n.s | 0.007 (n.s) |
Haplotype | LD (n = 26) | Cohabitants (n = 32) | Controls (n = 636) | P1(Pc) | P2(Pc) |
---|---|---|---|---|---|
18.3 | 0.038 | 0.031 | 0.004 | 0.030 (n.s) | n.s |
60.3 | 0.019 | 0.031 | 0.003 | n.s | 0.028 (n.s) |
Homozygosis HLA-A | Homozygosis HLA-B | Homozygosis HLA-C | Homozygosis HLA-DRB1 | Homozygosis HLA-DQB1 | |
---|---|---|---|---|---|
LD (n = 26) | 0.154 | 0.154 | 0.192 | 0.115 | 0.269 |
Cohabitans (n = 32) | 0.188 | 0.125 | 0.063 | 0.125 | 0.313 |
Asymptomatic (n = 55) | 0.200 | 0.109 | 0.127 | 0.091 | 0.200 |
Infected (n = 81) | 0.185 | 0.123 | 0.148 | 0.099 | 0.222 |
Controls (n = 636) | 0.126 | 0.085 | 0.127 | 0.132 | 0.253 |
Heterozygous Bw4/Bw6 | Homozygous Bw4 | Homozygous Bw6 | Heterozygous C1/C2 | Homozygous C1 | Homozygous C2 | |
---|---|---|---|---|---|---|
LD (n = 26) | 0.654 | 0.154 | 0.192 | 0.462 | 0.308 | 0.231 |
Cohabitans (n = 32) | 0.563 | 0.156 | 0.281 | 0.469 | 0.438 | 0.094 |
Asymptomatic (n = 55) | 0.618 | 0.145 | 0.236 | 0.491 | 0.382 | 0.127 |
Infected (n = 81) | 0.630 | 0.148 | 0.222 | 0.481 | 0.358 | 0.160 |
Controls (n = 636) | 0.629 | 0.189 | 0.182 | 0.476 | 0.316 | 0.208 |
LD | Cohabitants | Asymptomatic | Infected | Controls | |
---|---|---|---|---|---|
n | 26 | 32 | 55 | 81 | 636 |
Females (%) | 9 (34.8%) | 18 (56%) | 23 (41.8) | 38 (46.9%) | 324 (51%) |
Age (range) | 31 (1–78) | 47 (6–61) | 41 (18–65) | 38 (1–78) | 45 (18–65) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gutiérrez-Bautista, J.F.; Sampedro, A.; Ballesta-Alcaraz, L.; Aguilera-Franco, M.; Olivares-Durán, M.J.; Cobo, F.; Reguera, J.A.; Rodríguez-Granger, J.; Torres-Llamas, A.; Martín-Sánchez, J.; et al. Analysis of HLA Alleles in Different Cohorts of Patients Infected by L. infantum from Southern Spain. Int. J. Mol. Sci. 2024, 25, 8205. https://doi.org/10.3390/ijms25158205
Gutiérrez-Bautista JF, Sampedro A, Ballesta-Alcaraz L, Aguilera-Franco M, Olivares-Durán MJ, Cobo F, Reguera JA, Rodríguez-Granger J, Torres-Llamas A, Martín-Sánchez J, et al. Analysis of HLA Alleles in Different Cohorts of Patients Infected by L. infantum from Southern Spain. International Journal of Molecular Sciences. 2024; 25(15):8205. https://doi.org/10.3390/ijms25158205
Chicago/Turabian StyleGutiérrez-Bautista, Juan Francisco, Antonio Sampedro, Lucia Ballesta-Alcaraz, María Aguilera-Franco, María José Olivares-Durán, Fernando Cobo, Juan Antonio Reguera, Javier Rodríguez-Granger, Andrés Torres-Llamas, Joaquina Martín-Sánchez, and et al. 2024. "Analysis of HLA Alleles in Different Cohorts of Patients Infected by L. infantum from Southern Spain" International Journal of Molecular Sciences 25, no. 15: 8205. https://doi.org/10.3390/ijms25158205
APA StyleGutiérrez-Bautista, J. F., Sampedro, A., Ballesta-Alcaraz, L., Aguilera-Franco, M., Olivares-Durán, M. J., Cobo, F., Reguera, J. A., Rodríguez-Granger, J., Torres-Llamas, A., Martín-Sánchez, J., Aznar-Peralta, I., Vilchez, J. R., López-Nevot, M. Á., & Sampedro-Martínez, A. (2024). Analysis of HLA Alleles in Different Cohorts of Patients Infected by L. infantum from Southern Spain. International Journal of Molecular Sciences, 25(15), 8205. https://doi.org/10.3390/ijms25158205