Insights into E-Cadherin Impairment in CDH1-Unaltered Invasive Lobular Carcinoma: A Comprehensive Bioinformatic Study
Abstract
:1. Introduction
2. Results
2.1. Clinicopathological Features, Intrinsic Subtype, and Tumor Mutational Burden of CDH1-Altered and -Unaltered ILC
2.2. Genomic Landscape of Somatic Mutations and Comparison of Somatic Mutations and Amplification between CDH1-Altered and -Unaltered ILC
2.3. Identification of Differences in CDH1 mRNA, Protein, Methylation, and miRNA (hsa-mir-676) Levels between CDH1-Mutant and Non-Mutant Groups Using LinkedOmics
2.4. Gene Set Enrichment Analysis (GSEA) of Gene Ontology Annotations
3. Discussion
4. Materials and Methods
4.1. Data Collection of CDH1-Altered and -Unaltered ILC
4.2. Comparison of Clinicopathological Features and Molecular Subtypes between CDH1-Altered and -Unaltered ILC
4.3. TMB Estimation
4.4. CDH1 Alteration Analysis and Comparison of Mutation and Amplification Frequency of CDH1-Related Genes between CDH1-Altered and -Unaltered ILC
4.5. LinkedOmics Analysis
4.6. Statistical Analysis
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- World Health Organization Classification of Tumours Editorial Board. Breast Tumors, 5th ed.; International Agency for Research on Cancer (International Arctic Research Center): Lyon, France, 2019. [Google Scholar]
- Berx, G.; Cleton-Jansen, A.M.; Nollet, F.; de Leeuw, W.J.; van de Vijver, M.; Cornelisse, C.; van Roy, F. E-cadherin is a tumour/invasion suppressor gene mutated in human lobular breast cancers. EMBO J. 1995, 14, 6107–6115. [Google Scholar] [CrossRef] [PubMed]
- Takeichi, M. Cadherin cell adhesion receptors as a morphogenetic regulator. Science 1991, 251, 1451–1455. [Google Scholar] [CrossRef]
- van Roy, F.; Berx, G. The cell-cell adhesion molecule E-cadherin. Cell Mol. Life Sci. 2008, 65, 3756–3788. [Google Scholar] [CrossRef] [PubMed]
- McCart Reed, A.E.; Kutasovic, J.R.; Lakhani, S.R.; Simpson, P.T. Invasive lobular carcinoma of the breast: Morphology, biomarkers and ’omics. Breast Cancer Res. 2015, 17, 12. [Google Scholar] [CrossRef] [PubMed]
- Desmedt, C.; Zoppoli, G.; Gundem, G.; Pruneri, G.; Larsimont, D.; Fornili, M.; Fumagalli, D.; Brown, D.; Rothé, F.; Vincent, D.; et al. Genomic characterization of primary invasive lobular breast cancer. J. Clin. Oncol. 2016, 34, 1872–1881. [Google Scholar] [CrossRef]
- Zou, D.; Yoon, H.S.; Perez, D.; Weeks, R.J.; Guilford, P.; Humar, B. Epigenetic silencing in non-neoplastic epithelia identifies E-cadherin (CDH1) as a target for chemoprevention of lobular neoplasia. J. Pathol. 2009, 218, 265–272. [Google Scholar] [CrossRef]
- Liu, J.; Sun, X.; Qin, S.; Wang, H.; Du, N.; Li, Y.; Pang, Y.; Wang, C.; Xu, C.; Ren, H. CDH1 promoter methylation correlates with decreased gene expression and poor prognosis in patients with breast cancer. Oncol. Lett. 2016, 11, 2635–2643. [Google Scholar] [CrossRef]
