Ferroptosis in Arthritis: Driver of the Disease or Therapeutic Option?
Abstract
:1. Introduction
1.1. Regulating Ferroptosis
1.2. Iron Metabolism
1.3. Lipid Peroxidation Pathways
2. Ferroptosis in Inflammatory Arthropathies
2.1. Ferroptosis in Resident Joint Cells: Fibroblast-Like Synoviocytes (FLSs) and Synovial Membrane
2.2. Ferroptosis in Innate Immune Cells
2.2.1. Polymorphonuclear Neutrophils (PMN)
2.2.2. Macrophages and Dendritic Cells (DC)
2.3. Ferroptosis in Adaptive Immune Cells
2.3.1. B Lymphocytes (B Cells)
2.3.2. T Lymphocytes (T Cells)
2.4. Rheumatoid Arthritis (RA)
2.4.1. Iron Metabolism in RA
2.4.2. Ferroptosis in RA
2.4.3. Ferroptosis Inducers in RA-FLS
2.4.4. Ferroptosis Inhibitors in RA-FLS
2.5. Spondylarthritis (SpA) and Other Arthritic Forms
2.5.1. Ferroptosis in Spondylarthritis
2.5.2. Ferroptosis in Psoriatic Arthritis
2.6. Ferroptosis in Crystal-Induced Arthritis
3. Ferroptosis in Osteoarthritis
3.1. Ferroptosis Inhibition in IL-1β Stimulated Chondrocytes
3.2. Ferroptosis Inhibition in Unstimulated Chondrocytes
4. Interpretation of the Data
5. Conclusions and Future Perspectives
Author Contributions
Funding
Conflicts of Interest
Abbreviations
Abbreviation | Name | Description |
4-HNE | 4-hydroxynonenal | Triggers inflammation |
γ-Ory | Gamma-oryzanol | Substance found in rice bran oil |
AA | Arachidonic acid | Type of omega-6 polyunsaturated fatty acid, primarily bound to ACSL4 through thioesterification process |
ACLT | Anterior cruciate ligament transection | Used to induce OA in animal models. |
ACO1 | Aconitase 1 | Cytosolic regulatory protein, monitors iron levels |
ACPA | Anti citrullinated protein antibodies | Sustains inflammation in RA; connection between presence of ACPA and development of bone erosions and pain in RA |
ACSF2 | Acyl-CoA synthetase family member 2 | Differentially expressed FRG |
ACSL4 | Acyl-CoA synthetase long-chain family member 4 | Takes part in biosynthesis and remodeling of PE, facilitating PUFA activation, influencing transmembrane characteristics of PUFAs |
AIF-M2 | Apoptosis-inducing factor—mitochondria-associated | A protein that suppresses ferroptosis |
Akt | Protein kinase B | A serin/threonine kinase |
ALOX12 | Arachidonate 12-lipoxygenase | Belongs to mammalian lipoxygenase family |
ARE | Antioxidant response elements | Is activated by Nrf2 |
ATF3 | Activating transcription factor 3 | Is a key ferroptosis-related gen |
AURKA | Serine/threonine-protein kinase 6 | Is a ferroptosis-related biomarker in OA |
AZ | Acetyl zingerone | Recently discovered antioxidant compound from curcumin |
BCA | Biochanin A | Newly discovered bioactive compound from Huangqi (a plant) |
BMPR2 | Bone morphogenetic protein receptor type 2 | An upregulated gene in PsA synovium |
BzATP | 2′(3′)-O-(4-Benzoylbenzoyl) adenosine 5-triphosphate | A ferroptosis agonist |
CA-074Me | CA-074-methyl ester | Can cause ferroptosis, cathepsin B inhibitor |
CAT | Capsiate | A metabolite produced by intestinal microorganisms |
CCR2 | C-C chemokine receptor type 2 | A chemokine receptor |
CDKN1A | Cyclin-dependent kinase inhibitor 1A | A ferroptosis-related gene |
CIA | Collagen-induced arthritis | Collagen-induced arthritis in a mouse model |
CISD1 | CDGSH iron sulfur domain 1 | A key ferroptosis regulator linked to PsA |
CLEC2B | C-type lectin domain family 2 member B | A hub gene in PsA |
COL2 | Collagen type II | Decreased in ferroptotic cells. |
COX2 | Cyclooxygenase 2 | Increased during ferroptosis as it is a ferroptosis regulator |
CTSB | Cathepsin B | A potential biomarker for RA, associated with ferroptosis |
CX43 | Connexin 43 | The target gene of miR-1 |
CXCL | Chemokine ligand | Chemokines; subfamily strongly linked with tumors and inflammatory conditions |
DEGs | Differentially expressed genes | Expression enriched in mitochondria-related pathways |
DMM | Destabilization of the medial meniscus | Animal models of OA established by DMM surgery |
DMT1 = SLC11A2 | Divalent metal transporter 1 | Facilitates transfer of Fe2+ from endosome to labile iron pool within cytoplasm |
Drp1 | Dynamin-related protein | Protein associated with the process of mitochondrial division |
EGFR | Epidermal growth factor receptor | Ferroptosis-related biomarker in OA |
EGR1 | Early growth response 1 | A ferroptosis-related gene |
ENO1 | Enolase 1 | A hub gene in ferroptosis |
ERK | Extracellular signal-regulated kinase | Serin/threonine kinase |
ES NS | Epigallocatechin-3-gallate-based nanodrugs | Reduce OA induced by ferroptosis |
Fer | Ferrostatin | Ferroptosis inhibitor |
FoxO | Forkhead box O | FoxO signal pathway important in ferroptosis |
FPN = SLC11A3 | Ferroportin | Protein for iron export |
FRG | Ferroptosis-related genes | Used to categorize AS into two subtypes |
FSP1 | Ferroptosis-suppressor-protein 1 | A protein that suppresses ferroptosis |
FTH | Ferritin heavy chain | Is used to create ferritin |
FTL | Ferritin light chain | Is used to create ferritin |
G1dP3 | Galectin-1-derived peptide | Anti-inflammatory and anti-proliferative properties in RA-FLS |
GLX | GLX351322 | A new selective NOX4 inhibitor |
GOT1 | Glutamic-oxaloacetic transaminase 1 | Catalyzes reversible transfer of α-amino group between aspartate and glutamate |
GSH | Glutathione | Plays a role in reducing ROS |
GPR30 | G-protein coupled receptor 30 | Inhibits YAP1 and suppresses ferroptosis in chondrocytes |
GPX4 | Glutathione peroxidase 4 | A pivotal enzyme in cellular defense against lipid peroxidation |
GRN | Granulin | A ferroptosis-related gene |
GSK-3β | Glycogen synthase kinase 3 beta | Inhibiting GSK-3β enhances ability to resist ferroptosis in CIA mice |
GsMTx4 | Grammostola mechanotoxin #4 | A spider venom that inhibits piezo1 |
H1299 cells | Epithelial like cell | This cell line stably expresses p53 |
HLA | Human leukocyte antigen | Different types of HLA play important in different forms of arthritis |
HO | Heme oxygenase | Antioxidant downstream protein of Nrf2, associated with ferroptosis |
HSPA5 | Heat shock protein family A member | Stabilizes GPX; identified as a ferroptosis inhibitor |
HSPB1 | Heat shock protein beta 1 | A possible regulator for ferroptosis |
ICA | Icariin | Active component found in Herba epimedii; possesses antioxidative properties and functions as an antiosteoporotic agent |
IKE | Imidazole ketone erastin | A ferroptosis inducer by inhibiting the system Xc- |
IL | Interleukin | Pro-inflammatory cytokines |
IRE | Iron-responsive element | Upregulation of TfR1, downregulation of FTH and FPN with IRPs |
IREB2 | Iron-responsive element binding protein 2 | By suppressing this protein, erastin-induced ferroptosis is restrained |
IRPs | Iron metabolic regulating proteins | Upregulation of TfR1, downregulation of FTH and FPN with IRE |
iTRAQ | Isobaric tags for relative and absolute quantification | An isobaric labeling technique employed in quantitative proteomics via tandem mass spectrometry for assessing the quantity of proteins originating from various sources within a singular experiment |
JAK/STAT | Januskinase/signal transducers and activators of transcription | Inhibiting this signaling pathway, the IL-1β and IL-6 levels in TNF-α stimulated MH7A cells are reduced |
JNK | c-JUN N terminal kinase | Inhibiting JNK-JUN-NCOA4 axis attenuated development of post-traumatic OA |
JUN | Transcription factor JUN | A hub gene involved in ferroptosis |
Keap1 | Kelch-like ECH associated protein-1 | A negative regulator of Nrf2 |
