Advancements in Non-Addictive Analgesic Diterpenoid Alkaloid Lappaconitine: A Review
Abstract
:1. Introduction
2. Extraction Method of Lappaconitine
2.1. Thermal Reflux Method
2.2. Dipping Method
2.3. Ultrasound-Assisted Extraction
2.4. Natural Eutectic Solvent Extraction
3. Pharmacological Properties of Lappaconitine
3.1. Analgesic Activity
3.2. Anti-Inflammatory Activity
3.3. Anti-Tumor Activity
3.4. Anti-Arrhythmic Activity
3.5. Anti-Epileptic Activity
4. Modification of Lappaconitine Structure
5. Clinical Application of Lappaconitine
5.1. Analgesia for Cancer
5.2. Postoperative Analgesia
5.3. Treatment of Inflammation
6. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Zhang, L.J.; Miao, X.L.; Li, Y.; Hu, F.D.; Ma, D.N.; Zhang, Z.P.; Sun, Q.M.; Zhu, Y.F.; Zhu, Q.L. Traditional processing, uses, phytochemistry, pharmacology and toxicology of Aconitum sinomontanum Nakai: A comprehensive review. J. Ethnopharmacol. 2022, 293, 115317. [Google Scholar] [CrossRef]
- Ou, S.; Zhao, Y.D.; Xiao, Z.; Wen, H.Z.; Cui, J.; Ruan, H.Z. Effect of lappaconitine on neuropathic pain mediated by P2X3 receptor in rat dorsal root ganglion. Neurochem. Int. 2011, 58, 564–573. [Google Scholar] [CrossRef]
- Wang, Y.Z.; Xiao, Y.Q.; Zhang, C.; Sun, X.M. Study of analgesic and anti-inflammatory effects of lappaconitine gelata. Chin. J. Nat. Med. 2009, 29, 141–145. [Google Scholar] [CrossRef] [PubMed]
- Bryzgalov, A.O.; Romanov, V.E.; Tolstikova, T.G.; Shults, E.E. Lappaconitine: Influence of Halogen Substituent on the Antiarrhythmic Activity. Cardiovasc. Hematol. Agents Med. Chem. 2013, 11, 211–217. [Google Scholar] [CrossRef]
- Menezes, L.F.S.; Sabiá Júnior, E.F.; Tibery, D.V.; Carneiro, L.D.; Schwartz, E.F. Epilepsy-related voltage-gated sodium channelopathies: A review. Front. Pharmacol. 2020, 11, 1276–1308. [Google Scholar] [CrossRef]
- Sheng, L.H.; Xu, M.; Xu, L.Q.; Xiong, F. Cytotoxic effect of lappaconitine on non-small cell lung cancer in vitro and its molecular mechanism. J. Chin. Med. Mater. 2014, 37, 840–843. [Google Scholar]
- Niu, X.L.; Zhang, Y.Q.; Shi, G.F.; Wang, G.Y. Electrochemical Interaction Between Free Radicals and Lappaconitines. Int. J. Electrochem. Sci. 2018, 13, 10193–10206. [Google Scholar] [CrossRef]
- Kumar, S.; Javed, M.S.; Kumar, P.; Gupta, S.; Kumar, R.; Singh, P.K. In-vitro antifungal and anti-bacterial activity of chloroform extract from tubers of Aconitum laeve Royle: Endangered species, India. Mater. Today Pro. 2021, 34, 563–568. [Google Scholar] [CrossRef]
- Tarbe, M.; de Pomyers, H.; Mugnier, L.; Bertin, D.; Ibragimov, T.; Gigmes, D.; Mabrouk, K. Gram-scale purification of aconitine and identification of lappaconitine in Aconitum karacolicum. Fitoterapia 2017, 120, 85–92. [Google Scholar] [CrossRef]
- Shaheen, F.; Ahmad, M.; Khan, M.T.H.; Jalil, S.; Ejaz, A.; Sultankhodjaev, M.N.; Arfan, M.; Choudhary, M.I.; Atta-ur-Rahman, A.U.R. Alkaloids of Aconitum laeve and their anti-inflammatory, antioxidant and tyrosinase inhibition activities. Phytochemistry 2005, 66, 935–940. [Google Scholar] [CrossRef]