- Ciriello, G.; Gatza, M.L.; Beck, A.H.; Wilkerson, M.D.; Rhie, S.K.; Pastore, A.; Zhang, H.; McLellan, M.; Yau, C.; Kandoth, C.; et al. Comprehensive molecular portraits of invasive lobular breast cancer. Cell 2015, 163, 506–519. [Google Scholar] [CrossRef] [PubMed]
- Canas-Marques, R.; Schnitt, S.J. E-cadherin immunohistochemistry in breast pathology: Uses and pitfalls. Histopathology 2016, 68, 57–69. [Google Scholar] [CrossRef] [PubMed]
- Grabenstetter, A.; Mohanty, A.S.; Rana, S.; Zehir, A.; Brannon, A.R.; D’Alfonso, T.M.; DeLair, D.F.; Tan, L.K.; Ross, D.S. E-cadherin immunohistochemical expression in invasive lobular carcinoma of the breast: Correlation with morphology and CDH1 somatic alterations. Hum. Pathol. 2020, 102, 44–53. [Google Scholar] [CrossRef]
- de Groot, J.S.; Ratze, M.A.; van Amersfoort, M.; Eisemann, T.; Vlug, E.J.; Niklaas, M.T.; Chin, S.F.; Caldas, C.; van Diest, P.J.; Jonkers, J.; et al. αE-catenin is a candidate tumor suppressor for the development of E-cadherin-expressing lobular-type breast cancer. J. Pathol. 2018, 245, 456–467. [Google Scholar] [CrossRef] [PubMed]
- Dopeso, H.; Gazzo, A.M.; Derakhshan, F.; Brown, D.N.; Selenica, P.; Jalali, S.; Da Cruz Paula, A.; Marra, A.; da Silva, E.M.; Basili, T.; et al. Genomic and epigenomic basis of breast invasive lobular carcinomas lacking CDH1 genetic alterations. NPJ Precis. Oncol. 2024, 8, 33. [Google Scholar] [CrossRef]
- Chakravarty, D.; Gao, J.; Phillips, S.M.; Kundra, R.; Zhang, H.; Wang, J.; Rudolph, J.E.; Yaeger, R.; Soumerai, T.; Nissan, M.H.; et al. OncoKB: A precision oncology knowledge base. JCO Precis. Oncol. 2017, 2017, PO.17.00011. [Google Scholar] [CrossRef]
- Cancer Genome Atlas Network. Comprehensive molecular portraits of human breast tumours. Nature 2012, 490, 61–70. [Google Scholar] [CrossRef] [PubMed]
- Ross, J.S.; Wang, K.; Sheehan, C.E.; Boguniewicz, A.B.; Otto, G.; Downing, S.R.; Sun, J.; He, J.; Curran, J.A.; Ali, S.; et al. Relapsed classic E-cadherin (CDH1)-mutated invasive lobular breast cancer shows a high frequency of HER2 (ERBB2) gene mutations. Clin. Cancer Res. 2013, 19, 2668–2676. [Google Scholar] [CrossRef] [PubMed]
- Kurozumi, S.; Alsaleem, M.; Monteiro, C.J.; Bhardwaj, K.; Joosten, S.E.P.; Fujii, T.; Shirabe, K.; Green, A.R.; Ellis, I.O.; Rakha, E.A.; et al. Targetable ERBB2 mutation status is an independent marker of adverse prognosis in estrogen receptor positive, ERBB2 non-amplified primary lobular breast carcinoma: A retrospective in silico analysis of public datasets. Breast Cancer Res. 2020, 22, 85. [Google Scholar] [CrossRef] [PubMed]
- Uchida, S.; Kojima, T.; Sugino, T. Clinicopathological features, tumor mutational burden, and tumour-infiltrating lymphocyte interplay in ERBB2-mutated breast cancer: In silico analysis. Pathol. Oncol. Res. 2021, 27, 633243. [Google Scholar] [CrossRef] [PubMed]
- Pan, C.; Xu, A.; Ma, X.; Yao, Y.; Zhao, Y.; Wang, C.; Chen, C. Research progress of claudin-low breast cancer. Front. Oncol. 2023, 13, 1226118. [Google Scholar] [CrossRef]
