Anti-Inflammatory Effects of miR-369-3p via PDE4B in Intestinal Inflammatory Response
Abstract
:1. Introduction
2. Results
2.1. In Silico Analysis of miR-369-3p Gene Targets
2.2. PDE4B Modulation by miR-369-3p
2.3. miR-369-3p Regulates cAMP Expression
2.4. miR-369-3p Affects the Downstream PDE4B Signaling Pathways
2.5. Effects of miR-369-3p on Anti-Inflammatory and Pro-Inflammatory Cytokine Release
2.6. PDE4B Expression in IBD Patients
3. Discussion
4. Materials and Methods
4.1. Cell Culture and miR-369-3p Mimic Transfection
4.2. RNA Extraction and Real-Time PCR
4.3. Protein Isolation and Immunoblotting Analysis
4.4. Measurement of Cytokine Production
4.5. Immunofluorescence
4.6. Immunohistochemistry in UC Samples
4.7. Bioinformatics and Statistical Analysis
5. Conclusions
6. Patents
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Azam, M.A. Selective Phosphodiesterase 4B Inhibitors: A Review. Sci. Pharm. 2014, 82, 453–481. [Google Scholar] [CrossRef] [PubMed]
- Ahmad, F.; Murata, T.; Shimizu, K.; Degerman, E.; Maurice, D.; Manganiello, V. Cyclic Nucleotide Phosphodiesterases: Important Signaling Modulators and Therapeutic Targets. Oral. Dis. 2015, 21, e25–e50. [Google Scholar] [CrossRef] [PubMed]
- Klussmann, E. Protein–Protein Interactions of PDE4 Family Members—Functions, Interactions and Therapeutic Value. Cell Signal 2016, 28, 713–718. [Google Scholar] [CrossRef] [PubMed]
- Francis, S.H.; Blount, M.A.; Corbin, J.D. Mammalian Cyclic Nucleotide Phosphodiesterases: Molecular Mechanisms and Physiological Functions. Physiol. Rev. 2011, 91, 651–690. [Google Scholar] [CrossRef] [PubMed]
- Spadaccini, M.; D’Alessio, S.; Peyrin-Biroulet, L.; Danese, S. PDE4 Inhibition and Inflammatory Bowel Disease: A Novel Therapeutic Avenue. Int. J. Mol. Sci. 2017, 18, 1276. [Google Scholar] [CrossRef]
- Li, H.; Zuo, J.; Tang, W. Phosphodiesterase-4 Inhibitors for the Treatment of Inflammatory Diseases. Front. Pharmacol. 2018, 9, 1048. [Google Scholar] [CrossRef] [PubMed]
- Milakovic, M.; Gooderham, M.J. Phosphodiesterase-4 Inhibition in Psoriasis. Psoriasis Targets Ther. 2021, 11, 21–29. [Google Scholar] [CrossRef]
- Fiocchi, C. Inflammatory Bowel Disease: Etiology and Pathogenesis. Gastroenterology 1998, 115, 182–205. [Google Scholar] [CrossRef] [PubMed]
- Neurath, M.F. Cytokines in Inflammatory Bowel Disease. Nat. Rev. Immunol. 2014, 14, 329–342. [Google Scholar] [CrossRef]
- Friedrich, M.; Pohin, M.; Powrie, F. Cytokine Networks in the Pathophysiology of Inflammatory Bowel Disease. Immunity 2019, 50, 992–1006. [Google Scholar] [CrossRef]
- Perez-Aso, M.; Montesinos, M.C.; Mediero, A.; Wilder, T.; Schafer, P.H.; Cronstein, B. Apremilast, a Novel Phosphodiesterase 4 (PDE4) Inhibitor, Regulates Inflammation through Multiple CAMP Downstream Effectors. Arthritis Res. Ther. 2015, 17, 249. [Google Scholar] [CrossRef]