- Ulubelen, A.; Mericli, A.H.; Mericli, F.; Yilmaz, F. Diterpenoid alkaloids from Aconitum orientale. Phytochemistry 1996, 41, 957–961. [Google Scholar] [CrossRef]
- Goncharov, A.E.; Politov, A.A.; Pankrushina, N.A.; Lomovskii, O.I. Isolation of lappaconitine from aconitum septentrionale roots by adsorption. Chem. Nat. Compd. 2006, 42, 336–339. [Google Scholar] [CrossRef]
- Gao, L.L.; Kang, S. Application Development of Lappaconitine in Management of Postoperative Analgesia. Heilongjiang Med. J. 2015, 39, 990–992. [Google Scholar]
- Wei, X.Y.; Wei, B.Y.; Zhang, J. The diterpenoid alkaloid components in Aconitum diphtheriae. Chin. Tradit. Herb. Drugs 1995, 7, 344–346. [Google Scholar]
- Zhang, S.X.; Jia, S.S. Isolation and Identification of Diterpenoid Alkaloids from Mongolian Folk Medicine Purpleflower High Monkshood Root (Aconitum excelsum). Chin. Tradit. Herb. Drugs 1999, 9, 641–643. [Google Scholar]
- Xie, B.; Zhou, J.H.; Shi, X.W.; Li, S.F. Optimization of Extracting Technology for the Active Components in Aconitum sinomontanum. Chin. Bull. Bot. 2014, 49, 198–202. [Google Scholar]
- Zhao, Y.M.; Ma, S.P.; Wang, L.R. Extraction of lappaconitine and its pharmacokinetics in beagle dogs. Shaanxi J. Agric. Sci. 2020, 66, 73–77. [Google Scholar]
- Safonova, Ė.V.; Makhkamova, A.U.; Sagdullaev, S.S. Stagewise control of the production of allapinin from the herbAconitum leucostomum. Chem. Nat. Compd. 1996, 32, 369–371. [Google Scholar] [CrossRef]
- Wang, F.P.; Peng, C.S.; Jian, X.X.; Chen, D.L. Five new norditerpenoid alkaloids from Aconitum sinomontanum. J. Asian Nat. Prod. Res. 2001, 3, 15–22. [Google Scholar] [CrossRef]
- Plaza, M.; Marina, M.L. Pressurized hot water extraction of bioactives. TrAC. Trends Anal. Chem. 2023, 166, 117201. [Google Scholar] [CrossRef]
- Zhang, J.; Sun, W.X.; Wang, Y.P.; Wen, H.H.; Liu, H.S.; Wei, Y.L. The Extraction of Lappacontine and Synthesis Characterization of Lappaconitine Hydrobromide. Chin. J. Appl. Chem. 2007, 6, 720–722. [Google Scholar]
- Gao, X.Y.; Yuan, C.Y. Briefing on the Extraction Process of Hydrobromic Acid Gouwusu. Guide China Med. 2013, 11, 475. [Google Scholar]
- Zhang, Y.Q.; Chen, B.; Shi, G.F. Optimization of the extraction process of lappaconitine and electrochemical study of its antioxidant activity. Gansu Sci. Technol. 2017, 33, 27–30. [Google Scholar]
- Xu, J.B.; Li, Y.Z.; Huang, S.; Chen, L.; Luo, Y.Y.; Gao, F.; Zhou, X.L. Diterpenoid alkaloids from the whole herb of Delphinium grandiflorum L. Phytochemistry 2021, 190, 112866. [Google Scholar] [CrossRef]
- Ablajan, N.; Zhao, B.; Zhao, J.Y.; Wang, B.L.; Sagdullaev, S.S.; Aisa, H.A. Diterpenoid alkaloids from Aconitum barbatum var. puberulum Ledeb. Phytochemistry 2021, 181, 112567. [Google Scholar] [CrossRef]
- Xue, W.J.; Zhao, B.; Zhao, J.Y.; Sagdullaev, S.S.; Aisa, H.A. Three new diterpenoid alkaloids from Delphinium naviculare var. lasiocarpum W. T. Wang. Phytochem. Lett. 2019, 33, 12–16. [Google Scholar] [CrossRef]