LDH | Lactate dehydrogenase | For classifying ferroptosis intensity |
LOX | Lipoxygenases | Iron-containing enzymes that do not require heme, producing lipid messengers responsible for modulating cellular inflammation by inhibiting the oxidation of PUFAs |
LPCAT3 | Lysophosphatidylcholine acyltransferae 3 | Takes part in biosynthesis and remodeling of PE, facilitating PUFA activation, influencing transmembrane characteristics of PUFAs |
LPS | Lipopolysaccharide | A large glycolipid |
m6A | N6-methyladenosine | A rare nucleoside of RNA |
MAPK | Mitogen-activated protein kinase | Plays important role in ferroptosis through nuclear factor (NF)-kB/mitogen-activated protein kinase (MAPK) signaling pathway |
MDA | Malonaldehyde | Is a derivate of PUFAs |
MEG3 | Maternally expressed 3 | A long non-coding, imprinted RNA gene expressed from maternal allele |
METTL3 | Methyltransferase-like 3 | A major methyltransferase that catalyzes formation of N6-methyladenosine (m6A) in mRNA |
MH7A | Human rheumatoid arthritis synovial cell line | Used in research |
MMA | Methyl methacrylate | A colorless liquid with an acrylic odor |
MMP | Matrix metalloproteinase | Part of the metzincin family characterized by zinc-containing multidomain structures; function as proteases |
mPEG-TK | Polyethylene glycol ketone mercaptan | Forms nanoparticles with GLX |
MTX | Methotrexate | A medication usually used for treating RA |
NCOA4 | Nuclear receptor coactivator 4 | A specific cargo receptor, facilitating autophagic ferritin breakdown |
NF-kB | Nuclear factor—kappaB | Plays important role in ferroptosis through nuclear factor (NF)-kB/mitogen-activated protein kinase (MAPK) signaling pathway |
NLRP3 | NLR family pyrin domain containing 3 | Is an inflammasome |
NOX4 | NADPH oxidase 4 | A catalytic subunit of the NADPH oxidase complex |
Nrf2 | Nuclear factor erythroid 2-related factor 2 | Controls ferroptosis-related gene expression |
OARSI | Osteoarthritis Research Society International | Score is used to classify the severity of arthritis |
P21 | Cyclin-dependent kinase inhibitor 1A | Contributes to maintaining cell balance by preventing cell death through apoptosis and acts as a ferroptosis suppressor |
P53 | Tumor protein p53 | Can induce ferroptosis via GPX4-dependent pathway or GPX4-independent pathway, tumor suppressor gene |
P65 | Nuclear factor NF-kappa-B p65 subunit | A transcription factor |
PBS | Phosphate-buffered saline | Used in research as it is a buffer solution |
PCBP | Poly-(rC)-binding protein | Act as chaperones |
PE | Phosphatidylethanolamine | Functions as key phospholipid inducing ferroptosis in cells |
PGD | Phosphogluconate dehydrogenase | A gene associated with ferroptosis |
PGE2 | Prostaglandin E2 | It is increased during ferroptosis |
Piezo1 | Piezo-type mechanosensitive ion channel component 1 | Converts diverse mechanical stimuli into electrochemical signals |
PI3K | Phosphatidylinositol3-kinase | A transferase |
Pink1 | PTEN-induced kinase 1 | Protein kinase, Pink1/Parkin-dependent mitophagy pathway has a protective effect on chondrocytes |
PLB | Plumbagin | Has anti-inflammatory, antioxidant, and anti-cancer characteristics |
PPARγ | Peroxisome proliferator activated receptor γ | Transcription factor activated by ligands; plays crucial role in controlling expression of multiple genes necessary for regulating lipid and glucose metabolism |
PTGS2 | Prostaglandin endoperoxide synthase 2 | Biomarker associated with ferroptosis |
PUFAs | Polyunsaturated fatty acids | Their characteristics play a vital role in preserving the fluidity of cell membranes, suppressing inflammatory mechanism, and reducing the release of proinflammatory cytokines by macrophages; a pivotal element for ferroptosis |
PVA | Polyvinyl acetate | An aliphatic rubbery synthetic polymer |
RA-FLS | Fibroblas-like synoviocytes in rheumatoid arthritis | Contribute to damage and inflammation within joints |
RANKL | Receptor activator of nuclear factor kB ligand | A pivotal factor for the creation of osteoclasts |
Ras | Rat sarcoma (virus) | Protein family involved in several pathways of cellular activity, often reregulated in cancer |
ROS | Reactive oxygen species | Accumulation of ROS triggers ferroptosis |
RSL3 | RAS-selective lethal 3 | A ferroptosis inducer |
SCD1 | Stearoyl-CoA desaturase | Induces ferroptosis in chondrocytes |
SCP2 | Sterol carrier protein 2 | Non-specific lipid-transfer protein found in multiple tissues and cells, plays a significant role in different diseases |
shRNA | Short hairpin RNA | Can be used to artificially silence genes using RNA interference |
SIRT1 | Sirtuin 1 | Acts as a histone deacetylase, is highly conserved, relied on nicotinamide adenine dinucleotide (NAD+), holds pivotal functions in various cellular processes |
SLC2A1 | Solute carrier family 2 member 1 | Transmembrane carrier for dehydroascorbic acid and glucose, through its activation the progression of ferroptosis is impeded |
SLC2A3 | Solute carrier family 2 member 3 | Reducing the expression of SLC2A3 triggers ferroptosis in RA-FLS |
SLC3A2 | Solute carrier family 3 member 2 | A subunit of system Xc- |
SLC3A2L | 4F2 cell-surface antigen heavy chain | LPS stimulation decreases the expression SLC3A2L |
SLC7A11 | Solute carrier family 7 member 11 | A subunit of system Xc- |
SND1 | Staphylococcal nuclease domain containing 1 | RNA-binding protein |
SP1 | Specificity protein 1 | Belongs to the SP/KLF family of transcription factors, situated within the nucleus, participates in the regulation of numerous genes within mammalian cells, can interact with various proteins |
STEAP3 | STEAP3 Metalloreductase | Converts Fe3+ to Fe2+ |
System Xc- | Cystine/glutamate transporter | Amino acid antiporter, forms a crucial part of the cellular antioxidant system |
TBHP | Tert-Butyl hydroperoxide | Can induce inflammation |
TfR 1 | Transferrin receptor 1 | Upregulation of TfR1 leads to intracellular iron accumulation |
TFRC | Transferrin receptor | A key ferroptosis-related gene |
TGF-β | Transforming growth factor-beta | Could increase susceptibility of FLSs to ferroptosis |
TGFBR1 | Transforming growth factor beta receptor 1 | Is overexpressed in the synovium of PsA patients |
TNF-α | Tumor necrosis factor alpha | Inflammatory cytokine generated by macrophages in response to acute inflammation, triggers various signaling pathways within cells |
TRPM7 | Transient receptor potential melastatin 7 | Blocking TRPM7 in chondrocytes shielded from ferroptosis |
TRPV1 | Transient receptor potential vanilloid 1 | Its activation might safeguard chondrocytes from ferroptosis |
VDAC | Voltage-dependent anion channel | Is involved in ferroptosis |
VEGF | Vascular endothelial growth factor | Plays a crucial role in regulating the formation of blood vessels during vascular development and postnatal angiogenesis, is indispensable for the development and healing of bones |
WGCNA | Weighted gene co-expression network analysis | A computational technique that evaluates the connections among measured gene transcripts, identifies groups of genes that are co-expressed in a clinically relevant manner and investigates pivotal genes within diseases pathways from the prospect of systems biology |
WNT3A | Wnt family member 3A | Is overexpressed in the synovium of PsA patients |
XO | Xanthine oxidase | Generates uric acid |
YAP1 | Yes-associated protein 1 | An augmentation of this protein inhibits ferroptosis in OA |
YY1 | Yin Yang 1 | Is a member of Gli-Kruppel zinc finger proteins, plays a role in inhibiting and activating gene promotors |