- Sabatier, R.; Finetti, P.; Guille, A.; Adelaide, J.; Chaffanet, M.; Viens, P.; Birnbaum, D.; Bertucci, F. Claudin-low breast cancers: Clinical, pathological, molecular and prognostic characterization. Mol. Cancer. 2014, 13, 228. [Google Scholar] [CrossRef] [PubMed]
- Deeb, G.; Wang, J.; Ramnath, N.; Slocum, H.K.; Wiseman, S.; Beck, A.; Tan, D. Altered E-cadherin and epidermal growth factor receptor expressions are associated with patient survival in lung cancer: A study utilizing high-density tissue microarray and immunohistochemistry. Mod. Pathol. 2004, 17, 430–439. [Google Scholar] [CrossRef]
- Hunt, N.C.; Douglas-Jones, A.G.; Jasani, B.; Morgan, J.M.; Pignatelli, M. Loss of E-cadherin expression associated with lymph node metastases in small breast carcinomas. Virchows Arch. 1997, 430, 285–289. [Google Scholar] [CrossRef]
- Li, Z.; Yin, S.; Zhang, L.; Liu, W.; Chen, B. Prognostic value of reduced E-cadherin expression in breast cancer: A meta-analysis. Oncotarget. 2017, 8, 16445–16455. [Google Scholar] [CrossRef] [PubMed]
- Yang, L.; Wang, X.W.; Zhu, L.P.; Wang, H.L.; Wang, B.; Zhao, Q.; Wang, X.Y. Significance and prognosis of epithelial-cadherin expression in invasive breast carcinoma. Oncol. Lett. 2018, 16, 1659–1665. [Google Scholar] [CrossRef] [PubMed]
- Corso, G.; Figueiredo, J.; De Angelis, S.P.; Corso, F.; Girardi, A.; Pereira, J.; Seruca, R.; Bonanni, B.; Carneiro, P.; Pravettoni, G.; et al. E-cadherin deregulation in breast cancer. J. Cell Mol. Med. 2020, 25, 5930–5936. [Google Scholar] [CrossRef] [PubMed]
- Yasui, H.; Kawata, T.; Muramatsu, K.; Kakuda, Y.; Oishi, T.; Norose, T.; Notsu, A.; Nishimura, S.; Fukuoka, J.; Sugino, T. Expression of N-terminal-deficient E-cadherin protein in invasive lobular carcinoma of the breast. Am. J. Surg. Pathol. 2022, 46, 383–391. [Google Scholar] [CrossRef]
- Pinho, S.S.; Reis, C.A.; Paredes, J.; Magalhães, A.M.; Ferreira, A.C.; Figueiredo, J.; Xiaogang, W.; Carneiro, F.; Gärtner, F.; Seruca, R. The role of N-acetylglucosaminyltransferase III and V in the post-transcriptional modifications of E-cadherin. Hum. Mol. Genet. 2009, 18, 2599–2608. [Google Scholar] [CrossRef]
- Pinho, S.S.; Seruca, R.; Gärtner, F.; Yamaguchi, Y.; Gu, J.; Taniguchi, N.; Reis, C.A. Modulation of E-cadherin function and dysfunction by N-glycosylation. Cell Mol. Life Sci. 2011, 68, 1011–1020. [Google Scholar] [CrossRef]
- Pinho, S.S.; Carvalho, S.; Marcos-Pinto, R.; Magalhães, A.; Oliveira, C.; Gu, J.; Dinis-Ribeiro, M.; Carneiro, F.; Seruca, R.; Reis, C.A. Gastric cancer: Adding glycosylation to the equation. Trends Mol. Med. 2013, 19, 664–676. [Google Scholar] [CrossRef] [PubMed]
- Pinho, S.S.; Figueiredo, J.; Cabral, J.; Carvalho, S.; Dourado, J.; Magalhães, A.; Gärtner, F.; Mendonfa, A.M.; Isaji, T.; Gu, J.; et al. E-cadherin and adherens-junctions stability in gastric carcinoma: Functional implications of glycosyltransferases involving N-glycan branching biosynthesis, N-acetylglucosaminyltransferases III and V. Biochim. Biophys. Acta 2013, 1830, 2690–2700. [Google Scholar] [CrossRef] [PubMed]