- Wang, R.; Ni, J.M. Diterpenoid Alkaloids of Aconitum sinomontanum var. angustius W. T. Wang. China J. Chin. Mater. Medica 1992, 9, 549–550. [Google Scholar]
- Ma, X.Q.; Jiang, S.H.; Zhu, D.Y. Diterpenoid Alkaloids from Aconitum bulleyanum Diels. China J. Chin. Mater. Medica 1998, 11, 39–40. [Google Scholar]
- Chen, X.L.; Hao, X.J.; Wang, T.E. Alkaloid composition of Guizhou Aconitum sinomontanum. Guizhou Sci. 1991, 3, 244–248. [Google Scholar]
- Wei, B.Y.; Kong, X.W.; Zhao, Z.Y.; Wang, H.C.; Zhu, R.H. Studies on the alkaloids of Aconitum sinomontanum(1). J. Northwest Norm. Univ. (Nat. Sci.) 1980, 1, 79–87. [Google Scholar]
- Zhang, J.; Yang, Y.L.; Yao, J.; Wang, Y.F. Research on the Development and Utilization of Aconitum sinomontaum Resources. Chin. Wild Plant Resour. 1998, 1, 12–14. [Google Scholar]
- Ai, X.; Shan, L.H.; Zhou, X.L. Study on the alkaloids of Aconitum leucostomum. West China J. Pharm. Sci. 2017, 32, 335–338. [Google Scholar]
- Cao, X.X.; Sailike, G.l.D.L.; Zhao, F.C. Isolation, Identification, and Determination of Four Alkaloids from Aconitum leucostomum Worosch in Xinjiang. Chem. Bioeng. 2024, 41, 63–68. [Google Scholar]
- Zhao, F.C.; Lei, R.; Nie, J.H.; Wang, W. Determination of total alkaloid content in different parts of Aconitum diphtheriae from different production areas in Xinjiang by spectrophotometry. J. Chin. Med. Mater. 2013, 36, 1406–1408. [Google Scholar]
- Yunusov, M.S.; Tsyrlina, E.M.; Khairitdinova, E.D.; Spirikhin, L.V.; Kovalevsky, A.Y.; Antipin, M.Y. “Anhydrolycaconitine”, a new diterpene alkaloid from Aconitum septentrionale K. Russ. Chem. Bull. 2000, 49, 1629–1633. [Google Scholar] [CrossRef]
- Wen, C.T.; Zhang, J.X.; Zhang, H.H.; Dzah, C.S.; Zandile, M.; Duan, Y.Q.; Ma, H.L.; Luo, X.P. Advances in ultrasound assisted extraction of bioactive compounds from cash crops—A review. Ultrason. Sonochem. 2018, 48, 538–549. [Google Scholar] [CrossRef]
- Sun, W.X.; Zhang, S.; Zhao, Y.J.; Saldaña, M.D.A.; Su, M.L.; Dong, T.; Jin, Y. Optimization and Comparison of Extraction Methods of Lappaconitine from Aconitum Sinomontanum nakai. Asian J. Chem. 2016, 28, 435–440. [Google Scholar] [CrossRef]
- Dai, Y.T.; van Spronsen, J.; Witkamp, G.J.; Verpoorte, R.; Choi, Y.H. Ionic Liquids and Deep Eutectic Solvents in Natural Products Research: Mixtures of Solids as Extraction Solvents. J. Nat. Prod. 2013, 76, 2162–2173. [Google Scholar] [CrossRef]
- Faraz, N.; Ul Haq, H.; Arain, M.B.; Castro-Muñoz, R.; Boczkaj, G.; Khan, A. Deep eutectic solvent based method for analysis of Niclosamide in pharmaceutical and wastewater samples-A green analytical chemistry approach. J. Mol. Liq. 2021, 335, 116142. [Google Scholar] [CrossRef]
- Singh, V.; Mittal, N.; Dhukia, S.; Atri, A.K.; Singh, V. Novel ternary based natural deep eutectic solvents (NADES) for sustainable extraction of lignin nanoparticles from waste Pinus roxburghii needles: A green approach. Sustain. Sustain. Chem. Pharm. 2024, 39, 101518. [Google Scholar] [CrossRef]