References
- Han, C.; Liu, Y.; Dai, R.; Ismail, N.; Su, W.; Li, B. Ferroptosis and Its Potential Role in Human Diseases. Front. Pharmacol. 2012, 11, 239. [Google Scholar] [CrossRef] [PubMed]
- Stockwell, B.R. Ferroptosis turns 10: Emerging mechanisms, physiological functions, and therapeutic applications. Cell 2022, 185, 2401–2421. [Google Scholar] [CrossRef] [PubMed]
- Yan, H.-F.; Zou, T.; Tuo, Q.-Z.; Xu, S.; Li, H.; Belaidi, A.A.; Lei, P. Ferroptosis: Mechanisms and links with diseases. Signal Transduct. Target. Ther. 2021, 6, 49. [Google Scholar] [CrossRef] [PubMed]
- Jing, X.; Lin, J.; Du, T.; Jiang, Z.; Li, T.; Wang, G.; Liu, X.; Cui, X.; Sun, K. Iron Overload Is Associated With Accelerated Progression of Osteoarthritis: The Role of DMT1 Mediated Iron Homeostasis. Front. Cell Dev. Biol. 2021, 8, 594509. [Google Scholar] [CrossRef] [PubMed]
- Biniecka, M.; Connolly, M.; Gao, W.; Ng, C.T.; Balogh, E.; Gogarty, M.; Santos, L.; Murphy, E.; Brayden, D.; Veale, D.J.; et al. Redox-mediated angiogenesis in the hypoxic joint of inflammatory arthritis. Arthritis Rheumatol. 2014, 66, 3300–3310. [Google Scholar] [CrossRef] [PubMed]
- Holden, P.; Nair, L.S. Deferoxamine: An Angiogenic and Antioxidant Molecule for Tissue Regeneration. Tissue Eng. Part. B Rev. 2019, 25, 461–470. [Google Scholar] [CrossRef] [PubMed]
- Deng, L.; He, S.; Guo, N.; Tian, W.; Zhang, W.; Luo, L. Molecular mechanisms of ferroptosis and relevance to inflammation. Inflamm. Res. 2022, 72, 281–299. [Google Scholar] [CrossRef] [PubMed]
- Jiang, X.; Stockwell, B.R.; Conrad, M. Ferroptosis: Mechanisms, biology and role in disease. Nat. Rev. Mol. Cell Biol. 2021, 22, 266–282. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.; Gu, W. p53 in ferroptosis regulation: The new weapon for the old guardian. Cell Death Differ. 2022, 29, 895–910. [Google Scholar] [CrossRef]
- Yang, W.S.; Stockwell, B.R. Synthetic Lethal Screening Identifies Compounds Activating Iron-Dependent, Nonapoptotic Cell Death in Oncogenic-RAS-Harboring Cancer Cells. Chem. Biol. 2008, 15, 234–245. [Google Scholar] [CrossRef]
- Yang, W.S.; SriRamaratnam, R.; Welsch, M.E.; Shimada, K.; Skouta, R.; Viswanathan, V.S.; Cheah, J.H.; Clemons, P.A.; Shamji, A.F.; Clish, C.B.; et al. Regulation of ferroptotic cancer cell death by GPX4. Cell 2014, 156, 317–331. [Google Scholar] [CrossRef]
- Zhao, Y.; Li, Y.; Zhang, R.; Wang, F.; Wang, T.; Jiao, Y. The role of Erastin in ferroptosis and its prospects in cancer therapy. Onco Targets Ther. 2020, 13, 5429–5441. [Google Scholar] [CrossRef] [PubMed]
- Mancardi, D.; Mezzanotte, M.; Arrigo, E.; Barinotti, A.; Roetto, A. Iron overload, oxidative stress, and ferroptosis in the failing heart and liver. Antioxidants 2021, 10, 1864. [Google Scholar] [CrossRef] [PubMed]
- Xie, Y.; Hou, W.; Song, X.; Yu, Y.; Huang, J.; Sun, X.; Kang, R.; Tang, D. Ferroptosis: Process and function. Cell Death Differ. 2016, 23, 369–379. [Google Scholar] [CrossRef]
- Tang, D.; Kroemer, G. Ferroptosis. Curr. Biol. 2020, 30, R1292–R1297. [Google Scholar] [CrossRef] [PubMed]
- Li, J.; Cao, F.; Yin, H.; Huang, Z.; Lin, Z.; Mao, N.; Sun, B.; Wang, G. Ferroptosis: Past, present and future. Cell Death Dis. 2020, 11, 88. [Google Scholar] [CrossRef]
- Lin, X.; Ping, J.; Wen, Y.; Wu, Y. The Mechanism of Ferroptosis and Applications in Tumor Treatment. Front. Pharmacol. 2020, 11, 1061. [Google Scholar] [CrossRef] [PubMed]
- Bebber, C.M.; Müller, F.; Clemente, L.P.; Weber, J.; Von Karstedt, S. Cancers Ferroptosis in Cancer Cell Biology. Cancers 2020, 12, 164. [Google Scholar] [CrossRef]
- Chang, S.; Tang, M.; Zhang, B.; Xiang, D.; Li, F. Ferroptosis in inflammatory arthritis: A promising future. Front. Immunol. 2022, 13, 955069. [Google Scholar] [CrossRef]
- Guo, Q.; Wang, Y.; Xu, D.; Nossent, J.; Pavlos, N.J.; Xu, J. Rheumatoid arthritis: Pathological mechanisms and modern pharmacologic therapies. Bone Res. 2018, 6, 15. [Google Scholar] [CrossRef]
- Yang, L.; Wang, H.; Yang, X.; Wu, Q.; An, P.; Jin, X.; Liu, W.; Huang, X.; Li, Y.; Yan, S.; et al. Auranofin mitigates systemic iron overload and induces ferroptosis via distinct mechanisms. Signal Transduct. Target. Ther. 2020, 5, 138. [Google Scholar] [CrossRef] [PubMed]
- Zhou, R.; Chen, Y.; Li, S.; Wei, X.; Hu, W.; Tang, S.; Ding, J.; Fu, W.; Zhang, H.; Chen, F.; et al. TRPM7 channel inhibition attenuates rheumatoid arthritis articular chondrocyte ferroptosis by suppression of the PKCα-NOX4 axis. Redox Biol. 2022, 55, 102411. [Google Scholar] [CrossRef] [PubMed]
- Cheng, Q.; Ni, L.; Liu, A.; Huang, X.; Xiang, P.; Zhang, Q.; Yang, H. Spermidine protects cartilage from IL-1β-mediated ferroptosis. Mol. Cell Biochem. 2023; Epub ahead of print. [Google Scholar] [CrossRef] [PubMed]
- Yao, X.; Sun, K.; Yu, S.; Luo, J.; Guo, J.; Lin, J.; Wang, G.; Guo, Z.; Ye, Y.; Guo, F. Chondrocyte ferroptosis contribute to the progression of osteoarthritis. J. Orthop. Transl. 2021, 27, 33–43. [Google Scholar] [CrossRef] [PubMed]
- Wu, J.; Feng, Z.; Chen, L.; Li, Y.; Bian, H.; Geng, J.; Zheng, Z.-H.; Fu, X.; Pei, Z.; Qin, Y.; et al. TNF antagonist sensitizes synovial fibroblasts to ferroptotic cell death in collagen-induced arthritis mouse models. Nat. Commun. 2022, 13, 676. [Google Scholar] [CrossRef] [PubMed]
- Wang, S.; Li, W.; Zhang, P.; Wang, Z.; Ma, X.; Liu, C.; Vasilev, K.; Zhang, L.; Zhou, X.; Liu, L.; et al. Mechanical overloading induces GPX4-regulated chondrocyte ferroptosis in osteoarthritis via Piezo1 channel facilitated calcium influx. J. Adv. Res. 2022, 41, 63–75. [Google Scholar] [CrossRef]
- Kong, R.; Ji, L.; Pang, Y.; Zhao, D.; Gao, J. Exosomes from osteoarthritic fibroblast-like synoviocytes promote cartilage ferroptosis and damage via delivering microRNA-19b-3p to target SLC7A11 in osteoarthritis. Front. Immunol. 2023, 14, 1181156. [Google Scholar] [CrossRef]
- Lv, M.; Cai, Y.; Hou, W.; Peng, K.; Xu, K.; Lu, C.; Yu, W.; Zhang, W.; Liu, L. The RNA-binding protein SND1 promotes the degradation of GPX4 by destabilizing the HSPA5 mRNA and suppressing HSPA5 expression, promoting ferroptosis in osteoarthritis chondrocytes. Inflamm. Res. 2022, 71, 461–472. [Google Scholar] [CrossRef]
- Dai, T.; Xue, X.; Huang, J.; Yang, Z.; Xu, P.; Wang, M.; Xu, W.; Feng, Z.; Zhu, W.; Xu, Y.; et al. SCP2 mediates the transport of lipid hydroperoxides to mitochondria in chondrocyte ferroptosis. Cell Death Discov. 2023, 9, 234. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Zhao, C.; Yu, Y.; Yin, G.; Xu, C.; Wang, J.; Wang, L.; Zhao, G.; Ni, S.; Zhang, H.; Zhou, B.; et al. Sulfasalazine promotes ferroptosis through AKT-ERK1/2 and P53-SLC7A11 in rheumatoid arthritis. Inflammopharmacology 2024, 32, 1277–1294. [Google Scholar] [CrossRef]
- Ma, Y.; Li, W.; Niu, S.; Zhu, X.; Chu, M.; Wang, W.; Sun, W.; Wei, X.; Zhang, J.; Zhang, Z. BzATP reverses ferroptosis-induced gut microbiota disorders in collagen-induced arthritis mice. Int. Immunopharmacol. 2023, 124, 110885. [Google Scholar] [CrossRef]
- Xu, C.; Ni, S.; Xu, N.; Yin, G.; Yu, Y.; Zhou, B.; Wang, Y. Theaflavin-3,3′-Digallate Inhibits Erastin-Induced Chondrocytes Ferroptosis via the Nrf2/GPX4 Signaling Pathway in Osteoarthritis. Oxid. Med. Cell. Longev. 2022, 2022, 3531995. [Google Scholar] [CrossRef]
- Guo, C.; Yue, Y.; Wang, B.; Chen, S.; Li, D.; Zhen, F.; Liu, L.; Zhu, H.; Xie, M. Anemoside B4 alleviates arthritis pain via suppressing ferroptosis-mediated inflammation. J. Cell. Mol. Med. 2024, 28, e18136. [Google Scholar] [CrossRef]