- Zhou, F.; Su, J.; Fu, L.; Yang, Y.; Zhang, L.; Wang, L.; Zhao, H.; Zhang, D.; Li, Z.; Zha, X. Unglycosylation at Asn-633 made extracellular domain of E-cadherin folded incorrectly and arrested in endoplasmic reticulum, then sequentially degraded by ERAD. Glycoconj. J. 2008, 25, 727–740. [Google Scholar] [CrossRef] [PubMed]
- Liwosz, A.; Lei, T.; Kukuruzinska, M.A. N-glycosylation affects the molecular organization and stability of E-cadherin junctions. J. Biol. Chem. 2006, 281, 23138–23149. [Google Scholar] [CrossRef] [PubMed]
- Hoadley, K.A.; Yau, C.; Hinoue, T.; Wolf, D.M.; Lazar, A.J.; Drill, E.; Shen, R.; Taylor, A.M.; Cherniack, A.D.; Thorsson, V.; et al. Cell-of-origin patterns dominate the molecular classification of 10,000 tumors from 33 types of cancer. Cell 2018, 173, 291–304. [Google Scholar] [CrossRef] [PubMed]
- Curtis, C.; Shah, S.P.; Chin, S.F.; Turashvili, G.; Rueda, O.M.; Dunning, M.J.; Speed, D.; Lynch, A.G.; Samarajiwa, S.; Yuan, Y.; et al. The genomic and transcriptomic architecture of 2000 breast tumours reveals novel subgroups. Nature 2012, 486, 346–352. [Google Scholar] [CrossRef] [PubMed]
- Pereira, B.; Chin, S.F.; Rueda, O.M.; Vollan, H.K.M.; Provenzano, E.; Bardwell, H.A.; Pugh, M.; Jones, L.; Russell, R.; Sammut, S.J.; et al. The somatic mutation profiles of 2,433 breast cancers refines their genomic and transcriptomic landscapes. Nat. Commun. 2016, 7, 11479. [Google Scholar] [CrossRef] [PubMed]
- Barroso-Sousa, R.; Jain, E.; Cohen, O.; Kim, D.; Buendia-Buendia, J.; Winer, E.; Lin, N.; Tolaney, S.M.; Wagle, N. Prevalence and mutational determinants of high tumor mutation burden in breast cancer. Ann. Oncol. 2020, 31, 387–394. [Google Scholar] [CrossRef] [PubMed]
- McCart Reed, A.E.; Kalinowski, L.; Simpson, P.T.; Lakhani, S.R. Invasive lobular carcinoma of the breast: The increasing importance of this special subtype. Breast Cancer Res. 2021, 23, 6. [Google Scholar] [CrossRef]
- Vasaikar, S.V.; Straub, P.; Wang, J.; Zhang, B. LinkedOmics: Analyzing multi-omics data within and across 32 cancer types. Nucleic Acids Res. 2018, 46, D956–D963. [Google Scholar] [CrossRef]
- Kanda, Y. Investigation of the freely available easy-to-use software ‘EZR’ for medical statistics. Bone Marrow Transplant. 2013, 48, 452–458. [Google Scholar] [CrossRef] [PubMed]
Alteration Type | TCGA (n = 110) | METABRIC (n = 91) | Total (n = 201) |
---|---|---|---|
Mutation | |||
Missense, n (%) | 4 (3.6) | 9 (9.9) | 13 (6.5) |
In-frame, n (%) | 4 (3.6) | 1 (1.1) | 5 (2.5) |
Splice, n (%) | 11 (10.0) | 12 (13.2) | 23 (11.4) |
Truncating, n (%) | 82 (74.5) | 65 (71.4) | 147 (73.1) |
Homozygous deletion and mutation, n (%) | 3 (2.7) | 1 (1.1) | 4 (2.0) |
Homozygous deletion, n (%) | 4 (3.6) | 3 (3.3) | 7 (3.5) |
