Exploring the Landscape of Pre- and Post-Synaptic Pediatric Disorders with Epilepsy: A Narrative Review on Molecular Mechanisms Involved
Abstract
:1. Introduction
2. Pre-Synaptic Genes
2.1. VAMP2
2.2. SNAP25
2.3. SYT1
2.4. UNC13A
2.5. STXBP1 (MUNC18-1)
2.6. NRXN
2.7. CPLX1
2.8. TBC1D24
2.9. DNM1
2.10. PRRT2
3. Glutamatergic Synaptic Transmission
3.1. AMPA Receptor: GLUA2, GLUA1, GLUA3, and GLUA4
3.2. NMDA Receptors
4. Postsynaptic Genes
4.1. SHANK
4.2. NLGN
4.3. DLG4
4.4. KALRN
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Kiser, D.P.; Rivero, O.; Lesch, K.-P. Annual Research Review: The (epi)genetics of neurodevelopmental disorders in the era of whole-genome sequencing—Unveiling the dark matter. J. Child Psychol. Psychiatry 2015, 56, 278–295. [Google Scholar] [CrossRef]
- Lichtenstein, P.; Carlström, E.; Råstam, M.; Gillberg, C.; Anckarsäter, H. The Genetics of Autism Spectrum Disorders and Related Neuropsychiatric Disorders in Childhood. Am. J. Psychiatry 2010, 167, 1357–1363. [Google Scholar] [CrossRef] [PubMed]
- Guerrini, R.; Conti, V.; Mantegazza, M.; Balestrini, S.; Galanopoulou, A.S.; Benfenati, F. Developmental and epileptic encephalopathies: From genetic heterogeneity to phenotypic continuum. Physiol. Rev. 2023, 103, 433–513. [Google Scholar] [CrossRef]
- Neuray, C.; Maroofian, R.; Scala, M.; Sultan, T.; Pai, G.S.; Mojarrad, M.; Khashab, H.E.; de Holl, L.; Yue, W.; Alsaif, H.S.; et al. Early-infantile onset epilepsy and developmental delay caused by bi-allelic GAD1 variants. Brain J. Neurol. 2020, 143, 2388–2397. [Google Scholar] [CrossRef] [PubMed]
- Iacomino, M.; Baldassari, S.; Tochigi, Y.; Kośla, K.; Buffelli, F.; Torella, A.; Severino, M.; Paladini, D.; Mandarà, L.; Riva, A.; et al. Loss of Wwox Perturbs Neuronal Migration and Impairs Early Cortical Development. Front. Neurosci. 2020, 14, 644. [Google Scholar] [CrossRef]
- Manole, A.; Efthymiou, S.; O’Connor, E.; Mendes, M.I.; Jennings, M.; Maroofian, R.; Davagnanam, I.; Mankad, K.; Lopez, M.R.; Salpietro, V.; et al. De Novo and Bi-allelic Pathogenic Variants in NARS1 Cause Neurodevelopmental Delay Due to Toxic Gain-of-Function and Partial Loss-of-Function Effects. Am. J. Hum. Genet. 2020, 107, 311–324. [Google Scholar] [CrossRef]
- Dias, C.M.; Punetha, J.; Zheng, C.; Mazaheri, N.; Rad, A.; Efthymiou, S.; Petersen, A.; Dehghani, M.; Pehlivan, D.; Partlow, J.N.; et al. Homozygous Missense Variants in NTNG2, Encoding a Presynaptic Netrin-G2 Adhesion Protein, Lead to a Distinct Neurodevelopmental Disorder. Am. J. Hum. Genet. 2019, 105, 1048–1056. [Google Scholar] [CrossRef]
- Steel, D.; Salpietro, V.; Phadke, R.; Pitt, M.; Gentile, G.; Massoud, A.; Batten, L.; Bashamboo, A.; Mcelreavey, K.; Saggar, A.; et al. Whole exome sequencing reveals a MLL de novo mutation associated with mild developmental delay and without “hairy elbows”: Expanding the phenotype of Wiedemann-Steiner syndrome. J. Genet. 2015, 94, 755–758. [Google Scholar] [CrossRef]
