β-D-Glucose-Reduced Silver Nanoparticles Remodel the Tumor Microenvironment in a Murine Model of Triple-Negative Breast Cancer
Abstract
:1. Introduction
2. Results
2.1. Treatment with AgNPs-G Decreased Tumor Volume and Prolonged Survival of Mice Bearing 4T1 Tumor
2.2. Treatment with AgNPs-G Decreased the Expression of PCNA, IDO, and Gal-3 and Increased Caspase-3
2.3. Treatment with AgNPs-G Increased the Percentage of Cytotoxic T Cells, Memory Cells, and Innate Effector Cells in Tumor Tissue
2.4. Treatment with AgNPs-G Increased the Levels of TNF-α, IFN-γ, and IL-6 in Tumor Tissue
2.5. Treatment with AgNPs-G Increased Serum Levels of TNF-α
2.6. Treatment with AgNPs-G Did Not Cause Significant Changes in Hematological Parameters
2.7. Treatment with AgNPs-G Increased the Levels of Liver Enzymes in Mice Bearing 4T1 Tumor
2.8. Treatment with AgNPs-G Generated Histomorphological Changes in the Liver, Kidney, Lung, Heart, or Brain
3. Discussion
4. Materials and Methods
4.1. Cell Line
4.2. Animals
4.3. Beta-D-Glucose-Reduced Silver Nanoparticles (AgNPs-G)
4.4. Airbag Model, Tumor Implantation, and Treatment Administration
4.5. Immunohistochemistry
4.6. Determination of Cytokines
4.7. Leukocyte Isolation
4.8. Leukocyte Immunophenotyping
4.9. Blood and Serum Analysis
4.10. Hematoxylin-Eosin Staining
4.11. Statistical Analysis
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Keys Statistics for Breast Cancer. Available online: https://www.cancer.org/ (accessed on 26 July 2024).
- Siegel, R.L.; Giaquinto, A.N.; Jemal, A. Cancer Statistics, 2024. CA Cancer J. Clin. 2024, 74, 12–49. [Google Scholar] [CrossRef] [PubMed]
- Debela, D.T.; Muzazu, S.G.; Heraro, K.D.; Ndalama, M.T.; Mesele, B.W.; Haile, D.C.; Kitui, S.K.; Manyazewal, T. New Approaches and Procedures for Cancer Treatment: Current Perspectives. SAGE Open Med. 2021, 9, 20503121211034366. [Google Scholar] [CrossRef] [PubMed]
- Syrnioti, A.; Petousis, S.; Newman, L.A.; Margioula-Siarkou, C.; Papamitsou, T.; Dinas, K.; Koletsa, T. Triple Negative Breast Cancer: Molecular Subtype-Specific Immune Landscapes with Therapeutic Implications. Cancers 2024, 16, 2094. [Google Scholar] [CrossRef] [PubMed]
- Han, M.; Li, J.; Wu, S.; Wu, C.; Yu, Y.; Liu, Y. Comparison of the Tumor Immune Microenvironment Phenotypes in Different Breast Cancers after Neoadjuvant Therapy. Cancer Med. 2023, 12, 2906–2917. [Google Scholar] [CrossRef] [PubMed]
- Neophytou, C.M.; Panagi, M.; Stylianopoulos, T.; Papageorgis, P. The Role of Tumor Microenvironment in Cancer Metastasis: Molecular Mechanisms and Therapeutic Opportunities. Cancers 2021, 13, 2053. [Google Scholar] [CrossRef] [PubMed]
- Wang, Q.; Shao, X.; Zhang, Y.; Zhu, M.; Wang, F.X.C.; Mu, J.; Li, J.; Yao, H.; Chen, K. Role of Tumor Microenvironment in Cancer Progression and Therapeutic Strategy. Cancer Med. 2023, 12, 11149–11165. [Google Scholar] [CrossRef] [PubMed]