- Xu, J.; Zhi, X.; Zhang, Y.; Ding, R. Tanshinone IIA alleviates chondrocyte apoptosis and extracellular matrix degeneration by inhibiting ferroptosis. Open Life Sci. 2023, 18, 20220666. [Google Scholar] [CrossRef] [PubMed]
- Ruan, Q.; Wang, C.; Zhang, Y.; Sun, J. Ruscogenin attenuates cartilage destruction in osteoarthritis through suppressing chondrocyte ferroptosis via Nrf2/SLC7A11/GPX4 signaling pathway. Chem. Interact. 2024, 388, 110835. [Google Scholar] [CrossRef] [PubMed]
- Hardingham, T. What Makes Chondrocytes special? Osteoarthr. Cartil. 2012, 20, S5–S6. [Google Scholar] [CrossRef]
- Ruan, Q.; Wang, C.; Zhang, Y.; Sun, J. Brevilin A attenuates cartilage destruction in osteoarthritis mouse model by inhibiting inflammation and ferroptosis via SIRT1/Nrf2/GPX4 signaling pathway. Int. Immunopharmacol. 2023, 124, 110924. [Google Scholar] [CrossRef]
- Yang, Z.; Jiang, W.; Xiong, C.; Shang, J.; Huang, Y.; Zhou, X.; Zhang, S. Calcipotriol suppresses GPX4-mediated ferroptosis in OA chondrocytes by blocking the TGF-β1 pathway. Cytokine 2023, 171, 156382. [Google Scholar] [CrossRef]
- Guan, Z.; Jin, X.; Guan, Z.; Liu, S.; Tao, K.; Luo, L. The gut microbiota metabolite capsiate regulate SLC2A1 expression by targeting HIF-1α to inhibit knee osteoarthritis-induced ferroptosis. Aging Cell 2023, 22, e13807. [Google Scholar] [CrossRef] [PubMed]
- Zhou, Y.; Jia, Z.; Wang, J.; Huang, S.; Yang, S.; Xiao, S.; Xia, D.; Zhou, Y. Curcumin reverses erastin-induced chondrocyte ferroptosis by upregulating Nrf2. Heliyon 2023, 9, e20163. [Google Scholar] [CrossRef]
- Chen, X.; Chen, J.; Miao, C.; Yin, G.; Zhang, Z.; Sun, R.; Ni, S. Acetyl zingerone ameliorates osteoarthritis by inhibiting chondrocyte programmed cell death. Mol. Med. Rep. 2023, 28, 1–15. [Google Scholar] [CrossRef]
- Zheng, Z.; Shang, X.; Sun, K.; Hou, Y.; Zhang, X.; Xu, J.; Liu, H.; Ruan, Z.; Hou, L.; Guo, Z.; et al. P21 resists ferroptosis in osteoarthritic chondrocytes by regulating GPX4 protein stability. Free. Radic. Biol. Med. 2024, 212, 336–348. [Google Scholar] [CrossRef] [PubMed]
- Zhou, X.; Zheng, Y.; Sun, W.; Zhang, Z.; Liu, J.; Yang, W.; Liu, J. D-mannose alleviates osteoarthritis progression by inhibiting chondrocyte ferroptosis in a HIF-2α-dependent manner. Cell Prolif. 2021, 54, e13134. [Google Scholar] [CrossRef] [PubMed]
- Xu, Y.; Yang, Z.; Dai, T.; Xue, X.; Xia, D.; Feng, Z.; Huang, J.; Chen, X.; Sun, S.; Zhou, J.; et al. Characteristics and time points to inhibit ferroptosis in human osteoarthritis. Sci. Rep. 2023, 13, 21592. [Google Scholar] [CrossRef] [PubMed]
- Zhao, C.; Sun, G.; Li, Y.; Kong, K.; Li, X.; Kan, T.; Wang, X. Forkhead box O3 attenuates osteoarthritis by suppressing ferroptosis through inactivation of NF-κB/MAPK signaling. J. Orthop. Transl. 2023, 39, 147–162. [Google Scholar] [CrossRef] [PubMed]
- Chen, R.; Ying, C.; Zou, Y.; Lin, C.; Fu, Q.; Xiang, Z.; Bao, J.; Chen, W. Sarsasapogenin inhibits YAP1-dependent chondrocyte ferroptosis to alleviate osteoarthritis. Biomed. Pharmacother. 2023, 168, 115772. [Google Scholar] [CrossRef] [PubMed]
- Dai, Z.-H.; Zhou, C.-C.; Yu, C.-Y.; Qian, C.-J.; Jin, S.-Q.; Du, S.-Q.; Lv, Y.-Y.; Jin, C.; Zheng, G.; Zhan, Y. Gamma-oryzanol alleviates osteoarthritis development by targeting Keap1-Nrf2 binding to interfere with chondrocyte ferroptosis. Int. Immunopharmacol. 2024, 128, 111469. [Google Scholar] [CrossRef] [PubMed]
- Jing, X.; Du, T.; Chen, K.; Guo, J.; Xiang, W.; Yao, X.; Sun, K.; Ye, Y.; Guo, F. Icariin protects against iron overload-induced bone loss via suppressing oxidative stress. J. Cell Physiol. 2018, 234, 10123–10137. [Google Scholar] [CrossRef] [PubMed]
- Sun, J.; Zhang, Y.; Wang, C.; Ruan, Q. Kukoamine A protects mice against osteoarthritis by inhibiting chondrocyte inflammation and ferroptosis via SIRT1/GPX4 signaling pathway. Life Sci. 2023, 332, 122117. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.; Luo, X.; Chen, Y.; Dang, J.; Zeng, D.; Guo, X.; Weng, W.; Zhao, J.; Shi, X.; Chen, J.; et al. Heterogeneous ferroptosis susceptibility of macrophages caused by focal iron overload exacerbates rheumatoid arthritis. Redox Biol. 2024, 69, 103008. [Google Scholar] [CrossRef] [PubMed]
- Peng, S.; Sun, C.; Lai, C.; Zhang, L. Exosomes derived from mesenchymal stem cells rescue cartilage injury in osteoarthritis through Ferroptosis by GOT1/CCR2 expression. Int. Immunopharmacol. 2023, 122, 110566. [Google Scholar] [CrossRef]
- Yan, J.; Feng, G.; Ma, L.; Chen, Z.; Jin, Q. Metformin alleviates osteoarthritis in mice by inhibiting chondrocyte ferroptosis and improving subchondral osteosclerosis and angiogenesis. J. Orthop. Surg. Res. 2022, 17, 333. [Google Scholar] [CrossRef] [PubMed]
- Zhou, M.; Zhai, C.; Shen, K.; Liu, G.; Liu, L.; He, J.; Chen, J.; Xu, Y. MiR-1 Inhibits the Ferroptosis of Chondrocyte by Targeting CX43 and Alleviates Osteoarthritis Progression. J. Immunol. Res. 2023, 2023, 2061071. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Ding, H.; Zheng, Y.; Wei, X.; Yang, X.; Wei, H.; Tian, Y.; Sun, X.; Wei, W.; Ma, J.; et al. Alleviated NCOA4-mediated ferritinophagy protected RA FLSs from ferroptosis in lipopolysaccharide-induced inflammation under hypoxia. Inflamm. Res. 2024, 73, 363–379. [Google Scholar] [CrossRef] [PubMed]
- Xue, X.; Dai, T.; Chen, J.; Xu, Y.; Yang, Z.; Huang, J.; Xu, W.; Li, S.; Meng, Q. PPARγ activation suppresses chondrocyte ferroptosis through mitophagy in osteoarthritis. J. Orthop. Surg. Res. 2023, 18, 620. [Google Scholar] [CrossRef] [PubMed]
- Cui, T.; Lan, Y.; Yu, F.; Lin, S.; Qiu, J. Plumbagin alleviates temporomandibular joint osteoarthritis progression by inhibiting chondrocyte ferroptosis via the MAPK signaling pathways. Aging 2023, 15, 13452–13470. [Google Scholar] [CrossRef] [PubMed]
- Zhao, Z.; Niu, S.; Chen, J.; Zhang, H.; Liang, L.; Xu, K.; Dong, C.; Su, C.; Yan, T.; Zhang, Y.; et al. G protein-coupled receptor 30 activation inhibits ferroptosis and protects chondrocytes against osteoarthritis. J. Orthop. Transl. 2023, 44, 125–138. [Google Scholar] [CrossRef] [PubMed]
- Yu, C.; Yang, X.; Jiang, Q.; Liu, Z.; Chen, Y.; Zang, G.; Huang, W. SCD1 deficiency exacerbates osteoarthritis by inducing ferroptosis in chondrocytes. Ann. Transl. Med. 2023, 11, 171. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Lv, Z.; Han, J.; Li, J.; Guo, H.; Fei, Y.; Sun, Z.; Dong, J.; Wang, M.; Fan, C.; Li, W.; et al. Single cell RNA-seq analysis identifies ferroptotic chondrocyte cluster and reveals TRPV1 as an anti-ferroptotic target in osteoarthritis. EBioMedicine 2022, 84, 104258. [Google Scholar] [CrossRef] [PubMed]
- Zhu, C.; Chen, B.; He, X.; Li, W.; Wang, S.; Zhu, X.; Li, Y.; Wan, P.; Li, X. LncRNA MEG3 suppresses erastin-induced ferroptosis of chondrocytes via regulating miR-885-5p/SLC7A11 axis. Mol. Biol. Rep. 2024, 51, 139. [Google Scholar] [CrossRef]
- Tang, Y.; Wang, B.; Sun, X.; Li, H.; Ouyang, X.; Wei, J.; Dai, B.; Zhang, Y.; Li, X. Rheumatoid arthritis fibroblast-like synoviocytes co-cultured with PBMC increased peripheral CD4 1 CXCR5 1 ICOS 1 T cell numbers. Clin. Exp. Immunol. 2017, 190, 384–393. [Google Scholar] [CrossRef]
- Yu, H.; Song, Z.; Yu, J.; Ren, B.; Dong, Y.; You, Y.; Zhang, Z.; Jia, C.; Zhao, Y.; Zhou, X.; et al. Supramolecular self-assembly of EGCG-selenomethionine nanodrug for treating osteoarthritis. Bioact. Mater. 2024, 32, 164–176. [Google Scholar] [CrossRef] [PubMed]