- Niestroj, L.-M.; Perez-Palma, E.; Howrigan, D.P.; Zhou, Y.; Cheng, F.; Saarentaus, E.; Nürnberg, P.; Stevelink, R.; Daly, M.J.; Palotie, A.; et al. Epilepsy subtype-specific copy number burden observed in a genome-wide study of 17 458 subjects. Brain J. Neurol. 2020, 143, 2106–2118. [Google Scholar] [CrossRef]
- Salpietro, V.; Zollo, M.; Vandrovcova, J.; Ryten, M.; Botia, J.A.; Ferrucci, V.; Manole, A.; Efthymiou, S.; Al Mutairi, F.; Bertini, E.; et al. The phenotypic and molecular spectrum of PEHO syndrome and PEHO-like disorders. Brain J. Neurol. 2017, 140, e49. [Google Scholar] [CrossRef]
- Salpietro, V.; Efthymiou, S.; Manole, A.; Maurya, B.; Wiethoff, S.; Ashokkumar, B.; Cutrupi, M.C.; Dipasquale, V.; Manti, S.; Botia, J.A.; et al. A loss-of-function homozygous mutation in DDX59 implicates a conserved DEAD-box RNA helicase in nervous system development and function. Hum. Mutat. 2018, 39, 187–192. [Google Scholar] [CrossRef] [PubMed]
- Hansel, C. Deregulation of synaptic plasticity in autism. Neurosci. Lett. 2019, 688, 58–61. [Google Scholar] [CrossRef] [PubMed]
- Bourgeron, T. A synaptic trek to autism. Curr. Opin. Neurobiol. 2009, 19, 231–234. [Google Scholar] [CrossRef] [PubMed]
- Yeo, X.Y.; Lim, Y.T.; Chae, W.R.; Park, C.; Park, H.; Jung, S. Alterations of presynaptic proteins in autism spectrum disorder. Front. Mol. Neurosci. 2022, 15, 1062878. [Google Scholar] [CrossRef] [PubMed]
- Chen, J.; Yu, S.; Fu, Y.; Li, X. Synaptic proteins and receptors defects in autism spectrum disorders. Front. Cell. Neurosci. 2014, 8. [Google Scholar] [CrossRef]
- Keller, R.; Basta, R.; Salerno, L.; Elia, M. Autism, epilepsy, and synaptopathies: A not rare association. Neurol. Sci. 2017, 38, 1353–1361. [Google Scholar] [CrossRef]
- Batool, S.; Raza, H.; Zaidi, J.; Riaz, S.; Hasan, S.; Syed, N.I. Synapse formation: From cellular and molecular mechanisms to neurodevelopmental and neurodegenerative disorders. J. Neurophysiol. 2019, 121, 1381–1397. [Google Scholar] [CrossRef]
- Michetti, C.; Falace, A.; Benfenati, F.; Fassio, A. Synaptic genes and neurodevelopmental disorders: From molecular mechanisms to developmental strategies of behavioral testing. Neurobiol. Dis. 2022, 173, 105856. [Google Scholar] [CrossRef]
- Rodríguez-Palmero, A.; Boerrigter, M.M.; Gómez-Andrés, D.; Aldinger, K.A.; Marcos-Alcalde, Í.; Popp, B.; Everman, D.B.; Lovgren, A.K.; Arpin, S.; Bahrambeigi, V.; et al. DLG4-related synaptopathy: A new rare brain disorder. Genet. Med. 2021, 23, 888–899. [Google Scholar] [CrossRef]
- Salpietro, V.; Malintan, N.T.; Llano-Rivas, I.; Spaeth, C.G.; Efthymiou, S.; Striano, P.; Vandrovcova, J.; Cutrupi, M.C.; Chimenz, R.; David, E.; et al. Mutations in the Neuronal Vesicular SNARE VAMP2 Affect Synaptic Membrane Fusion and Impair Human Neurodevelopment. Am. J. Hum. Genet. 2019, 104, 721–730. [Google Scholar] [CrossRef]
- Kim, H.-G.; Kishikawa, S.; Higgins, A.W.; Seong, I.-S.; Donovan, D.J.; Shen, Y.; Lally, E.; Weiss, L.A.; Najm, J.; Kutsche, K.; et al. Disruption of Neurexin 1 Associated with Autism Spectrum Disorder. Am. J. Hum. Genet. 2008, 82, 199–207. [Google Scholar] [CrossRef] [PubMed]