- Mun, J.-Y.; Leem, S.-H.; Lee, J.H.; Kim, H.S. Dual Relationship Between Stromal Cells and Immune Cells in the Tumor Microenvironment. Front. Immunol. 2022, 13, 864739. [Google Scholar] [CrossRef] [PubMed]
- Meng, L.; Zheng, Y.; Liu, H.; Fan, D. The Tumor Microenvironment: A Key Player in Multidrug Resistance in Cancer. Oncologie 2024, 26, 41–58. [Google Scholar] [CrossRef]
- Kundu, M.; Butti, R.; Panda, V.K.; Malhotra, D.; Das, S.; Mitra, T.; Kapse, P.; Gosavi, S.W.; Kundu, G.C. Modulation of the Tumor Microenvironment and Mechanism of Immunotherapy-Based Drug Resistance in Breast Cancer. Mol. Cancer 2024, 23, 92. [Google Scholar] [CrossRef]
- Yang, D.; Liu, J.; Qian, H.; Zhuang, Q. Cancer-Associated Fibroblasts: From Basic Science to Anticancer Therapy. Exp. Mol. Med. 2023, 55, 1322–1332. [Google Scholar] [CrossRef]
- Zhao, Y.; Shen, M.; Wu, L.; Yang, H.; Yao, Y.; Yang, Q.; Du, J.; Liu, L.; Li, Y.; Bai, Y. Stromal Cells in the Tumor Microenvironment: Accomplices of Tumor Progression? Cell Death Dis. 2023, 14, 587. [Google Scholar] [CrossRef] [PubMed]
- Proietto, M.; Crippa, M.; Damiani, C.; Pasquale, V.; Sacco, E.; Vanoni, M.; Gilardi, M. Tumor Heterogeneity: Preclinical Models, Emerging Technologies, and Future Applications. Front. Oncol. 2023, 13, 1164535. [Google Scholar] [CrossRef] [PubMed]
- Baghban, R.; Roshangar, L.; Jahanban-Esfahlan, R.; Seidi, K.; Ebrahimi-Kalan, A.; Jaymand, M.; Kolahian, S.; Javaheri, T.; Zare, P. Tumor Microenvironment Complexity and Therapeutic Implications at a Glance. Cell Commun. Signal. 2020, 18, 59. [Google Scholar] [CrossRef] [PubMed]
- Kovács, D.; Igaz, N.; Gopisetty, M.K.; Kiricsi, M. Cancer Therapy by Silver Nanoparticles: Fiction or Reality? Int. J. Mol. Sci. 2022, 23, 839. [Google Scholar] [CrossRef] [PubMed]
- Brzóska, K.; Wojewódzka, M.; Szczygiel, M.; Drzał, A.; Sniegocka, M.; Michalczyk-Wetula, D.; Biela, E.; Elas, M.; Kucińska, M.; Piotrowska-Kempisty, H.; et al. Silver Nanoparticles Inhibit Metastasis of 4T1 Tumor in Mice after Intragastric but Not Intravenous Administration. Materials 2022, 15, 3837. [Google Scholar] [CrossRef]
- Félix-Piña, P.; Franco Molina, M.A.; Zarate Triviño, D.G.; García Coronado, P.L.; Zapata Benavides, P.; Rodríguez Padilla, C. Antitumoral and Immunogenic Capacity of β-D-Glucose—Reduced Silver Nanoparticles in Breast Cancer. Int. J. Mol. Sci. 2023, 24, 8485. [Google Scholar] [CrossRef] [PubMed]
- Swanner, J.; Fahrenholtz, C.D.; Tenvooren, I.; Bernish, B.W.; Sears, J.J.; Hooker, A.; Furdui, C.M.; Alli, E.; Li, W.; Donati, G.L.; et al. Silver Nanoparticles Selectively Treat Triple-Negative Breast Cancer Cells without Affecting Non-Malignant Breast Epithelial Cells in Vitro and in Vivo. FASEB BioAdv. 2019, 1, 639–660. [Google Scholar] [CrossRef]