- Wang, W.; Pan, Y.N.; Zhao, J.J.; Wang, Y.H.; Yao, Q.P.; Li, S.S. Development and optimization of green extraction of polyphenols in Michelia alba using natural deep eutectic solvents (NADES) and evaluation of bioactivity. Sustain. Chem. Pharm. 2024, 37, 101425. [Google Scholar] [CrossRef]
- Anmol; Sharma, M.; Suresh, P.S.; Gupta, S.S.; Sharma, U. NADES-based selective extraction of bioactive molecules: A case study with commercially important Himalayan medicinal plant Aconitum heterophyllum. Sustain. Chem. Pharm. 2023, 36, 101305. [Google Scholar] [CrossRef]
- Ono, M.; Satoh, T. Pharmacological studies of lappaconitine. Occurrence of analgesic effect without opioid receptor. Res. Commun. Chem. Pathol. Pharmacol. 1989, 63, 13–25. [Google Scholar]
- Xiao, Z.; Zhang, F.A.; Zhang, L.Y. Analgesic mechanism of lappaconitine in rat midbrain periaqueductal gray. Basic Clin. Med. 2014, 34, 324–327. [Google Scholar]
- Tang, X.C.; Zhu, M.Y.; Feng, J.; Wang, Y.E. Study on the pharmacological effects of aconitine hydrobromide. Acta Pharm. Sinica. 1983, 8, 579–584. [Google Scholar]
- Li, T.F.; Fan, H.; Wang, Y.X. Aconitum-Derived Bulleyaconitine A Exhibits Antihypersensitivity Through Direct Stimulating Dynorphin A Expression in Spinal Microglia. J. Pain. 2016, 17, 530–548. [Google Scholar] [CrossRef]
- Huang, Q.; Mao, X.F.; Wu, H.Y.; Li, T.F.; Sun, M.L.; Liu, H.; Wang, Y.X. Bullatine A stimulates spinal microglial dynorphin A expression to produce anti-hypersensitivity in a variety of rat pain models. J. Neuroinflamm. 2016, 13, 214. [Google Scholar] [CrossRef]
- Li, T.F.; Gong, N.; Wang, Y.X. Ester Hydrolysis Differentially Reduces Aconitine-Induced Anti-hypersensitivity and Acute Neurotoxicity: Involvement of Spinal Microglial Dynorphin Expression and Implications for Aconitum Processing. Front. Pharmacol. 2016, 7, 367. [Google Scholar] [CrossRef]
- Sun, M.L.; Ao, J.P.; Wang, Y.R.; Huang, Q.; Li, T.F.; Li, X.Y.; Wang, Y.X. Lappaconitine, a C18-diterpenoid alkaloid, exhibits antihypersensitivity in chronic pain through stimulation of spinal dynorphin A expression. Psychopharmacology 2018, 235, 2559–2571. [Google Scholar] [CrossRef]
- Ono, M.; Satoh, T. Pharmacological studies on lappaconitine: Possible interaction with endogenous noradrenergic and serotonergic pathways to induce antinociception. Jpn. J. Pharmacol. 1992, 58, 251–257. [Google Scholar] [CrossRef]
- Guo, X.; Tang, X.C. Effects of reserpine and 5-HT on analgesia induced by lappaconitine and N-deacetyllappaconitine. Acta Pharmacol. Sin. 1990, 11, 14–18. [Google Scholar]
- Sun, M.L.; Huang, X.; Wang, Y.X. Study on the analgesic effect and mechanism of lappaconitine. Chin. Pharmacol. Bull. 2015, 31, 81. [Google Scholar]
- Seitz, U.; Ameri, A. Different effects on 3H noradrenaline uptake of the Aconitum alkaloids aconitine, 3-acetylaconitine, lappaconitine, and N-desacetyllappaconitine in rat hippocampus. Biochem. Pharmacol. 1998, 55, 883–888. [Google Scholar] [CrossRef]