- Vaags, A.K.; Lionel, A.C.; Sato, D.; Goodenberger, M.; Stein, Q.P.; Curran, S.; Ogilvie, C.; Ahn, J.W.; Drmic, I.; Senman, L.; et al. Rare Deletions at the Neurexin 3 Locus in Autism Spectrum Disorder. Am. J. Hum. Genet. 2012, 90, 133–141. [Google Scholar] [CrossRef] [PubMed]
- Blasi, F.; Bacchelli, E.; Pesaresi, G.; Carone, S.; Bailey, A.J.; Maestrini, E.; International Molecular Genetic Study of Autism Consortium (IMGSAC). Absence of coding mutations in the X-linked genes neuroligin 3 and neuroligin 4 in individuals with autism from the IMGSAC collection. Am. J. Med. Genet. B Neuropsychiatr. Genet. 2006, 141B, 220–221. [Google Scholar] [CrossRef] [PubMed]
- Quartier, A.; Courraud, J.; Thi Ha, T.; McGillivray, G.; Isidor, B.; Rose, K.; Drouot, N.; Savidan, M.; Feger, C.; Jagline, H.; et al. Novel mutations in NLGN3 causing autism spectrum disorder and cognitive impairment. Hum. Mutat. 2019, 40, 2021–2032. [Google Scholar] [CrossRef]
- Landolfi, A.; Barone, P.; Erro, R. The Spectrum of PRRT2-Associated Disorders: Update on Clinical Features and Pathophysiology. Front. Neurol. 2021, 12, 629747. [Google Scholar] [CrossRef]
- Fels, E.; Muñiz-Castrillo, S.; Vogrig, A.; Joubert, B.; Honnorat, J.; Pascual, O. Role of LGI1 protein in synaptic transmission: From physiology to pathology. Neurobiol. Dis. 2021, 160, 105537. [Google Scholar] [CrossRef]
- Jiang, Y.; Ehlers, M.D. Modeling Autism by SHANK Gene Mutations in Mice. Neuron 2013, 78, 8–27. [Google Scholar] [CrossRef]
- Monteiro, P.; Feng, G. SHANK proteins: Roles at the synapse and in autism spectrum disorder. Nat. Rev. Neurosci. 2017, 18, 147–157. [Google Scholar] [CrossRef]
- Hassani Nia, F.; Kreienkamp, H.-J. Functional Relevance of Missense Mutations Affecting the N-Terminal Part of Shank3 Found in Autistic Patients. Front. Mol. Neurosci. 2018, 11, 268. [Google Scholar] [CrossRef]
- Corradi, A.; Fadda, M.; Piton, A.; Patry, L.; Marte, A.; Rossi, P.; Cadieux-Dion, M.; Gauthier, J.; Lapointe, L.; Mottron, L.; et al. SYN2 is an autism predisposing gene: Loss-of-function mutations alter synaptic vesicle cycling and axon outgrowth. Hum. Mol. Genet. 2014, 23, 90–103. [Google Scholar] [CrossRef]
- Fornasiero, E.F.; Raimondi, A.; Guarnieri, F.C.; Orlando, M.; Fesce, R.; Benfenati, F.; Valtorta, F. Synapsins Contribute to the Dynamic Spatial Organization of Synaptic Vesicles in an Activity-Dependent Manner. J. Neurosci. 2012, 32, 12214–12227. [Google Scholar] [CrossRef] [PubMed]
- Bolton, P.F.; Dennis, N.R.; Browne, C.E.; Thomas, N.S.; Veltman, M.W.M.; Thompson, R.J.; Jacobs, P. The phenotypic manifestations of interstitial duplications of proximal 15q with special reference to the autistic spectrum disorders. Am. J. Med. Genet. 2001, 105, 675–685. [Google Scholar] [CrossRef] [PubMed]
- Kwasnicka-Crawford, D.A.; Roberts, W.; Scherer, S.W. Characterization of an Autism-Associated Segmental Maternal Heterodisomy of the Chromosome 15q11–13 Region. J. Autism Dev. Disord. 2007, 37, 694–702. [Google Scholar] [CrossRef] [PubMed]