- Snyder, C.M.; Rohde, M.M.; Fahrenholtz, C.D.; Swanner, J.; Sloop, J.; Donati, G.L.; Furdui, C.M.; Singh, R. Low Doses of Silver Nanoparticles Selectively Induce Lipid Peroxidation and Proteotoxic Stress in Mesenchymal Subtypes of Triple-Negative Breast Cancer. Cancers 2021, 13, 4217. [Google Scholar] [CrossRef]
- Goto, S.; Ihara, Y.; Urata, Y.; Izumi, S.; Abe, K.; Koji, T.; Kondo, T. Doxorubicin-induced DNA intercalation and scavenging by nuclear glutathione S-transferase π. FASEB J. 2001, 15, 2702–2714. [Google Scholar] [CrossRef]
- Butler, K.S.; Peeler, D.J.; Casey, B.J.; Dair, B.J.; Elespuru, R.K. Silver nanoparticles: Correlating nanoparticle size and cellular uptake with genotoxicity. Mutagenesis 2015, 30, 577–591. [Google Scholar] [CrossRef]
- Dillehay, K.L.; Seibel, W.L.; Zhao, D.; Lu, S.; Dong, Z. Target Validation and Structure-Activity Analysis of a Series of Novel PCNA Inhibitors. Pharmacol. Res. Perspect. 2015, 3, e00115. [Google Scholar] [CrossRef]
- Farhad, M.; Rolig, A.S.; Redmond, W.L. The Role of Galectin-3 in Modulating Tumor Growth and Immunosuppression within the Tumor Microenvironment. Oncoimmunology 2018, 7, e1434467. [Google Scholar] [CrossRef]
- Santana-Krímskaya, S.E.; Franco-Molina, M.A.; Zárate-Triviño, D.G.; Prado-García, H.; Zapata-Benavides, P.; Torres-del-Muro, F.; Rodríguez-Padilla, C. IMMUNEPOTENT CRP plus Doxorubicin/Cyclophosphamide Chemotherapy Remodel the Tumor Microenvironment in an Air Pouch Triple-Negative Breast Cancer Murine Model. Biomed. Pharmacother. 2020, 126, 110062. [Google Scholar] [CrossRef]
- Daei, S.; Ziamajidi, N.; Abbasalipourkabir, R.; Aminzadeh, Z.; Vahabirad, M. Silver Nanoparticles Exert Apoptotic Activity in Bladder Cancer 5637 Cells Through Alteration of Bax/Bcl-2 Genes Expression. Chonnam Med. J 2022, 58, 102–109. [Google Scholar] [CrossRef]
- Chen, Y.; Yu, D.; Qian, H.; Shi, Y.; Tao, Z. CD8+ T Cell-Based Cancer Immunotherapy. J. Transl. Med. 2024, 22, 394. [Google Scholar] [CrossRef]
- Jin, H.; Liao, S.; Yao, F.; Li, J.; Xu, Z.; Zhao, K.; Xu, X.; Sun, S. Insight into the Crosstalk between Photodynamic Therapy and Immunotherapy in Breast Cancer. Cancers 2023, 15, 1532. [Google Scholar] [CrossRef]
- Oshi, M.; Asaoka, M.; Tokumaru, Y.; Angarita, F.A.; Yan, L.; Matsuyama, R.; Zsiros, E.; Ishikawa, T.; Endo, I.; Takabe, K. Abundance of Regulatory T Cell (Treg) as a Predictive Biomarker for Neoadjuvant Chemotherapy in Triple-Negative Breast Cancer. Cancers 2020, 12, 3038. [Google Scholar] [CrossRef]
- Ben-Baruch, A. Tumor Necrosis Factor α: Taking a Personalized Road in Cancer Therapy. Front. Immunol. 2022, 13, 903679. [Google Scholar] [CrossRef]