- Rojo, M.L.; Rodríguez-Gaztelumendi, A.; Pazos, A.; Díaz, A. Differential adaptive changes on serotonin and noradrenaline transporters in a rat model of peripheral neuropathic pain. Neurosci. Lett. 2012, 515, 181–186. [Google Scholar] [CrossRef]
- Shen, T.; Wang, D.M. Sodium Channel NaV1.7 and Neuropathic Pain. Chin. J. Biochem. Mol. Biol. 2022, 38, 725–735. [Google Scholar]
- Vetter, I.; Deuis, J.R.; Mueller, A.; Israel, M.R.; Starobova, H.; Zhang, A.; Rash, L.D.; Mobli, M. Nav1.7 as a pain target-From gene to pharmacology. Pharmacol. Therapeut. 2017, 172, 73–100. [Google Scholar] [CrossRef]
- Zheng, Y.M.; Wang, W.F.; Li, Y.F.; Yu, Y.; Gao, Z.B. Enhancing inactivation rather than reducing activation of Nav1.7 channels by a clinically effective analgesic CNV1014802. Acta Pharmacol. Sin. 2018, 39, 587–596. [Google Scholar] [CrossRef]
- Li, Y.F.; Zheng, Y.M.; Yu, Y.; Gan, Y.; Gao, Z.B. Inhibitory effects of lappaconitine on the neuronal isoforms of voltage-gated sodium channels. Acta Pharmacol. Sin. 2019, 40, 451–459. [Google Scholar] [CrossRef]
- Wright, S.N. Irreversible block of human heart (hH1) sodium channels by the plant alkaloid lappaconitine. Mol. Pharmacol. 2001, 59, 183–192. [Google Scholar] [CrossRef]
- Zhang, Z.; Shan, W.; Wang, Y.; Xing, J.; Xu, J.; Shen, Y.; Xiao, W.; Guo, S.; Liang, Y.; Wang, X.; et al. Astragalus polysaccharide improves diabetic ulcers by promoting M2-polarization of macrophages to reduce excessive inflammation via the β-catenin/NF-κB axis at the late phase of wound-healing. Heliyon 2024, 10, e24644. [Google Scholar]
- Xu, S.S.; Liu, C.C.; Xie, F.J.; Tian, L.; Manno, S.H.C.; Manno, F.A.M.; Fallah, S.; Pelster, B.; Tse, G.; Cheng, S.H. Excessive inflammation impairs heart regeneration in zebrafish breakdance mutant after cryoinjury. Fish Shellfish. Immunol. 2019, 89, 117–126. [Google Scholar] [CrossRef]
- Patrono, C.; Rocca, B. Nonsteroidal antiinflammatory drugs: Past, present and future. Pharmacol. Res. 2009, 59, 285–289. [Google Scholar] [CrossRef]
- Liu, J.H.; Zhu, Y.X.; Tang, X.C. Anti-inflammatory and analgesic activities of N-deacetyllappaconitine and lappaconitine. Acta Pharmacol. Sinica. 1987, 8, 301–305. [Google Scholar]
- Lei, B.; Wang, S.H.; Wang, Z.M.; Song, Y.F.; Du, C.X.; Wang, L. Lappaconitine inhibits inflammatory pain by inhibiting microglial activation. J. Yanan Univ. (Med. Sci. Ed.) 2019, 17, 7–10. [Google Scholar]
- Huang, W.Y.; Hou, M.Y.; Ou, S. Effects of lappaconitine on IL-1β, IL-10 and TNF-α levels in rats with spinal cord injury. Henan Med. Res. 2017, 26, 1729–1732. [Google Scholar]
- Pang, L.; Liu, C.Y.; Gong, G.H.; Quan, Z.S. Synthesis, in vitro and in vivo biological evaluation of novel lappaconitine derivatives as potential anti-inflammatory agents. Acta Pharm. Sin. B 2020, 10, 628–645. [Google Scholar] [CrossRef]
- Guo, M.H.; Wen, P.; Xiao, Y.; Ji, W.S.; Zhou, X.L.; Gao, F.; Shan, L.H. Design, synthesis and anti-inflammatory activity of diterpenoid alkaloids and non-steroidal anti-inflammatory drug hybrids based on molecular hybridization strategy. Fitoterapia 2023, 168, 105536. [Google Scholar] [CrossRef]