- Wang, X.; Liu, T.; Qiu, C.; Yu, S.; Zhang, Y.; Sheng, Y.; Wu, C. Characterization and role exploration of ferroptosis-related genes in osteoarthritis. Front. Mol. Biosci. 2023, 10, 1066885. [Google Scholar] [CrossRef] [PubMed]
- He, X.; Zhang, J.; Gong, M.; Gu, Y.; Dong, B.; Pang, X.; Zhang, C.; Cui, Y. Identification of potential ferroptosis-associated biomarkers in rheumatoid arthritis. Front. Immunol. 2023, 14, 1197275. [Google Scholar] [CrossRef] [PubMed]
- He, W.; Lin, X.; Chen, K. Specificity protein 1-mediated ACSL4 transcription promoted the osteoarthritis progression through suppressing the ferroptosis of chondrocytes. J. Orthop. Surg. Res. 2023, 18, 188. [Google Scholar] [CrossRef] [PubMed]
- Luo, L.; Chen, H.; Xie, K.; Xiang, J.; Chen, J.; Lin, Z. Cathepsin B serves as a potential prognostic biomarker and correlates with ferroptosis in rheumatoid arthritis. Int. Immunopharmacol. 2024, 128, 111502. [Google Scholar] [CrossRef] [PubMed]
- Hu, J.; Zhang, R.; Chang, Q.; Ji, M.; Zhang, H.; Geng, R.; Li, C.; Wang, Z. p53: A Regulator of Ferroptosis Induced by Galectin-1 Derived Peptide 3 in MH7A Cells. Front. Genet. 2022, 13, 920273. [Google Scholar] [CrossRef] [PubMed]
- Ling, H.; Li, M.; Yang, C.; Sun, S.; Zhang, W.; Zhao, L.; Xu, N.; Zhang, J.; Shen, Y.; Zhang, X.; et al. Glycine increased ferroptosis via SAM-mediated GPX4 promoter methylation in rheumatoid arthritis. Rheumatology 2022, 61, 4521–4534. [Google Scholar] [CrossRef] [PubMed]
- Wang, L.; Ye, S.; Qin, J.; Tang, M.; Dong, M.Y.; Fang, J. Ferroptosis-related genes LPCAT3 and PGD are potential diagnostic biomarkers for osteoarthritis. J. Orthop. Surg. Res. 2023, 18, 699. [Google Scholar] [CrossRef] [PubMed]
- Lin, Z.; Li, W.; Wang, Y.; Lang, X.; Sun, W.; Zhu, X.; Bian, R.; Ma, Y.; Wei, X.; Zhang, J.; et al. SMSCs-derived sEV overexpressing miR-433-3p inhibits angiogenesis induced by sEV released from synoviocytes under triggering of ferroptosis. Int. Immunopharmacol. 2023, 116, 109875. [Google Scholar] [CrossRef]
- Wang, D.; Fang, Y.; Lin, L.; Long, W.; Wang, L.; Yu, L.; Deng, H.; Wang, D. Upregulating miR-181b promotes ferroptosis in osteoarthritic chondrocytes by inhibiting SLC7A11. BMC Musculoskelet. Disord. 2023, 24, 862. [Google Scholar] [CrossRef]
- Sun, K.; Hou, L.; Guo, Z.; Wang, G.; Guo, J.; Xu, J.; Zhang, X.; Guo, F. JNK-JUN-NCOA4 axis contributes to chondrocyte ferroptosis and aggravates osteoarthritis via ferritinophagy. Free. Radic. Biol. Med. 2023, 200, 87–101. [Google Scholar] [CrossRef] [PubMed]
- Telfer, J.F.; Brock, J.H. Proinflammatory cytokines increase iron uptake into human monocytes and synovial fibroblasts from patients with rheumatoid arthritis. Med. Sci. Monit. 2004, 10, BR91–BR95. [Google Scholar]
- Xiang, J.; Chen, H.; Lin, Z.; Chen, J.; Luo, L. Identification and experimental validation of ferroptosis-related gene SLC2A3 is involved in rheumatoid arthritis. Eur. J. Pharmacol. 2023, 943, 175568. [Google Scholar] [CrossRef]
- Ni, L.-L.; Che, Y.-H.; Sun, H.-M.; Wang, B.; Wang, M.-Y.; Yang, Z.-Z.; Liu, H.; Xiao, H.; Yang, D.-S.; Zhu, H.-L.; et al. The therapeutic effect of wasp venom (Vespa magnifica, Smith) and its effective part on rheumatoid arthritis fibroblast-like synoviocytes through modulating inflammation, redox homeostasis and ferroptosis. J. Ethnopharmacol. 2023, 317, 116700. [Google Scholar] [CrossRef] [PubMed]
- Chadha, S.; Behl, T.; Kumar, A.; Khullar, G.; Arora, S. Role of Nrf2 in rheumatoid arthritis. Curr. Res. Transl. Med. 2020, 68, 171–181. [Google Scholar] [CrossRef]
- Liu, J.; Zhou, H.; Chen, J.; Zuo, Q.; Liu, F. Baicalin inhibits IL-1β-induced ferroptosis in human osteoarthritis chondrocytes by activating Nrf-2 signaling pathway. J. Orthop. Surg. Res. 2024, 19, 23. [Google Scholar] [CrossRef] [PubMed]
- Zhan, Y.; Yang, Z.; Zhan, F.; Huang, Y.; Lin, S. SIRT1 is transcriptionally repressed by YY1 and suppresses ferroptosis in rheumatoid arthritis. Adv. Rheumatol. 2023, 63, 9. [Google Scholar] [CrossRef]
- Sun, H.; Peng, G.; Chen, K.; Xiong, Z.; Zhuang, Y.; Liu, M.; Ning, X.; Yang, H.; Deng, J. Identification of EGFR as an essential regulator in chondrocytes ferroptosis of osteoarthritis using bioinformatics, in vivo, and in vitro study. Heliyon 2023, 9, e19975. [Google Scholar] [CrossRef]
- Han, J.; Zhan, L.-N.; Huang, Y.; Guo, S.; Zhou, X.; Kapilevich, L.; Wang, Z.; Ning, K.; Sun, M.; Zhang, X.-A. Moderate mechanical stress suppresses chondrocyte ferroptosis in osteoarthritis by regulating NF-κB p65/GPX4 signaling pathway. Sci. Rep. 2024, 14, 5078. [Google Scholar] [CrossRef]
- Deng, W.; Zhang, W.; He, Q. Study on the mechanism of puerarin against osteoarthritis from ferroptosis based on network pharmacology and bioinformatics. Naunyn-Schmiedeberg’s Arch. Pharmacol. 2023, 397, 959–968. [Google Scholar] [CrossRef]
- Cheng, Q.; Chen, M.; Liu, M.; Chen, X.; Zhu, L.; Xu, J.; Du, Y. Semaphorin 5A suppresses ferroptosis through activation of PI3K-AKT-mTOR signaling in rheumatoid arthritis. Cell Death Dis. 2022, 13, 608. [Google Scholar] [CrossRef] [PubMed]
- Amin, M.A.; Fox, D.A.; Ruth, J.H. Synovial cellular and molecular markers in rheumatoid arthritis. Semin. Immunopathol. 2017, 39, 385–393. [Google Scholar] [CrossRef] [PubMed]
- Müller-Ladner, U.; Kriegsmann, J.; Franklin, B.N.; Matsumoto, S.; Geiler, T.; Gay, R.E.; Gay, S. Synovial fibroblasts of patients with rheumatoid arthritis attach to and invade normal human cartilage when engrafted into SCID mice. Am. J. Pathol. 1996, 149, 1607–1615. [Google Scholar] [PubMed]
- Cheng, L.; Wang, Y.; Wu, R.; Ding, T.; Xue, H.; Gao, C.; Li, X.; Wang, C. New Insights From Single-Cell Sequencing Data: Synovial Fibroblasts and Synovial Macrophages in Rheumatoid Arthritis. Front. Immunol. 2021, 12, 709178. [Google Scholar] [CrossRef] [PubMed]
- Neumann, E.; Heck, C.; Müller-Ladner, U. Recent developments in the synovial fibroblast pathobiology field in rheumatoid arthritis. Curr. Opin. Rheumatol. 2023, 36, 69–75. [Google Scholar] [CrossRef] [PubMed]
- McInnes, I.B.; Schett, G. Cytokines in the pathogenesis of rheumatoid arthritis. Nat. Rev. Immunol. 2007, 7, 429–442. [Google Scholar] [CrossRef] [PubMed]
- Naylor, A.J.; Filer, A.; Buckley, C.D.; Buckley, C. The role of stromal cells in the persistence of chronic inflammation. Clin. Exp. Immunol. 2012, 171, 30–35. [Google Scholar] [CrossRef] [PubMed]
- Wigerblad, G.; Cao, Q.; Brooks, S.; Naz, F.; Gadkari, M.; Jiang, K.; Gupta, S.; O’neil, L.; Dell’orso, S.; Kaplan, M.J.; et al. Single-Cell Analysis Reveals the Range of Transcriptional States of Circulating Human Neutrophils. J. Immunol. 2022, 209, 772–782. [Google Scholar] [CrossRef] [PubMed]
- Grieshaber-Bouyer, R.; Exner, T.; Hackert, N.S.; Radtke, F.A.; Jelinsky, S.A.; Halyabar, O.; Wactor, A.; Karimizadeh, E.; Brennan, J.; Schettini, J.; et al. Ageing and interferon gamma response drive the phenotype of neutrophils in the inflamed joint. Ann. Rheum. Dis. 2022, 81, 805–814. [Google Scholar] [CrossRef]
- Cecchi, I.; de la Rosa, I.A.; Menegatti, E.; Roccatello, D.; Collantes-Estevez, E.; Lopez-Pedrera, C.; Barbarroja, N. Neutrophils: Novel key players in Rheumatoid Arthritis. Current and future therapeutic targets. Autoimmun. Rev. 2018, 17, 1138–1149. [Google Scholar] [CrossRef]
- Takemura, S.; Klimiuk, P.A.; Braun, A.; Goronzy, J.J.; Weyand, C.M. T Cell Activation in Rheumatoid Synovium Is B Cell Dependent. J. Immunol. 2001, 167, 4710–4718. [Google Scholar] [CrossRef]
- Tu, J.; Huang, W.; Zhang, W.; Mei, J.; Zhu, C. A Tale of Two Immune Cells in Rheumatoid Arthritis: The Crosstalk between Macrophages and T Cells in the Synovium. Front. Immunol. 2021, 12, 655477. [Google Scholar] [CrossRef] [PubMed]
