Case Report: Molecular Analyses of Cell-Cycle-Related Genes in Cortical Brain Tissue of a Patient with Rasmussen Encephalitis
Abstract
:1. Introduction
2. Case Report
3. Results
3.1. Cortex Sample Characterization
3.2. PCR Array for Cell-Cycle Related Genes
3.3. Cytokines and Neurotrophic Factors Protein Levels
4. Discussion
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Varadkar, S.; Bien, C.G.; Kruse, C.A.; Jensen, F.E.; Bauer, J.; Pardo, C.A.; Vincent, A.; Mathern, G.W.; Cross, J.H. Rasmussen’s encephalitis: Clinical features, pathobiology, and treatment advances. Lancet Neurol. 2014, 13, 195–205. [Google Scholar] [CrossRef]
- Bien, C.G.; Granata, T.; Antozzi, C.; Cross, J.H.; Dulac, O.; Kurthen, M.; Lassmann, H.; Mantegazza, R.; Villemure, J.-G.; Spreafico, R.; et al. Pathogenesis, diagnosis and treatment of Rasmussen encephalitis: A European consensus statement. Brain 2005, 128 Pt 3, 454–471. [Google Scholar] [CrossRef]
- Pardo, C.A.; Vining, E.P.G.; Guo, L.; Skolasky, R.L.; Carson, B.S.; Freeman, J.M. The pathology of rasmussen syndrome: Stages of cortical involvement and neuropathological studies in 45 hemispherectomies. Epilepsia 2004, 45, 516–526. [Google Scholar] [CrossRef]
- Schwab, N.; Bien, C.G.; Waschbisch, A.; Becker, A.; Vince, G.H.; Dornmair, K.; Wiendl, H. CD8+ T-cell clones dominate brain infiltrates in Rasmussen encephalitis and persist in the periphery. Brain 2009, 132 Pt 5, 1236–1246. [Google Scholar] [CrossRef]
- Bien, C.G.; Schramm, J. Treatment of Rasmussen encephalitis half a century after its initial description: Promising prospects and a dilemma. Epilepsy Res. 2009, 86, 101–112. [Google Scholar] [CrossRef]
- Freeman, J.M. Rasmussen’s syndrome: Progressive autoimmune multi-focal encephalopathy. Pediatr. Neurol. 2005, 32, 295–299. [Google Scholar] [CrossRef] [PubMed]
- Frade, J.M.; Ovejero-Benito, M.C. Neuronal cell cycle: The neuron itself and its circumstances. Cell Cycle 2015, 14, 712–720. [Google Scholar] [CrossRef] [PubMed]
- Leung, E.; Hazrati, L.-N. Breast cancer type 1 and neurodegeneration: Consequences of deficient DNA repair. Brain Commun. 2021, 3, fcab117. [Google Scholar] [CrossRef] [PubMed]
- Pao, G.M.; Zhu, Q.; Pérez-García, C.G.; Chou, S.-J.; Suh, H.; Gage, F.H.; O’Leary, D.D.M.; Verma, I.M. Role of BRCA1 in brain development. Proc. Natl. Acad. Sci. USA 2014, 111, E1240–E1248. [Google Scholar] [CrossRef] [PubMed]
- Suberbielle, E.; Djukic, B.; Evans, M.; Kim, D.H.; Taneja, P.; Wang, X.; Finucane, M.; Knox, J.; Ho, K.; Devidze, N.; et al. DNA repair factor BRCA1 depletion occurs in Alzheimer brains and impairs cognitive function in mice. Nat. Commun. 2015, 6, 8897. [Google Scholar] [CrossRef] [PubMed]
- Chi, H.; Chang, H.-Y.; Sang, T.-K. Neuronal Cell Death Mechanisms in Major Neurodegenerative Diseases. Int. J. Mol. Sci. 2018, 19, 3082. [Google Scholar] [CrossRef] [PubMed]
- Timsit, S.; Rivera, S.; Ouaghi, P.; Guischard, F.; Tremblay, É.; Ben-Ari, Y.; Khrestchatisky, M. Increased cyclin D1 in vulnerable neurons in the hippocampus after ischaemia and epilepsy: A modulator of in vivo programmed cell death? Eur. J. Neurosci. 1999, 11, 263–278. [Google Scholar] [CrossRef] [PubMed]
- Hsu, J.; Arand, J.; Chaikovsky, A.; Mooney, N.A.; Demeter, J.; Brison, C.M.; Oliverio, R.; Vogel, H.; Rubin, S.M.; Jackson, P.K.; et al. E2F4 regulates transcriptional activation in mouse embryonic stem cells independently of the RB family. Nat. Commun. 2019, 10, 2939. [Google Scholar] [CrossRef] [PubMed]