- Depienne, C.; Moreno-De-Luca, D.; Heron, D.; Bouteiller, D.; Gennetier, A.; Delorme, R.; Chaste, P.; Siffroi, J.-P.; Chantot-Bastaraud, S.; Benyahia, B.; et al. Screening for Genomic Rearrangements and Methylation Abnormalities of the 15q11-q13 Region in Autism Spectrum Disorders. Biol. Psychiatry 2009, 66, 349–359. [Google Scholar] [CrossRef]
- Tarabeux, J.; Kebir, O.; Gauthier, J.; Hamdan, F.F.; Xiong, L.; Piton, A.; Spiegelman, D.; Henrion, É.; Millet, B.; S2D Team; et al. Rare mutations in N-methyl-D-aspartate glutamate receptors in autism spectrum disorders and schizophrenia. Transl. Psychiatry 2011, 1, e55. [Google Scholar] [CrossRef]
- O’Roak, B.J.; Vives, L.; Girirajan, S.; Karakoc, E.; Krumm, N.; Coe, B.P.; Levy, R.; Ko, A.; Lee, C.; Smith, J.D.; et al. Sporadic autism exomes reveal a highly interconnected protein network of de novo mutations. Nature 2012, 485, 246–250. [Google Scholar] [CrossRef]
- Barnby, G.; Abbott, A.; Sykes, N.; Morris, A.; Weeks, D.E.; Mott, R.; Lamb, J.; Bailey, A.J.; Monaco, A.P. Candidate-Gene Screening and Association Analysis at the Autism-Susceptibility Locus on Chromosome 16p: Evidence of Association at GRIN2A and ABAT. Am. J. Hum. Genet. 2005, 76, 950–966. [Google Scholar] [CrossRef]
- Purcell, A.E.; Jeon, O.H.; Zimmerman, A.W.; Blue, M.E.; Pevsner, J. Postmortem brain abnormalities of the glutamate neurotransmitter system in autism. Neurology 2001, 57, 1618–1628. [Google Scholar] [CrossRef]
- Sunaga, Y.; Muramatsu, K.; Kosaki, K.; Sugai, K.; Mizuno, T.; Kouno, M.; Tashiro, M. Variant in the neuronal vesicular SNARE VAMP2 (synaptobrevin-2): First report in Japan. Brain Dev. 2020, 42, 529–533. [Google Scholar] [CrossRef]
- Simmons, R.L.; Li, H.; Alten, B.; Santos, M.S.; Jiang, R.; Paul, B.; Lalani, S.J.; Cortesi, A.; Parks, K.; Khandelwal, N.; et al. Overcoming presynaptic effects of VAMP2 mutations with 4-aminopyridine treatment. Hum. Mutat. 2020, 41, 1999–2011. [Google Scholar] [CrossRef]
- Klöckner, C.; Sticht, H.; Zacher, P.; Popp, B.; Babcock, H.E.; Bakker, D.P.; Barwick, K.; Bonfert, M.V.; Bönnemann, C.G.; Brilstra, E.H.; et al. De novo variants in SNAP25 cause an early-onset developmental and epileptic encephalopathy. Genet. Med. 2021, 23, 653–660. [Google Scholar] [CrossRef] [PubMed]
- Fukuda, H.; Imagawa, E.; Hamanaka, K.; Fujita, A.; Mitsuhashi, S.; Miyatake, S.; Mizuguchi, T.; Takata, A.; Miyake, N.; Kramer, U.; et al. A novel missense SNAP25b mutation in two affected siblings from an Israeli family showing seizures and cerebellar ataxia. J. Hum. Genet. 2018, 63, 673–676. [Google Scholar] [CrossRef] [PubMed]
- Shen, X.-M.; Selcen, D.; Brengman, J.; Engel, A.G. Mutant SNAP25B causes myasthenia, cortical hyperexcitability, ataxia, and intellectual disability. Neurology 2014, 83, 2247–2255. [Google Scholar] [CrossRef]