- Hartmann, G.; Bidlingmaier, C.; Siegmund, B.; Albrich, S.; Schulze, J.; Tschoep, K.; Eigler, A.; Lehr, H.A.; Endres, S. Specific Type IV Phosphodiesterase Inhibitor Rolipram Mitigates Experimental Colitis in Mice. J. Pharmacol. Exp. Ther. 2000, 292, 22–30. [Google Scholar]
- O’Brien, J.; Hayder, H.; Zayed, Y.; Peng, C. Overview of MicroRNA Biogenesis, Mechanisms of Actions, and Circulation. Front. Endocrinol. 2018, 9, 402. [Google Scholar] [CrossRef]
- Ardekani, A.M.; Naeini, M.M. The Role of MicroRNAs in Human Diseases. Avicenna J. Med. Biotechnol. 2010, 2, 161–179. [Google Scholar]
- Dhuppar, S.; Murugaiyan, G. MiRNA Effects on Gut Homeostasis: Therapeutic Implications for Inflammatory Bowel Disease. Trends Immunol. 2022, 43, 917–931. [Google Scholar] [CrossRef]
- Scalavino, V.; Liso, M.; Serino, G. Role of MicroRNAs in the Regulation of Dendritic Cell Generation and Function. Int. J. Mol. Sci. 2020, 21, 1319. [Google Scholar] [CrossRef]
- Tahamtan, A.; Teymoori-Rad, M.; Nakstad, B.; Salimi, V. Anti-Inflammatory MicroRNAs and Their Potential for Inflammatory Diseases Treatment. Front. Immunol. 2018, 9, 1377. [Google Scholar] [CrossRef]
- Galleggiante, V.; De Santis, S.; Liso, M.; Verna, G.; Sommella, E.; Mastronardi, M.; Campiglia, P.; Chieppa, M.; Serino, G. Quercetin-Induced MiR-369-3p Suppresses Chronic Inflammatory Response Targeting C/EBP-β. Mol. Nutr. Food Res. 2019, 63, 1801390. [Google Scholar] [CrossRef]
- Scalavino, V.; Piccinno, E.; Valentini, A.M.; Schena, N.; Armentano, R.; Giannelli, G.; Serino, G. MiR-369-3p Modulates Intestinal Inflammatory Response via BRCC3/NLRP3 Inflammasome Axis. Cells 2023, 12, 2184. [Google Scholar] [CrossRef]
- Scalavino, V.; Piccinno, E.; Valentini, A.; Mastronardi, M.; Armentano, R.; Giannelli, G.; Serino, G. A Novel Mechanism of Immunoproteasome Regulation via MiR-369-3p in Intestinal Inflammatory Response. Int. J. Mol. Sci. 2022, 23, 13771. [Google Scholar] [CrossRef]
- Tavares, L.P.; Negreiros-Lima, G.L.; Lima, K.M.; E Silva, P.M.R.; Pinho, V.; Teixeira, M.M.; Sousa, L.P. Blame the Signaling: Role of CAMP for the Resolution of Inflammation. Pharmacol. Res. 2020, 159, 105030. [Google Scholar] [CrossRef] [PubMed]
- Eigler, A.; Siegmund, B.; Emmerich, U.; Baumann, K.H.; Hartmann, G.; Endres, S. Anti-Inflammatory Activities of CAMP-Elevating Agents: Enhancement of IL-10 Synthesis and Concurrent Suppression of TNF Production. J. Leukoc. Biol. 1998, 63, 101–107. [Google Scholar] [CrossRef] [PubMed]
- Yang, J.-X.; Hsieh, K.-C.; Chen, Y.-L.; Lee, C.-K.; Conti, M.; Chuang, T.-H.; Wu, C.-P.; Jin, S.-L.C. Phosphodiesterase 4B Negatively Regulates Endotoxin-Activated Interleukin-1 Receptor Antagonist Responses in Macrophages. Sci. Rep. 2017, 7, 46165. [Google Scholar] [CrossRef] [PubMed]
- Arijs, I.; De Hertogh, G.; Lemaire, K.; Quintens, R.; Van Lommel, L.; Van Steen, K.; Leemans, P.; Cleynen, I.; Van Assche, G.; Vermeire, S.; et al. Mucosal Gene Expression of Antimicrobial Peptides in Inflammatory Bowel Disease Before and After First Infliximab Treatment. PLoS ONE 2009, 4, e7984. [Google Scholar] [CrossRef] [PubMed]