- Fan, Y.; Li, Y.; Fu, X.; Peng, J.; Chen, Y.; Chen, T.; Zhang, D. Identification of potential ferroptosis key genes and immune infiltration in rheumatoid arthritis by integrated bioinformatics analysis. Heliyon 2023, 9, e21167. [Google Scholar] [CrossRef]
- Demirtzoglou, G.; Chrysoglou, S.-I.; Iakovidou-Kritsi, Z.; Lambropoulos, A.; Garyfallos, A. Haloperidol’s Cytogenetic Effect on T Lymphocytes of Systemic Lupus Erythematosus and Rheumatoid Arthritis Patients: An In Vitro Study. Cureus 2023, 15, e42283. [Google Scholar] [CrossRef] [PubMed]
- Derksen, V.F.A.M.; Huizinga, T.W.J.; van der Woude, D. The role of autoantibodies in the pathophysiology of rheumatoid arthritis. Semin. Immunopathol. 2017, 39, 437–446. [Google Scholar] [CrossRef]
- Tański, W.; Chabowski, M.; Jankowska-Polańska, B.; Jankowska, E.A. Iron metabolism in patients with rheumatoid arthritis. Eur. Rev. Med. Pharmacol. Sci. 2021, 25, 4325–4335. [Google Scholar] [CrossRef]
- Stefanova, K.I.; Delcheva, G.T.; Maneva, A.I.; Batalov, A.Z.; Geneva-Popova, M.G.; Karalilova, R.V.; Simitchiev, K.K. Pathobiochemical Mechanisms Relating Iron Homeostasis with Parameters of Inflammatory Activity and Autoimmune Disorders in Rheumatoid Arthritis. Folia Med. 2018, 60, 124–132. [Google Scholar] [CrossRef] [PubMed]
- Chen, J.; Li, S.; Ge, Y.; Kang, J.; Liao, J.-F.; Du, J.-F.; Tian, J.; Xie, X.; Li, F. iTRAQ and PRM-Based Proteomic Analysis Provides New Insights into Mechanisms of Response to Triple Therapy in Patients with Rheumatoid Arthritis. J. Inflamm. Res. 2021, 14, 6993–7006. [Google Scholar] [CrossRef]
- Lefèvre, S.; Knedla, A.; Tennie, C.; Kampmann, A.; Wunrau, C.; Dinser, R.; Korb, A.; Schnäker, E.-M.; Tarner, I.H.; Robbins, P.D.; et al. Synovial fibroblasts spread rheumatoid arthritis to unaffected joints. Nat. Med. 2009, 15, 1414–1420. [Google Scholar] [CrossRef]
- Zheng, Q.; Wang, D.; Lin, R.; Chen, Y.; Xu, Z.; Xu, W. Quercetin is a Potential Therapy for Rheumatoid Arthritis via Targeting Caspase-8 through Ferroptosis and Pyroptosis. J. Inflamm. Res. 2023, 16, 5729–5754. [Google Scholar] [CrossRef]
- Luo, H.; Zhang, R. Icariin enhances cell survival in lipopolysaccharide induced synoviocytes by suppressing ferroptosis via the Xc/GPX4 axis. Exp. Ther. Med. 2020, 21, 72. [Google Scholar] [CrossRef] [PubMed]
- Rudwaleit, M.; van der Heijde, D.; Landewe, R.; Akkoc, N.; Brandt, J.; Chou, C.T.; Dougados, M.; Huang, F.; Gu, J.; Kirazli, Y.; et al. The Assessment of SpondyloArthritis international Society classification criteria for peripheral spondyloarthritis and for spondyloarthritis in general. Ann. Rheum. Dis. 2010, 70, 25–31. [Google Scholar] [CrossRef] [PubMed]
- Malakar, A.; Kakati, S.; Barman, B.; Dutta, A. Clinical presentation and subtypes of spondyloarthritis patients in North East India. Egypt. Rheumatol. 2020, 42, 271–274. [Google Scholar] [CrossRef]
- Belasco, J.; Wei, N. Psoriatic Arthritis: What is Happening at the Joint? Rheumatol. Ther. 2019, 6, 305–315. [Google Scholar] [CrossRef] [PubMed]
- Langfelder, P.; Horvath, S. WGCNA: An R package for weighted correlation network analysis. BMC Bioinform. 2008, 9, 559. [Google Scholar] [CrossRef] [PubMed]
- Rong, T.; Jia, N.; Wu, B.; Sang, D.; Liu, B. New Insights into the Regulatory Role of Ferroptosis in Ankylosing Spondylitis via Consensus Clustering of Ferroptosis-Related Genes and Weighted Gene Co-Expression Network Analysis. Genes 2022, 13, 1373. [Google Scholar] [CrossRef] [PubMed]
- Li, X.; Tao, X.; Ding, X. An integrative analysis to reveal that CLEC2B and ferroptosis may bridge the gap between psoriatic arthritis and cancer development. Sci. Rep. 2022, 12, 14653. [Google Scholar] [CrossRef] [PubMed]
- Tan, S.Y.W.; Stanway, J.; Ellis, S. Crystal arthropathies. Medicine 2022, 50, 109–115. [Google Scholar] [CrossRef]
- Fatima, T.; McKinney, C.; Major, T.J.; Stamp, L.K.; Dalbeth, N.; Iverson, C.; Merriman, T.R.; Miner, J.N. The relationship between ferritin and urate levels and risk of gout. Arthritis Res. Ther. 2018, 20, 179. [Google Scholar] [CrossRef]
- Li, X.; He, T.; Yu, K.; Lu, Q.; Alkasir, R.; Guo, G.; Xue, Y. Markers of iron status are associated with risk of hyperuricemia among chinese adults: Nationwide population-based study. Nutrients 2018, 10, 191. [Google Scholar] [CrossRef]
- Martelin, E.; Lapatto, R.; Raivio, K.O. Regulation of xanthine oxidoreductase by intracellular iron. Am. J. Physiol. Physiol. 2002, 283, C1722–C1728. [Google Scholar] [CrossRef] [PubMed]
- Pfeffer, K.D.; Huecksteadt, T.P.; Hoidal, J.R. Xanthine dehydrogenase and xanthine oxidase activity and gene expression in renal epithelial cells. Cytokine and steroid regulation. J. Immunol. 1994, 153, 1789–1797. [Google Scholar] [CrossRef] [PubMed]
- Zhong, C.-S.; Zeng, B.; Qiu, J.-H.; Xu, L.-H.; Zhong, M.-Y.; Huang, Y.-T.; Xu, R.; Liu, S.-Y.; Zha, Q.-B.; Hu, B.; et al. Gout-associated monosodium urate crystal-induced necrosis is independent of NLRP3 activity but can be suppressed by combined inhibitors for multiple signaling pathways. Acta Pharmacol. Sin. 2022, 43, 1324–1336. [Google Scholar] [CrossRef] [PubMed]
- Yue, L.; Berman, J. What Is Osteoarthritis? Jama 2022, 327, 1300. [Google Scholar] [CrossRef] [PubMed]
- Cheng, S.; Xu, X.; Wang, R.; Chen, W.; Qin, K.; Yan, J. Chondroprotective effects of bone marrow mesenchymal stem cell-derived exosomes in Osteoarthritisj. Bioenerg. Biomembr. 2023, 56, 31–44. [Google Scholar] [CrossRef] [PubMed]
- Li, H.; Jiang, X.; Xiao, Y.; Zhang, Y.; Zhang, W.; Doherty, M.; Nestor, J.; Li, C.; Ye, J.; Sha, T.; et al. Combining single-cell RNA sequencing and population-based studies reveals hand osteoarthritis-associated chondrocyte subpopulations and pathways. Bone Res. 2023, 11, 58. [Google Scholar] [CrossRef] [PubMed]
- Xu, W.; Zhang, B.; Xi, C.; Qin, Y.; Lin, X.; Wang, B.; Kong, P.; Yan, J. Ferroptosis Plays a Role in Human Chondrocyte of Osteoarthritis Induced by IL-1β In Vitro. Cartilage 2023, 14, 455–466. [Google Scholar] [CrossRef] [PubMed]
- He, Q.; Yang, J.; Pan, Z.; Zhang, G.; Chen, B.; Li, S.; Wang, H. Biochanin A protects against iron overload associated knee osteoarthritis via regulating iron levels and NRF2/System xc-/GPX4 axis. Biomed. Pharmacother. 2023, 157, 113915. [Google Scholar] [CrossRef] [PubMed]
- Chen, K.; Yu, Y.; Wang, Y.; Zhu, Y.; Qin, C.; Xu, J.; Zou, X.; Tao, T.; Li, Y.; Jiang, Y. Systematic Pharmacology and Experimental Validation to Reveal the Alleviation of Astragalus membranaceus Regulating Ferroptosis in Osteoarthritis. Drug Des. Dev. Ther. 2024, 18, 259–275. [Google Scholar] [CrossRef]
- Kong, K.; Chang, Y.; Qiao, H.; Zhao, C.; Chen, X.; Rong, K.; Zhang, P.; Jin, M.; Zhang, J.; Li, H.; et al. Paxlovid accelerates cartilage degeneration and senescence through activating endoplasmic reticulum stress and interfering redox homeostasis. J. Transl. Med. 2022, 20, 549. [Google Scholar] [CrossRef]
Experiments in Animals | In Vivo | In Vitro |
---|---|---|
Inducer of ferroptosis | ||
Auranofin | mice + auranofin → died within 42 d Auranofin + Fer-1 → cell viability↑, PTGS2↓, thioredoxin reductase↓. Wild type mice + thioredoxin reductase inhibitor → lipid peroxidation↑, PTGS2↑ → Fer-1 could counteract these effects [21] | |
Erastin | Articular rat chondrocytes + erastin → cell viability↓, SLC7A11↓, FTH↓, GPX4↓, cytotoxicity↑, TRPM7↑, ACSL4↑, COX2↑ [22] | |
IL-1β | ATDC5 cells + IL-1β → lipid peroxidation↑, MDA ↑, NCOA4↑, LDH↑, FTH↓ [23] | |