- Lin, N.; Xiao, L.Y.; Lin, P.Y.; Zhang, D.; Chen, Q.W. Experimental Study on the Antitumor Effect of Hydrobromate lappaconitine. Tradit. Chin. Med. Res. 2005, 10, 16–18. [Google Scholar]
- Wu, Y.H.; Ning, Y.Z.; Xu, J.B.; Tan, X.H.; Wu, Y.Y.; Yan, D.G.; Liu, G.Q. A Study on Shenfu Injection and Lappaconitine Hydrobromide Injection Inducing HL-60 Differentiation and Apoptosis. J. Guangzhou Univ. Tradit. Chin. Med. 2008, 2, 131–137. [Google Scholar]
- Sun, W.X.; Zhang, S.; Wang, H.; Wang, Y.P. Synthesis, characterization and antinociceptive properties of the lappaconitine salts. Med. Chem. Res. 2015, 24, 3474–3482. [Google Scholar] [CrossRef]
- Qu, D.N.; Ma, J.Y.; Song, N.; Hui, L.; Yang, L.H.; Guo, Y.Y.; Sang, C.Y. Lappaconitine sulfate induces apoptosis and G0/G1 phase cell cycle arrest by PI3K/AKT signaling pathway in human non-small cell lung cancer A549 cells. Acta Histochem. 2020, 122, 151557. [Google Scholar] [CrossRef]
- Zhang, X.M.; Ma, J.Y.; Song, N.; Guo, Y.Y.; Hui, L.; Sang, C.Y. Lappaconitine Sulfate Inhibits Proliferation and Induces Apoptosis in Human Hepatocellular Carcinoma HepG2 Cells through the Reactive Oxygen Species-Dependent Mitochondrial Pathway. Pharmacology 2020, 105, 705–714. [Google Scholar] [CrossRef]
- Ma, S.C.; Zheng, Y.D.; Ma, J.Y.; Zhang, X.M.; Qu, D.N.; Song, N.; Sang, C.Y.; Hui, L. Lappaconitine sulfate inhibits proliferation and induces mitochondrial-mediated apoptosis via regulating PI3K/AKT/GSK3β signaling pathway in HeLa cells. N.-S. Arch Pharmacol. 2023, 396, 3695–3705. [Google Scholar] [CrossRef]
- Song, N.; Ma, J.Y.; Hu, W.; Guo, Y.Y.; Hui, L.; Aamer, M.; Ma, J. Lappaconitine hydrochloride inhibits proliferation and induces apoptosis in human colon cancer HCT-116 cells via mitochondrial and MAPK pathway. Acta Histochem. 2021, 123, 151736. [Google Scholar] [CrossRef]
- Wang, P.D.; Ma, X.M.; Zhang, H.L.; Yang, Y.M.; Yang, Y.R.; Wang, H.C.; Lao, A.N. Effect of lappaconitine on ECG in anesthetized rats and its antiarrhythmic action. Chin. Pharmacol. Bull. 1997, 3, 73–75. [Google Scholar]
- Heubach, J.F.; Schule, A. Cardiac effects of lappaconitine and N-deacetyllappaconitine, two diterpenoid alkaloids from plants of the Aconitum and Delphinium species. Planta Med. 1998, 64, 22–26. [Google Scholar] [CrossRef] [PubMed]
- Kong, G.Y.; Qin, D.H.; Chu, Y. Antiarrhythmic effect of lappaconitine hydrobromide. Sichuan J. Physiol. Sci. 2002, 4, 175–177. [Google Scholar]
- Vakhitova, I.V.; Farafontova, E.I.; Khisamutdinova, R.I.; Iunusov, V.M.; Cypasheva, I.P.; Iunusov, M.S. To the mechanisms of antiarrhythmic action of Allapinine. Russ. J. Bioorg. Chem. 2013, 39, 105–116. [Google Scholar] [CrossRef]
- Shi, D.; Xie, D.Y.; Zhang, H.; Zhao, H.; Huang, J.; Li, C.M.; Liu, Y.; Lv, F.; The, E.; Liu, Y.; et al. Reduction in dynamin-2 is implicated in ischaemic cardiac arrhythmias. J. Cell Mol. Med. 2014, 18, 1992–1999. [Google Scholar] [CrossRef]