- Zurba, Y.; Gros, B.; Shehab, M. Exploring the Pipeline of Novel Therapies for Inflammatory Bowel Disease; State of the Art Review. Biomedicines 2023, 11, 747. [Google Scholar] [CrossRef] [PubMed]
- Raisch, J. Role of MicroRNAs in the Immune System, Inflammation and Cancer. World J. Gastroenterol. 2013, 19, 2985. [Google Scholar] [CrossRef] [PubMed]
- Chakrabortty, A.; Patton, D.J.; Smith, B.F.; Agarwal, P. MiRNAs: Potential as Biomarkers and Therapeutic Targets for Cancer. Genes 2023, 14, 1375. [Google Scholar] [CrossRef]
- Piccinno, E.; Scalavino, V.; Armentano, R.; Giannelli, G.; Serino, G. MiR-195-5p as Regulator of γ-Catenin and Desmosome Junctions in Colorectal Cancer. Int. J. Mol. Sci. 2023, 24, 17084. [Google Scholar] [CrossRef] [PubMed]
- Jung, H.; Kim, J.S.; Lee, K.H.; Tizaoui, K.; Terrazzino, S.; Cargnin, S.; Smith, L.; Koyanagi, A.; Jacob, L.; Li, H.; et al. Roles of MicroRNAs in Inflammatory Bowel Disease. Int. J. Biol. Sci. 2021, 17, 2112–2123. [Google Scholar] [CrossRef] [PubMed]
- Scalavino, V.; Piccinno, E.; Lacalamita, A.; Tafaro, A.; Armentano, R.; Giannelli, G.; Serino, G. MiR-195-5p Regulates Tight Junctions Expression via Claudin-2 Downregulation in Ulcerative Colitis. Biomedicines 2022, 10, 919. [Google Scholar] [CrossRef]
- Su, Y.; Ding, J.; Yang, F.; He, C.; Xu, Y.; Zhu, X.; Zhou, H.; Li, H. The Regulatory Role of PDE4B in the Progression of Inflammatory Function Study. Front. Pharmacol. 2022, 13, 982130. [Google Scholar] [CrossRef]
- Manning, C.D.; Burman, M.; Christensen, S.B.; Cieslinski, L.B.; Essayan, D.M.; Grous, M.; Torphy, T.J.; Barnette, M.S. Suppression of Human Inflammatory Cell Function by Subtype-selective PDE4 Inhibitors Correlates with Inhibition of PDE4A and PDE4B. Br. J. Pharmacol. 1999, 128, 1393–1398. [Google Scholar] [CrossRef]
- Jin, S.-L.C.; Lan, L.; Zoudilova, M.; Conti, M. Specific Role of Phosphodiesterase 4B in Lipopolysaccharide-Induced Signaling in Mouse Macrophages. J. Immunol. 2005, 175, 1523–1531. [Google Scholar] [CrossRef]
- Banner, K.H.; Trevethick, M.A. PDE4 Inhibition: A Novel Approach for the Treatment of Inflammatory Bowel Disease. Trends Pharmacol. Sci. 2004, 25, 430–436. [Google Scholar] [CrossRef]
- Tang, B.; Zhu, J.; Zhang, B.; Wu, F.; Wang, Y.; Weng, Q.; Fang, S.; Zheng, L.; Yang, Y.; Qiu, R.; et al. Therapeutic Potential of Triptolide as an Anti-Inflammatory Agent in Dextran Sulfate Sodium-Induced Murine Experimental Colitis. Front. Immunol. 2020, 11, 592084. [Google Scholar] [CrossRef]
- Kawamatawong, T. Roles of Roflumilast, a Selective Phosphodiesterase 4 Inhibitor, in Airway Diseases. J. Thorac. Dis. 2017, 9, 1144–1154. [Google Scholar] [CrossRef] [PubMed]
- Huang, B.; Chen, Z.; Geng, L.; Wang, J.; Liang, H.; Cao, Y.; Chen, H.; Huang, W.; Su, M.; Wang, H.; et al. Mucosal Profiling of Pediatric-Onset Colitis and IBD Reveals Common Pathogenics and Therapeutic Pathways. Cell 2019, 179, 1160–1176.e24. [Google Scholar] [CrossRef] [PubMed]