IL-1β | Mice chondrocytes + IL-1β → GPX4↓, SLC7A11↓, p53↑, ACSL4↑, ROS↑ IL-1β + Fer-1 → GPX4↑, SLC7A11↑, p53↓, ACSL4↓ [24] | |
Imidazole ketone erastin (IKE) | CIA mice + IKE → RA-FLS↓, GPX4↓ [25] | |
Mechanical overload | Chondrocytes from wild type mice + intense mechanical stress by activation of piezo1 → calcium influx↑, ferroptotic damage↑, ROS↑, GSH↓ Mechanical stress + GsMTx4 → calcium influx↓, ferroptotic damage↓, ROS↓, GSH↑ [26] | |
OA-FLS exosomes | OA model group → miR-19b-3p↑, iron concentrations↑, ACSL4↑, GSH↓, GPX4↓, SLC7A11↓ OA-FLS exosomes → MDA↑, ACSL4↑, iron concentrations↑, GSH↓, GPX4↓, SLC7A11↓ [27] | Chondrocytes + IL-1β + Exo → miR-19b-3p↑, MDA↑, ACSL4↑, ROS↑, cell viability↓, GSH↓, GPX4↓, SLC7A11↓ Chondrocytes + miR(+) + Exo → cell viability↓, GPX4↓, SLC7A11↓, GSH/GSSG ratio↓, MDA↑, ROS↑, ACSL4↑, iron concentrations↑ Chondrocytes + IL-1β + miR(+) → cell viability↓, GPX4↓, SLC7A11↓, GSH↓, MDA↑, ACSL4↑, ROS↑, iron concentrations↑ Chondrocytes + IL-1β + miR(−) → cell viability↑, GPX4↑, SLC7A11↑, GSH↑, MDA↓, ACSL4↓, ROS↓, iron concentrations↓ Chondrocytes + IL-1β + miR(+) + SLC7A11 → cell viability↑, GPX4↑, SLC7A11↑, GSH↑, MDA↓, ACSL4↓, ROS↓, iron concentrations↓ [27] |
Staphylococcal nuclease domain containing 1 (SND1) | OA rats + sh-SND1 → GPX4↑, HSPA5↑, TNF-α↓, MDA↓, iron concentrations↓, cartilage tissue damage↓ [28] | Chondrocytes + sh-SND1 → HSPA5↑, GPX4↑, TNF-α↓, ROS↓, MDA↓, iron concentrations↓ Chondrocytes + sh-SND1 + sh-HSPA5 → HSPA5↓, GPX4↓, TNF-α↑, ROS, ↑ MDA↑, iron concentrations [28] |
Sterol carrier protein 2 (SCP2) | Hulth + SCP2 inhibitor → cartilage degradation↓, OARSI↓ score, iron concentrations↓, ACSL4↓, SCP2↓, MDA↓ [29] | Chondrocytes + RSL3 or SCP2 inducer or RSL3 + SCP2 inducer → SCP2↑ Chondrocytes + RSL3, RSL3 + SLCP2 → SCP2/VDAC proportion on mitochondria↑ Chondrocytes + RSL3 + SCP2 inducer → MDA↑, MMP-13↑, ROS↑, lipid hydroperoxides levels↑ Chondrocytes + RSL3 + SCP2 inhibitor → MDA↓, MMP-13↓, ROS↓, lipid hydroperoxides levels↓, cell membrane rupture↓, SCP2/VDAC proportion on mitochondria↓ [29] |
Sulfasalazine | CIA mice + sulfasalazine → GPX4↓, SLC7A11↓ [30] | |
Inhibitor of ferroptosis | ||
2′(3′)-O-(4-Benzoylbenzoyl) adenosine 5-triphosphate (BzATP) | CIA mice + erastin + BzATP → severity of arthritis↓, joint destruction↓, SLC7A11↑ [31] | |
Acetyl zingerone (AZ) | OA mice + AZ → cartilage healing↑, GPX4↑, bone deterioration↓ [32] | Rat chondrocytes + IL-1β + AZ → cell viability↑, cell proliferation↑, GPX4↑, COX2↓, MMP-13↓, MDA↓, morphological mitochondria alterations↓ [32] |
Anemoside B4 | CIA mice + anemoside B4 → GSK-3β activity↓, pain↓ via GSK-3β/Nrf2, ROS↓, NLRP3↓ [33] | |
Astragalus membranaceus (AM) | OA mice + AM → MMP-13↓, IL-1β↓, IL-6↓, TNF-α↓, GPX4↑, SLC7A11↑ [34] | |
Biochanin A (BCA) | OA mice + biochanin A → iron accumulation↓, cartilage erosion↓, Nrf2↑ [35] | Mice chondrocytes + biochanin A → cell viability↑, HO-1↑, Nrf2↑, iron accumulation↓, ROS↓ [35] |
Bone marrow mesenchymal stem cell-derived exosomes (BMSC-Exos) | OA mice + BMSC-exos → OARSI↓, iron concentration↓, MDA↓, METTL3↓, ACSL4↓, GSH↑ [36] | Rat chondrocytes + IL-1β + exo → cell viability↑, GSH↑, iron concentration↓, MDA↓, ROS↓, METTL3↓, m6A↓ [36] |
Brevilin A | OA mice + brevilin A → MMP-1↓, MMP-3↓, COX2↓ [37] | Chondrocytes + IL-1β + brevilin A → PGE2↓, MMP-1↓, MMP-3↓, MDA↓, iron concentrations↓, GSH↑, GPX4↑, SIRT1↑, Nrf2↑, HO-1↑ [37] |
Calcipotriol | OA mice + calcipotriol → MMP-13↓, TGF-β1↓, GPX4↑ [38] | Chondrocytes + IL-1β + calcipotriol → ROS↓, lipid peroxidation↓, TGF-β1↓, GPX4↑ [38] |
Capsiate (CAT) | OA mice + CAT → MDA↓, H2O2↓ OA mice + HIF-1α agonist or SLC2A1 agonist → MMP-3↑, MMP-13↑, COL2↑ HIF-1α inhibitor or SLC2A1 inhibitor → MMP-3↓, MMP-13↓, COL2↓ [39] | |
Curcumin | Mice + erastin + curcumin → breakdown of cartilage↓, cartilage damage↓, MMP-9↓, MMP-13↓, aggrecan↑, collagen II↑, SLC7A11↑, GPX4↑, FTH1↑ Mice + erastin + curcumin + shNrf2 → breakdown of cartilage↑, cartilage damage↑, MMP-9↑, MMP-13↑, aggrecan↓, collagen II↓, SLC7A11↓, GPX4↓, FTH1↓ [40] | Chondrocytes + curcumin → LDH↓, MDA↓, iron concentrations↓, ROS↓, ACSL4↓, GPX4↑, SLC7A11↑, FTH1↑, Nrf2↑ Chondrocytes + erastin + curcumin + si-Nrf2 compared to erastin + curcumin → LDH↑, iron concentration↑, ACSL4↑, TFR1↑, GPX4↓, SLC7A11↓, FTH1↓, Nrf2↓ [41] |
Cyclin-dependent kinase inhibitor 1 (p21) | P21↑ in OA model of mice than in sham group [42] | Chondrocytes + IL-1β + erastin → p21↑ Knockdown p21 → proliferation rate chondrocytes↓, GSH↓, MDA↑, ROS↑, iron concentrations↑, lipid peroxidation↑ [42] |
D-mannose | OA mice + D-mannose → cartilage degradation↓, MMP-13↓, HIF-2α↓, cartilage degeneration↓, MDA↓, collagen II↑, GPX4↑ Oa mice + D-mannose + Ad-Epas1 → HIF-2α↑, MDA↑, GPX4↓ OA mice + D-mannose + Ad-Epas1 + Fer-1 → cartilage destruction↓, MDA↓, HIF-2α↓, GPX4↑ [43] | Chondrocytes + IL-1β + D-mannose → MMP-3↓, MMP-13↓, PTSG2↓, HIF-2α↓ [43] |
Ferrostatin (Fer)-1 | Chondrocytes + IL-1β + Fer-1 → cell viability↑, collagen II↑, GPX4↑, ROS↓, MDA↓, TNF-α↓, SND1↓ [28] | |
Ferrostatin (Fer)-1 | Fer-1 in mild OA → cell viability↑, GPX4↑, SLC7A11↑, MMP-13↓, ACSL4↓, p53↓ [44] | |
Forkhead box O 3 (FoxO3) | FoxO3 knocked down in mice chondrocytes → MMP-13↑, collagen II↓ Upregulation FoxO3 in IL-1β cells → ECM degradation↓, lipid peroxidation↓, ROS↓, iron concentration↓, SLC7A11↑, GPX4↑ Upregulation FoxO3 in cells treated with erastin → NF-kB↓, MAPK↓ [45] | |
G-protein coupled receptor 30 (GPR30) | Mice + DMM + G1 → OARSI↓ [46] | |
Gamma-Oryzanol (β-Ory) | Rat chondrocytes + γ-Ory → Nrf2 movement into nucleus↑, presence HO-1 in cytoplasm↑, breakdown Nrf2↓ [47] | |
Heat shock protein family A member (HSPA5) | Mice chondrocytes + Ad-HSPA5 → GPX4↑, ROS↓, TNF-α↓, MDA↓, iron concentrations↓ Chondrocytes + sh-GPX4 → GPX4↓, ROS↑, TNF-α↑, MDA↑, iron concentrations↑ [28] | |
Icariin (ICA) | Mice + icariin → iron concentrations↓, bone loss↓ [48] | Chondrocytes + icariin → iron concentrations↓ [48] |
Kukoamine A | OA mice + kukoamine A → loss of articular cartilage tissue↓, loss of cartilage matrix staining↓, MMP-1↓, MMP-3↓, COX2↓ [49] | Chondrocytes + IL-1β + kukoamine A → MDA↓, PGE2↓, MMP-1↓, MMP-3↓, iron concentration↓, translocation NF-kB p65 to nucleus↓, GSH↑, Nrf2↑, HO-1↑, SIRT1 [49] |
Liproxstatin-1 | OA mice + Liproxstatin-1 → joint swelling↓ [50] | |
Mesenchymal stem cells-derived exosomes (MSC-Exos) | OA mice + MSC-exos → TNF-α↓, INF-γ↓, IL-6↓, IL-1β↓, LDH↓, cell viability↑, GSH↑, GPX4↑, GOT1/CC2↑ [51] | Chondrocytes + exos → TNF-α↓, INF-γ↓, IL-6↓, IL-1β↓, LDH↓, iron accumulation↓, cell viability↑, GSH↑, GPX4↑, GOT1/CC2↑ [51] |
Metformin | OA mice + metformin → OARSI↓, MMP-13↓, p53↓, GPX4↑, SLC7A11↑ Erastin + metformin → OARSI↓, MMP-13↓, p53↓, GPX4↑, SLC7A11↑ [52] | |
miR-1 | OA mice + agomir-1 → OARSI↓, MMP-13↓, aggrecan↑, COL2↑, GPX4↑ [53] | |
Moderate mechanical stress | OA exercise group → joint swelling↓, cartilage damage↓, MMP-13↓, p53↓, NF-kB p65 signaling pathway↓, SLC7A11↑, GPX4↑, Nrf2↑ [54] | |
Peroxisome proliferator activated receptor γ (PPARγ) | Rat chondrocytes + RSL3 + pioglitazone (PPARγ agonist) → GPX4↑, pink1↑, parkin↑, PTGS2↓, MDA↓ [55] | |
Plumbagin (PLB) | OA mice + PLB → OARSI↓, MMP-13↓, GPX4↑ [56] | H2O2 signaling pathway can trigger MAPK signaling pathway. PLB hinders MAPK activation. [56] |
Ruscogenin | OA mice + ruscogenin → MMP-1↓, MMP-3↓, cartilage damage↓ [35] | Chondrocytes + IL-1β + ruscogenin → PGE2↓, MMP-1↓, MMP-3↓, MDA↓, iron concentration↓, GSH↑, GPX4↑, Nrf2↑, SLC7A11↑, HO-1↑ [35] |