- Korhonen, L.; Belluardo, N.; Lindholm, D. Regulation of X-Chromosome-Linked Inhibitor of Apoptosis Protein in Kainic Acid-Induced Neuronal Death in the Rat Hippocampus. Mol. Cell. Neurosci. 2001, 17, 364–372. [Google Scholar] [CrossRef] [PubMed]
- Marinowic, D.R.; Majolo, F.; Zanirati, G.G.; Plentz, I.; Neto, E.P.; Palmini, A.L.F.; Machado, D.C.; Da Costa, J.C. Analysis of genes involved in cell proliferation, adhesion, and control of apoptosis during embryonic neurogenesis in Induced Pluripotent Stem Cells (iPSCs) from patients with Focal Cortical Dysplasia. Brain Res. Bull. 2020, 155, 112–118. [Google Scholar] [CrossRef] [PubMed]
- Tzeng, T.-T.; Tsay, H.-J.; Chang, L.; Hsu, C.-L.; Lai, T.-H.; Huang, F.-L.; Shiao, Y.-J. Caspase 3 involves in neuroplasticity, microglial activation and neurogenesis in the mice hippocampus after intracerebral injection of kainic acid. J. Biomed. Sci. 2013, 20, 90. [Google Scholar] [CrossRef] [PubMed]
- Das, M.; Singh, S.; Pradhan, S.; Narayan, G. MCM Paradox: Abundance of Eukaryotic Replicative Helicases and Genomic Integrity. Mol. Biol. Int. 2014, 2014, 574850. [Google Scholar] [CrossRef] [PubMed]
- Chong, J.P.; Thömmes, P.; Blow, J.J. The role of MCM/P1 proteins in the licensing of DNA replication. Trends Biochem. Sci. 1996, 21, 102–106. [Google Scholar] [CrossRef] [PubMed]
- Wang, C.S.; Kavalali, E.T.; Monteggia, L.M. BDNF signaling in context: From synaptic regulation to psychiatric disorders. Cell 2022, 185, 62–76. [Google Scholar] [CrossRef] [PubMed]
- Boutahar, N.; Reynaud, E.; Lassabliere, F.; Borg, J. Brain-derived neurotrophic factor inhibits cell cycle reentry but not endoplasmic reticulum stress in cultured neurons following oxidative or excitotoxic stress. J. Neurosci. Res. 2010, 88, 2263–2271. [Google Scholar] [CrossRef] [PubMed]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gonçalves, J.I.B.; de Castro, V.R.; Martins, W.A.; Xavier, F.A.C.; Da Costa, J.C.; Neto, E.P.; Palmini, A.; Marinowic, D.R. Case Report: Molecular Analyses of Cell-Cycle-Related Genes in Cortical Brain Tissue of a Patient with Rasmussen Encephalitis. Int. J. Mol. Sci. 2024, 25, 8487. https://doi.org/10.3390/ijms25158487
Gonçalves JIB, de Castro VR, Martins WA, Xavier FAC, Da Costa JC, Neto EP, Palmini A, Marinowic DR. Case Report: Molecular Analyses of Cell-Cycle-Related Genes in Cortical Brain Tissue of a Patient with Rasmussen Encephalitis. International Journal of Molecular Sciences. 2024; 25(15):8487. https://doi.org/10.3390/ijms25158487
Chicago/Turabian StyleGonçalves, João Ismael Budelon, Vinicius Rosa de Castro, William Alves Martins, Fernando Antonio Costa Xavier, Jaderson Costa Da Costa, Eliseu Paglioli Neto, André Palmini, and Daniel Rodrigo Marinowic. 2024. "Case Report: Molecular Analyses of Cell-Cycle-Related Genes in Cortical Brain Tissue of a Patient with Rasmussen Encephalitis" International Journal of Molecular Sciences 25, no. 15: 8487. https://doi.org/10.3390/ijms25158487
APA StyleGonçalves, J. I. B., de Castro, V. R., Martins, W. A., Xavier, F. A. C., Da Costa, J. C., Neto, E. P., Palmini, A., & Marinowic, D. R. (2024). Case Report: Molecular Analyses of Cell-Cycle-Related Genes in Cortical Brain Tissue of a Patient with Rasmussen Encephalitis. International Journal of Molecular Sciences, 25(15), 8487. https://doi.org/10.3390/ijms25158487