- Danese, S.; Neurath, M.F.; Kopoń, A.; Zakko, S.F.; Simmons, T.C.; Fogel, R.; Siegel, C.A.; Panaccione, R.; Zhan, X.; Usiskin, K.; et al. Effects of Apremilast, an Oral Inhibitor of Phosphodiesterase 4, in a Randomized Trial of Patients With Active Ulcerative Colitis. Clin. Gastroenterol. Hepatol. 2020, 18, 2526–2534.e9. [Google Scholar] [CrossRef]
- Schmidt, L.; Wang, C.A.; Patel, V.; Davidson, D.; Kalirai, S.; Panda, A.; Seigel, L. Early Discontinuation of Apremilast in Patients with Psoriasis and Gastrointestinal Comorbidities: Rates and Associated Risk Factors. Dermatol. Ther. 2023, 13, 2019–2030. [Google Scholar] [CrossRef]
- Loher, F.; Schmall, K.; Freytag, P.; Landauer, N.; Hallwachs, R.; Bauer, C.; Siegmund, B.; Rieder, F.; Lehr, H.-A.; Dauer, M.; et al. The Specific Type-4 Phosphodiesterase Inhibitor Mesopram Alleviates Experimental Colitis in Mice. J. Pharmacol. Exp. Ther. 2003, 305, 549–556. [Google Scholar] [CrossRef]
- Schreiber, S.; Keshavarzian, A.; Isaacs, K.L.; Schollenberger, J.; Guzman, J.P.; Orlandi, C.; Hanauer, S.B. A Randomized, Placebo-Controlled, Phase II Study of Tetomilast in Active Ulcerative Colitis. Gastroenterology 2007, 132, 76–86. [Google Scholar] [CrossRef] [PubMed]
- Chen, Y.; Wang, X. MiRDB: An Online Database for Prediction of Functional MicroRNA Targets. Nucleic Acids Res. 2020, 48, D127–D131. [Google Scholar] [CrossRef] [PubMed]
- Vejnar, C.E.; Zdobnov, E.M. MiRmap: Comprehensive Prediction of MicroRNA Target Repression Strength. Nucleic Acids Res. 2012, 40, 11673–11683. [Google Scholar] [CrossRef] [PubMed]
- McGeary, S.E.; Lin, K.S.; Shi, C.Y.; Pham, T.M.; Bisaria, N.; Kelley, G.M.; Bartel, D.P. The Biochemical Basis of MicroRNA Targeting Efficacy. Science (1979) 2019, 366, eaav1741. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Scalavino, V.; Piccinno, E.; Labarile, N.; Armentano, R.; Giannelli, G.; Serino, G. Anti-Inflammatory Effects of miR-369-3p via PDE4B in Intestinal Inflammatory Response. Int. J. Mol. Sci. 2024, 25, 8463. https://doi.org/10.3390/ijms25158463
Scalavino V, Piccinno E, Labarile N, Armentano R, Giannelli G, Serino G. Anti-Inflammatory Effects of miR-369-3p via PDE4B in Intestinal Inflammatory Response. International Journal of Molecular Sciences. 2024; 25(15):8463. https://doi.org/10.3390/ijms25158463
Chicago/Turabian StyleScalavino, Viviana, Emanuele Piccinno, Nicoletta Labarile, Raffaele Armentano, Gianluigi Giannelli, and Grazia Serino. 2024. "Anti-Inflammatory Effects of miR-369-3p via PDE4B in Intestinal Inflammatory Response" International Journal of Molecular Sciences 25, no. 15: 8463. https://doi.org/10.3390/ijms25158463
APA StyleScalavino, V., Piccinno, E., Labarile, N., Armentano, R., Giannelli, G., & Serino, G. (2024). Anti-Inflammatory Effects of miR-369-3p via PDE4B in Intestinal Inflammatory Response. International Journal of Molecular Sciences, 25(15), 8463. https://doi.org/10.3390/ijms25158463