Structural variant, n (%) | 2 (1.8) | 0 (0) | 2 (1.0) |
Clinicopathological Feature | CDH1-Altered ILC (n = 201) | CDH1-Unaltered ILC (n = 192) | p-Value |
---|---|---|---|
Age | |||
Mean | 63.1 | 62.1 | 0.51 |
Minimum | 37 | 27 | |
Maximum | 90 | 71 | |
Site | |||
Left, n (%) | 89 (50.0) | 88 (55.3) | 0.38 |
Right, n (%) | 89 (50.0) | 71 (44.7) | |
N/A | 23 | 33 | |
Menopausal status | |||
Pre, n (%) | 20 (11.9) | 30 (19.9) | 0.07 |
Post, n (%) | 148 (88.1) | 121 (80.1) | |
N/A | 33 | 41 | |
T factor | |||
T1, n (%) | 42 (23.6) | 39 (25.2) | 0.99 |
T2, n (%) | 92 (51.7) | 79 (51.0) | |
T3, n (%) | 43 (24.2) | 36 (23.2) | |
T4, n (%) | 1 (0.6) | 1 (0.6) | |
N/A | 23 | 37 | |
N factor | |||
N0, n (%) | 58 (53.2) | 36 (40.0) | 0.07 |
N1, n (%) | 22 (20.2) | 33 (36.7) | |
N2, n (%) | 10 (9.2) | 8 (8.9) | |
N3, n (%) | 19 (17.4) | 13 (14.4) | |
N/A | 92 | 102 | |
Tumor grade | |||
Grade 1, n (%) | 6 (7.1) | 11 (11.5) | 0.38 |
Grade 2, n (%) | 54 (63.5) | 52 (54.2) | |
Grade 3, n (%) | 25 (29.4) | 33 (34.4) | |
N/A | 116 | 96 | |
TMB | |||
Mean | 5.6 | 4.2 | 0.05 |
SD | 9.5 | 44.8 | |
Median | 2.6 | 2.5 | |
Minimum | 0 | 0 | |
Maximum | 103.1 | 28.8 | |
TMB-low (<10) (%) | 169 (84.1) | 159 (88.3) | 0.29 |
TMB-high (≥10) (%) | 32 (15.9) | 21 (11.7) | |
N/A | 0 | 12 |
TCGA | METABRIC | |||||
---|---|---|---|---|---|---|
Subtype | CDH1-Altered (n = 110) | CDH1-Unaltered (n = 91) | p-Value | CDH1-Altered (n = 91) | CDH1-Unaltered (n = 101) | p-Value |
Luminal A, n (%) | 95 (88.8) | 39 (70.9) | 0.06 | 38 (53.5) | 26 (35.1) | <0.05 |
Luminal B, n (%) | 4 (3.7) | 7 (12.7) | 14 (19.7) | 8 (10.8) | ||
Her2, n (%) | 2 (1.9) | 1 (1.8) | 6 (8.6) | 8 (10.8) | ||
Basal, n (%) | 1 (0.9) | 1 (1.8) | 0 (0) | 4 (5.4) | ||
Normal-like, n (%) | 5 (4.7) | 7 (12.7) | 11 (15.5) | 15 (20.3) | ||
Claudin-low, n (%) | Blank | Blank | 2 (2.8) | 13 (17.6) | ||
N/A | 3 | 36 | 20 | 27 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Uchida, S.; Sugino, T. Insights into E-Cadherin Impairment in CDH1-Unaltered Invasive Lobular Carcinoma: A Comprehensive Bioinformatic Study. Int. J. Mol. Sci. 2024, 25, 8961. https://doi.org/10.3390/ijms25168961
Uchida S, Sugino T. Insights into E-Cadherin Impairment in CDH1-Unaltered Invasive Lobular Carcinoma: A Comprehensive Bioinformatic Study. International Journal of Molecular Sciences. 2024; 25(16):8961. https://doi.org/10.3390/ijms25168961
Chicago/Turabian StyleUchida, Shiro, and Takashi Sugino. 2024. "Insights into E-Cadherin Impairment in CDH1-Unaltered Invasive Lobular Carcinoma: A Comprehensive Bioinformatic Study" International Journal of Molecular Sciences 25, no. 16: 8961. https://doi.org/10.3390/ijms25168961
APA StyleUchida, S., & Sugino, T. (2024). Insights into E-Cadherin Impairment in CDH1-Unaltered Invasive Lobular Carcinoma: A Comprehensive Bioinformatic Study. International Journal of Molecular Sciences, 25(16), 8961. https://doi.org/10.3390/ijms25168961