Sarsasapogenin | Rats + DMM + sarsasapogenin → cartilage degradation↓, MMP-13↓, collagen II↑, GPX4↑, SLC7A11↑, YAP1↑ [57] | Rat chondrocytes + IL-1β + sarsasapogenin → MMP-3↓, MMP-13↓, COX2↓, aggregan↑, GPX4↑, SLC7A11↑, collagen II↑, YAP1↑ [57] |
Spermidine | Mice chondrocytes + IL1- β + spermidine → lipid peroxidation↓, MDA↓, NCOA4↓, FTH↑, GPX4↑, SLC7A11↑ [23] | |
Stearoyl-CoA desaturase (SCD1) | SCD1 knocked out in OA mice → GPX4↓, p53↑, mitochondria shrinking↑ [58] | |
Tanshinone IIA (Tan IIA) | Mouse chondrocytes + LPS + Tan IIA → ROS↓, MDA↓, iron concentration↓, GSH↑, GPX4↑ Chondrocytes + erastin + Tan IIA → cell viability↑, MMP-13↓ [34] | |
Theaflavin-3,3′ | OA mice + erastin + theaflavin-3,3′ → cartilage damage repaired and reversed compared to OA + erastin [32] | |
Transient receptor potential vanilloid 1 (TRPV1) | OA mice + TRPV1 agonist → chondrocytes↑, NCOA4↓ GPX4↓ in mice → loss of TRPV1′s anti-ferroptotic effect in OA cartilage [59] | Chondrocytes + oxidative stress reducer + TRPV1 agonist → cell viability↑, RSL3↓, ROS↓, lipid peroxidation↓, iron concentrations↓ [59] |
Experiments in Humans | FLSs | Chondrocytes |
---|---|---|
Detection of indicators for ferroptosis in arthritis | ||
ACSF2, AURKA, EGFR, KLHL24 biomarkers ferroptosis in OA | 30 samples of OA patients and 28 controls [60] | |
Increased ROS levels | RA-FLS, peripheral blood mononuclear cells from RA patients → ROS↑ in co-cultured RA-FLS and peripheral blood mononuclear cells [61] | ROS detection in mild and severe OA regions of OA patients [62] |
Iron accumulation | Iron concentrations↑, transferrin expression↓, total iron binding capacity↓ in OA patients [39] | |
Lipid peroxidation | ||
LPCAT3 and PGD as possible diagnostic markers for OA | Human tibial plateau samples from 40 OA and 10 controls [63] | |
PTGS2, ENO1 and GRN as potential ferroptosis-related biomarkers | Synovial tissue from 15 RA patients and 7 controls [64] | |
Inducer of ferroptosis: | ||
Acyl-CoA synthetase long-chain family member 4 (ACSL4) | ACSL4 silenced in chondrocytes →LDH↓, ROS↓, MDA↓, MMP-13↓, iron concentration↓, cell viability↑, GPXP4↑, GSH↑ [65] | |
CA-074Me | RA-FLS + CA-074Me → lipid oxidation rate↑, iron concentration↑, PTGS2↑, FTH1↓, SLC7A11↓, GPX4↓ [66] | |
Dexamethasone | Healthy chondrocytes stimulated with dexamethasone → ROS↑, Akt↑, FoxO3↑ [33] | |
Erastin | Chondrocytes + erastin → cell viability↓, SLC7A11↓, FTH1↓, GPX4↓, cytotoxicity↑, TRPM7↑, ACSL4↑, COX2↑ [22] | |
Galectin-1 derived peptide (G1dP3) | MH7A cells + TNF-α and G1dP3 → ROS↑, iron concentration↑ p53↑, GSH/GSSG↓, GPX4↓, SLC7A11↓ [67] | |
Glycine | RA-FLS + glycine → S-adenosyl-methionine↑, methylation of GPX4 promotor↑, GPX4↓ [68] | |
IL1-β | Chondrocytes + IL-1β → ATF3↑, TFRC↑, ROS↑, CXCL2↓, JUN↓ [69] | |
Lipopolysaccharide (LPS) | RA-FLS + LPS → ROS↑, ESCRT III↑, GPX4↓, SLC7A11↓ [70] | |
MiR-181b | Chondrocytes + erastin → miR-181b↑ MiR-181b inhibited in chondrocytes → p53↓, MMP-13↓, TFR1↓, SLC7A11↑, GPX4↑, FTH1↑, collagen II↑ [71] | |
Nuclear receptor coactivator 4 (NCOA4) | NCOA4 knocked down + LPS → PTGS2↓, iron concentration↓, cell viability↑ LPS RA-FLS under hypoxia → HIF-1α↑, FTH1↑, PTGS2↓, NCOA4↓, ROS↓, iron concentration↓ [54] | Chondrocytes + IL-1β and NCOA4 knocked down → ACSL4↓, p53↓, iron concentration↓, ROS↓, MDA↓, GPX4↑, GSH↑, cell viability↑ [72] |
OA-FLS exosomes | Exosomes derived from OA-FLS → miR-19b-3p↑ [27] | |
Piezo1 | OA chondrocytes + mechanical stress → piezo1↑, GPX4↓ [26] | |
Proinflammatory cytokines (IL-6, IL-1β, TNFα, IFN γ) | RA-FLS + TNF-α or IL-6 → absorption of transferrin-bound iron↑ RA-FLS + IL-1 or interferon γ → no significant effect [73] | |
RAS-selective lethal 3 (RSL3) | RA-FLS + RSL3 → lipid peroxidation↑, iron concentration↑, FTH1↓, SLC7A11↓, SLC2A3↓, GPX4↓ [74] | |
Specificity protein 1 (Sp1) | Chondrocytes + IL-1β → Sp1 Sp1 silenced in chondrocytes → Sp1↓, ACSL4↓ Sp1 overexpressed in chondrocytes → ACSL4↑ [65] | |
Sterol carrier protein 2 (SCP2) | Chondrocytes of OA patients → SCP2↑, MDA↑, iron concentration↑, lipid peroxidation↑, GPX4↓ Chondrocytes + SCP2 inhibitor → cell viability↑ [29] | |
Sulfasalazine | RA-FLS + sulfasalazine → p-PI3K/PI3K↓, p-AKT/AKT↓, p-ERK1/2/ERK1/2↓, p53↑ [30] | |
Wasp venom (WV) I and WVII | MH7A cells + TNF-α and WVI or WVII → IL-1β↓, IL-6↓, JAK/STAT signaling pathway↓, ROS↑, GPX4↓ [75] | |
Yin Yang 1 (YY1) | RA-FLS + LPS + SIRT1 + YY1 → ROS↑, iron concentration↑ [76] | |
Inhibitor of ferroptosis: | ||
Baicalin | Chondrocytes + IL-1β + baicalin → cell viability↑, GPX4↑, SLC7A11↑, Nrf2↑, iron concentration↓, p53↓, ACSL4↓, ROS↓, MDA↓ [77] | |
Endosomal sorting complex required for transport (ESCRT)-III | Subunit of ESCRT-III knocked down → ROS↑, GPX4↓, SLC7A11↓ [70] | |
Enolase 1 (ENO1) | ENO1 knocked down in RA-FLS → ROS↑, iron concentration↑, cell mortality↑, ACO1↑ [64] | |
Epigallocatechin-3-gallate-based nanodrugs (ES NDs) | Chondrocytes + H2O2 + ES NDs → ROS↓, iron concentration↓, MDA↓, ACSL4↓, GPX4↑, FTH1↑ [62] | |
Ferrostatin (Fer)-1 | Chondrocytes + IL-1β + Fer-1 → cell viability↑, cell proliferation↑, GPX4↑, SLC7A11↑, ROS↓, MDA↓, iron concentration↓, ACSL4↓, p53↓ [24] | |
G-protein coupled receptor 30 (GPR30) | Chondrocytes + erastin + G1 → cell viability↑, FTH1↑, GPX4↑, YAP1↑, ROS↓, lipid peroxidation↓ YAP1 knocked down → protective effects of G1↓ [46] | |
Icariin (ICA) | RA-FLS + LPS + ICA → cell death↓, iron concentration↓, GPX4↑, RA-FLS + RSL3 + ICA → Xc-/GPX4↑ [78] | |
Long noncoding RNA (lncRNA) maternally expressed 3 (MEG3) | Chondrocytes + erastin + siMEG3 → SLC7A11↓, GPX4↓, cell viability↓, MDA↑, miR-885-5p↑ lncRNA MEG3 upregulated in chondrocytes → miR-885-5p↓, SLC7A11↑, GPX4↑ Chondrocytes + erastin + MEG3 → MDA↓, cell viability↑ OA samples → lncRNA MEG3↓, SLC7A11↓, miR-885-5p↑ [79] | |
miR-1 | OA cartilage samples → miR-1↓, CX43↑ OA chondrocytes + miR-1 → cell proliferation↑, aggrecan↑, COL2↑, MMP-13↓, CX43↓ Chondrocytes + CX43 → aggrecan↓, COL2↓, MMP-13↑ [53] | |
Moderate mechanical stress | Chondrocytes + IL-1β + CTS → MMP-3↓, MMP-13↓, p53↓, NF-kB p65 signaling pathway↓, SLC7A11↑, GPX4↑, Nrf2↑ [80] | |
Puerarin | Chondrocytes + IL-1β + puerarin → cell viability↑, IL-1β↓, IL-6↓, TNF-α↓ [81] | |
Semaphorin 5A | RA-FLS + semaphorin 5A → PI3K/AKT/mTOR signaling pathway↑, GPX4↑ [82] | |
Sirtuin 1 (SIRT1) | RA-FLS + LPS and SIRT1 was overexpressed → cell viability↑, ROS↓, iron concentration↓ [76] | |
Theaflavin-3,3′ | Chondrocytes + erastin + theaflavin-3,3 → ROS↓, iron concentration↓, FTH1↑, GPX4↑, SLC7A11↑, Nrf2↑, Keap1↑ [32] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bieri, S.; Möller, B.; Amsler, J. Ferroptosis in Arthritis: Driver of the Disease or Therapeutic Option? Int. J. Mol. Sci. 2024, 25, 8212. https://doi.org/10.3390/ijms25158212
Bieri S, Möller B, Amsler J. Ferroptosis in Arthritis: Driver of the Disease or Therapeutic Option? International Journal of Molecular Sciences. 2024; 25(15):8212. https://doi.org/10.3390/ijms25158212
Chicago/Turabian StyleBieri, Shania, Burkhard Möller, and Jennifer Amsler. 2024. "Ferroptosis in Arthritis: Driver of the Disease or Therapeutic Option?" International Journal of Molecular Sciences 25, no. 15: 8212. https://doi.org/10.3390/ijms25158212
APA StyleBieri, S., Möller, B., & Amsler, J. (2024). Ferroptosis in Arthritis: Driver of the Disease or Therapeutic Option? International Journal of Molecular Sciences, 25(15), 8212. https://doi.org/10.3390/ijms25158212