- Wang, S.Y.; Tikhonov, D.B.; Mitchell, J.; Zhorov, B.S.; Wang, G.K. Irreversible block of cardiac mutant Na+ channels by batrachotoxin. Channels 2007, 1, 179–188. [Google Scholar] [CrossRef]
- Song, W.H.; Shou, W.N. Cardiac Sodium Channel Nav1. 5 Mutations and Cardiac Arrhythmia. Pediatr. Cardiol. 2012, 33, 943–949. [Google Scholar] [PubMed]
- Cheremnykh, K.P.; Bryzgalov, A.O.; Baev, D.S.; Borisov, S.A.; Sotnikova, Y.S.; Savelyev, V.A.; Tolstikova, T.G.; Sagdullaev, S.S.; Shults, E.E. Synthesis, Pharmacological Evaluation, and Molecular Modeling of Lappaconitine-1,5-Benzodiazepine Hybrids. Molecules 2023, 28, 4234. [Google Scholar] [CrossRef] [PubMed]
- Ameri, A.; Gleitz, J.; Peters, T. Bicuculline-induced epileptiform activity in rat hippocampal slices: Suppression by Aconitum alkaloids. Planta Med. 1997, 63, 228–232. [Google Scholar] [CrossRef]
- Ameri, A.; Shi, Q.; Aschoff, J.; Peters, T. Electrophysiological effects of aconitine in rat hippocampal slices. Neuropharmacology 1996, 35, 13–22. [Google Scholar] [CrossRef] [PubMed]
- Ameri, A.; Gleitz, J.; Peters, T. Inhibition of neuronal activity in rat hippocampal slices by Aconitum alkaloids. Brain Res. 1996, 738, 154–157. [Google Scholar] [CrossRef] [PubMed]
- Ameri, A. Structure-dependent differences in the effects of the Aconitum alkaloids lappaconitine, N-desacetyllappaconitine and lappaconidine in rat hippocampal slices. Brain Res. 1997, 769, 36–43. [Google Scholar] [CrossRef]
- Yang, W.Y.; Feng, G.Z.; Ling, C.Y.; Pei, S.M.; Song, H.H.; Ju, W.H.; Feng, Z.Z. Synthesis and antitumor activity of lappaconitine acetal compounds derivatives. J. Shaanxi Univ. Sci. Technol. 2017, 35, 135–141. [Google Scholar]
- Cheremnykh, K.P.; Savelyev, V.A.; Borisov, S.A.; Ivanov, I.D.; Baev, D.S.; Tolstikova, T.G.; Vavilin, V.A.; Shults, E.E. Hybrides of Alkaloid Lappaconitine with Pyrimidine Motif on the Anthranilic Acid Moiety: Design, Synthesis, and Investigation of Antinociceptive Potency. Molecules 2020, 25, 5578. [Google Scholar] [CrossRef]
- Li, Y.Z.; Shang, Y.S.; Li, X.H.; Zhang, Y.Y.; Xie, J.; Chen, L.; Gao, F.; Zhou, X.L. Design, synthesis, and biological evaluation of low-toxic lappaconitine derivatives as potential analgesics. Eur. J. Med. Chem. 2022, 243, 114776. [Google Scholar] [CrossRef]
- Chen, Y.S. Comparative observation on the efficacy of lappaconitine and pethidine in 28 patients with hepatocellular carcinoma pain. Jiangxi Med. J. 1994, 6, 369. [Google Scholar]
- Chen, F.; Chen, X.M. Analgesic effect and nursing experience of lappaconitine combined with fentanyl in refractory cancer pain. Strait Pharm. J. 2012, 24, 187–188. [Google Scholar]
- Duan, S.L.; Wang, W.F.; Wu, M.L.; Min, L.M. Clinical observation of lappaconitine combined with doxepin in the treatment of liver cancer pain. J. Chang. Med. Coll. 2001, 19–20. [Google Scholar]
- Weng, Y.L.; Chen, M.; Qiu, S.F. Curative effect observation of lappaconitine adhesive patch to radioactive stomatitis pain of patients with nasopharyngeal carcinoma. China Med. Pharm. 2016, 6, 65–67. [Google Scholar]