- Mercogliano, M.F.; Bruni, S.; Elizalde, P.V.; Schillaci, R. Tumor Necrosis Factor α Blockade: An Opportunity to Tackle Breast Cancer. Front. Oncol. 2020, 10, 584. [Google Scholar] [CrossRef]
- Ni, L.; Lu, J. Interferon Gamma in Cancer Immunotherapy. Cancer Med. 2018, 7, 4509–4516. [Google Scholar] [CrossRef]
- Matysiak-Kucharek, M.; Czajka, M.; Jodłowska-Jędrych, B.; Sawicki, K.; Wojtyła-Buciora, P.; Kruszewski, M.; Kapka-Skrzypczak, L. Two Sides to the Same Coin—Cytotoxicity vs. Potential Metastatic Activity of AgNPs Relative to Triple-Negative Human Breast Cancer MDA-MB-436 Cells. Molecules 2020, 25, 2375. [Google Scholar] [CrossRef]
- Zhao, H.; Wu, L.; Yan, G.; Chen, Y.; Zhou, M.; Wu, Y.; Li, Y. Inflammation and Tumor Progression: Signaling Pathways and Targeted Intervention. Signal Transduct. Target. Ther. 2021, 6, 263. [Google Scholar] [CrossRef]
- Martínez-Pérez, C.; Kay, C.; Meehan, J.; Gray, M.; Dixon, J.M.; Turnbull, A.K. The IL6-like Cytokine Family: Role and Biomarker Potential in Breast Cancer. J. Pers. Med. 2021, 11, 1073. [Google Scholar] [CrossRef]
- Wm, A.; Dw, N. Hematological Markers of In Vivo Toxicity. J. Hematol. Thrombo Dis. 2016, 4, 2. [Google Scholar] [CrossRef]
- Knight, K.; Wade, S.; Balducci, L. Prevalence and Outcomes of Anemia in Cancer: A Systematic Review of the Literature. Am. J. Med. 2004, 116, 11–26. [Google Scholar] [CrossRef]
- Chen, B.; Dai, D.; Tang, H.; Ai, X.; Chen, X.; Zhang, X.; Li, Z.; Xie, X. Pretreatment Hematocrit Is Superior to Hemoglobin as a Prognostic Factor for Triple Negative Breast Cancer. PLoS ONE 2016, 11, e0165133. [Google Scholar] [CrossRef]
- Dubsky, P.; Sevelda, P.; Jakesz, R.; Hausmaninger, H.; Samonigg, H.; Seifert, M.; Denison, U.; Mlineritsch, B.; Steger, G.; Kwasny, W.; et al. Anemia Is a Significant Prognostic Factor in Local Relapse-Free Survival of Premenopausal Primary Breast Cancer Patients Receiving Adjuvant Cyclophosphamide/Methotrexate/5-Fluorouracil Chemotherapy. Clin. Cancer Res. 2008, 14, 2082–2087. [Google Scholar] [CrossRef]
- Sápi, J.; Kovács, L.; Drexler, D.A.; Kocsis, P.; Gajári, D.; Sápi, Z. Tumor Volume Estimation and Quasi-Continuous Administration for Most Effective Bevacizumab Therapy. PLoS ONE 2015, 10, e0142190. [Google Scholar] [CrossRef]
Control | Doxorubicin | AgNPs-G | Normal Range | |
---|---|---|---|---|
Neutrophils (%) | 41.62 ± 9.04 | 49.10 ± 14.23 | 44.2 ± 10.28 | 35.0–75.0 |
Lymphocytes (%) | 46.72 ± 6.22 | 42.5 ± 5.19 | 41.87 ± 4.61 | 25.0–50.0 |
Monocytes (%) | 6.78 ± 1.23 | 6.23 ± 0.75 | 6.54 ± 2.01 | 2.0–10.0 |
Eosinophils (%) | 3.12 ± 0.68 | 4.12 ± 1.08 | 3.56 ± 0.75 | 1.0–4.0 |
Total white blood cell count (109/L) | 5.21 ± 1.26 a | 6.98 ± 0.48 b | 5.68 ± 0.72 a | 4.0–10.0 |
Red Blood Cells (1012/L) | 7.57 ± 0.52 a | 6.89 ± 0.23 b | 7.11 ± 0.09 a | 8.0–15.0 |
Hematocrit (%) | 39.32 ± 4.12 | 38.77 ± 3.12 | 37.54 ± 3.31 | 40.0–54.0 |
Hemoglobin (g/dL) | 13.19 ± 0.82 | 13.32 ± 1.02 | 12.44 ± 0.87 | 14.0–17.5 |
Control | Doxorubicin | AgNPs-G | Normal Range | |
---|---|---|---|---|
Total bilirubin (mg/dL) | 0.22 ± 0.06 | 0.25 ± 0.05 | 0.32 ± 0.08 | 0.0–1.40 |
Direct bilirubin (mg/dL) | 0.07 ± 0.008 | 0.08 ± 0.01 | 0.11 ± 0.03 | 0.0–0.50 |
Indirect bilirubin (mg/dL) | 0.04 ± 0.01 | 0.06 ± 0.02 | 0.06 ± 0.01 | 0.0–0.90 |
Total protein (g/dL) | 6.5 ± 0.42 a | 5.58 ± 1.23 b | 5.3 ± 1.04 b | 6.0–8.10 |
Albumin | 3.72 ± 0.52 | 3.12 ± 0.61 | 3.4 ± 0.41 | 3.0–5.20 |
Globulin | 2.88 ± 0.58 | 2.38 ± 0.43 | 2.23 ± 0.38 | 1.5–3.30 |
Aspartate aminotransferase (UI/L) | 26.23 ± 8.23 a | 43.2 ± 12.1 b | 58.3 ± 6.33 c | 4.0–37.0 |
Alanine aminotransferase (U/L) | 32.47 ± 6.78 a | 57.25 ± 6.5 b | 49.21 ± 8.21 b | 4.0–41.0 |
Alkaline Phosphatase (U/L) | 82.08 ± 12.76 a | 135.8 ± 18.01 b | 147.23 ± 33.02 b | 40.0–129.0 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Félix-Piña, P.; Franco Molina, M.A.; García Coronado, P.L.; Prado-Garcia, H.; Zarate-Triviño, D.G.; Castro-Valenzuela, B.E.; Moreno-Amador, K.A.; Uscanga Palomeque, A.C.; Rodríguez Padilla, C. β-D-Glucose-Reduced Silver Nanoparticles Remodel the Tumor Microenvironment in a Murine Model of Triple-Negative Breast Cancer. Int. J. Mol. Sci. 2024, 25, 8432. https://doi.org/10.3390/ijms25158432
Félix-Piña P, Franco Molina MA, García Coronado PL, Prado-Garcia H, Zarate-Triviño DG, Castro-Valenzuela BE, Moreno-Amador KA, Uscanga Palomeque AC, Rodríguez Padilla C. β-D-Glucose-Reduced Silver Nanoparticles Remodel the Tumor Microenvironment in a Murine Model of Triple-Negative Breast Cancer. International Journal of Molecular Sciences. 2024; 25(15):8432. https://doi.org/10.3390/ijms25158432
Chicago/Turabian StyleFélix-Piña, Pedro, Moisés Armides Franco Molina, Paola Leonor García Coronado, Heriberto Prado-Garcia, Diana Ginette Zarate-Triviño, Beatriz Elena Castro-Valenzuela, Kenia Arisbe Moreno-Amador, Ashanti Concepción Uscanga Palomeque, and Cristina Rodríguez Padilla. 2024. "β-D-Glucose-Reduced Silver Nanoparticles Remodel the Tumor Microenvironment in a Murine Model of Triple-Negative Breast Cancer" International Journal of Molecular Sciences 25, no. 15: 8432. https://doi.org/10.3390/ijms25158432
APA StyleFélix-Piña, P., Franco Molina, M. A., García Coronado, P. L., Prado-Garcia, H., Zarate-Triviño, D. G., Castro-Valenzuela, B. E., Moreno-Amador, K. A., Uscanga Palomeque, A. C., & Rodríguez Padilla, C. (2024). β-D-Glucose-Reduced Silver Nanoparticles Remodel the Tumor Microenvironment in a Murine Model of Triple-Negative Breast Cancer. International Journal of Molecular Sciences, 25(15), 8432. https://doi.org/10.3390/ijms25158432