- Zhang, L.; Liu, X.; Wang, Y.J.; Wu, J. Clinical observation of Oxy Contin combined with Lappaconitine for pain on moderate and severe chronic cancer pain. J. Mod. Oncol. 2016, 24, 2961–2964. [Google Scholar]
- Chang, G.X.; Ling, J.Z.; Guo, W.; Sun, X.B. Clinical observation of different doses of lappaconitine combined with morphine sulfate sustained release tablets for the treatment of elderly patients with moderate to severe cancer pain. Pract. Geriatr. 2017, 31, 146–149. [Google Scholar]
- Chen, L.L.; Zheng, T.T. Observation on the analgesic effect of lappaconitine patch in orthopedic patients after operation. J. North Pharm. 2017, 32, 335–338. [Google Scholar]
- Yang, Q.W.; Fu, X.L.; Wang, X.M.; Chen, Y.Y.; Hu, Y. Observation on the efficacy of low-dose sufentanil combined with Lappaconitine hydrobromide in the treatment of postoperative pain in elderly patients with lower limb fractures. J. Pract. Tradit. Chin. Med. 2019, 35, 888–889. [Google Scholar]
- Wang, L. The clinical effect of Chinese herbal extract lappaconitine on relieving pain after anorectal surgery. Chin. J. Clin. Ration. Drug Use 2021, 14, 92–93. [Google Scholar]
- Wang, X.; Sun, P. Effect of parecoxib sodium and lappaconitine preemptive analgesia after laparoscopic gallbladder surgery. J. North Pharm. 2022, 19, 179–181. [Google Scholar]
- Deng, F. Observation on the curative effect of joint cavity block of lappaconitine in the treatment of knee osteoarthritis. Zhejiang Clin. Med. J. 2003, 12, 928–929. [Google Scholar]
- Li, F.C.; Xie, J.M.; Xiao, J.Y.; Zhang, S.H.; Li, S.R. Clinical effect of lappaconitine nerve block in the treatment of periarthritis of shoulder. Chin. Med. Mod. Distance Educ. China 2008, 11, 1374. [Google Scholar]
- Yu, W.W. Efficacy analysis of lappaconitine combined with continuous renal replacement therapy for sepsis in ICU. J. Med. Theory Pract. 2021, 34, 2437–2439. [Google Scholar]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, W.; Mi, S.; He, X.; Cui, J.; Zhi, K.; Zhang, J. Advancements in Non-Addictive Analgesic Diterpenoid Alkaloid Lappaconitine: A Review. Int. J. Mol. Sci. 2024, 25, 8255. https://doi.org/10.3390/ijms25158255
Zhang W, Mi S, He X, Cui J, Zhi K, Zhang J. Advancements in Non-Addictive Analgesic Diterpenoid Alkaloid Lappaconitine: A Review. International Journal of Molecular Sciences. 2024; 25(15):8255. https://doi.org/10.3390/ijms25158255
Chicago/Turabian StyleZhang, Wen, Shujuan Mi, Xinxin He, Jiajia Cui, Kangkang Zhi, and Ji Zhang. 2024. "Advancements in Non-Addictive Analgesic Diterpenoid Alkaloid Lappaconitine: A Review" International Journal of Molecular Sciences 25, no. 15: 8255. https://doi.org/10.3390/ijms25158255
APA StyleZhang, W., Mi, S., He, X., Cui, J., Zhi, K., & Zhang, J. (2024). Advancements in Non-Addictive Analgesic Diterpenoid Alkaloid Lappaconitine: A Review. International Journal of Molecular Sciences, 25(15), 8255. https://doi.org/10.3390/ijms25158255