- Rohena, L.; Neidich, J.; Truitt Cho, M.; Gonzalez, K.D.; Tang, S.; Devinsky, O.; Chung, W.K. Mutation in SNAP25 as a novel genetic cause of epilepsy and intellectual disability. Rare Dis. 2013, 1, e26314. [Google Scholar] [CrossRef]
- Baker, K.; Gordon, S.L.; Melland, H.; Bumbak, F.; Scott, D.J.; Jiang, T.J.; Owen, D.; Turner, B.J.; Boyd, S.G.; Rossi, M.; et al. SYT1-associated neurodevelopmental disorder: A case series. Brain 2018, 141, 2576–2591. [Google Scholar] [CrossRef]
- Baker, K.; Gordon, S.L.; Grozeva, D.; Van Kogelenberg, M.; Roberts, N.Y.; Pike, M.; Blair, E.; Hurles, M.E.; Chong, W.K.; Baldeweg, T.; et al. Identification of a human synaptotagmin-1 mutation that perturbs synaptic vesicle cycling. J. Clin. Investig. 2015, JCI79765. [Google Scholar] [CrossRef]
- Lipstein, N.; Verhoeven-Duif, N.M.; Michelassi, F.E.; Calloway, N.; Van Hasselt, P.M.; Pienkowska, K.; Van Haaften, G.; Van Haelst, M.M.; Van Empelen, R.; Cuppen, I.; et al. Synaptic UNC13A protein variant causes increased neurotransmission and dyskinetic movement disorder. J. Clin. Investig. 2017, 127, 1005–1018. [Google Scholar] [CrossRef]
- Wang, S.; Cui, D.; Ling, X.; Hou, Y.; Sun, J. Two novel variants of the STXBP1 and CHRNB2 genes identified in a Chinese boy with refractory seizures and developmental delay. Psychiatr. Genet. 2023, 33, 206–212. [Google Scholar] [CrossRef]
- Naseer, M.I.; Abdulkareem, A.A.; Rasool, M.; Shirah, B.; Algahtani, H.; Muthaffar, O.Y.; Pushparaj, P.N. Clinical whole exome sequencing revealed de novo heterozygous stop-gain and missense variants in the STXBP1 gene associated with epilepsy in Saudi families. Saudi J. Biol. Sci. 2022, 29, 103309. [Google Scholar] [CrossRef]
- Takeda, K.; Miyamoto, Y.; Yamamoto, H.; Iwasaki, T.; Sumitomo, N.; Takeshita, E.; Ishii, A.; Hirose, S.; Shimizu, N. Mutation in the STXBP1 Gene Associated with Early Onset West Syndrome: A Case Report and Literature Review. Pediatr. Rep. 2022, 14, 386–395. [Google Scholar] [CrossRef]
- Yang, P.; Broadbent, R.; Prasad, C.; Levin, S.; Goobie, S.; Knoll, J.H.; Prasad, A.N. De novo STXBP1 Mutations in Two Patients With Developmental Delay With or Without Epileptic Seizures. Front. Neurol. 2021, 12, 804078. [Google Scholar] [CrossRef] [PubMed]
- Abramov, D.; Guiberson, N.G.L.; Burré, J. STXBP1 encephalopathies: Clinical spectrum, disease mechanisms, and therapeutic strategies. J. Neurochem. 2021, 157, 165–178. [Google Scholar] [CrossRef] [PubMed]
- Stamberger, H.; Nikanorova, M.; Willemsen, M.H.; Accorsi, P.; Angriman, M.; Baier, H.; Benkel-Herrenbrueck, I.; Benoit, V.; Budetta, M.; Caliebe, A.; et al. STXBP1 encephalopathy: A neurodevelopmental disorder including epilepsy. Neurology 2016, 86, 954–962. [Google Scholar] [CrossRef]
- Pinto, D.; Pagnamenta, A.T.; Klei, L.; Anney, R.; Merico, D.; Regan, R.; Conroy, J.; Magalhaes, T.R.; Correia, C.; Abrahams, B.S.; et al. Functional impact of global rare copy number variation in autism spectrum disorders. Nature 2010, 466, 368–372. [Google Scholar] [CrossRef]
- Ching, M.S.L.; Shen, Y.; Tan, W.-H.; Jeste, S.S.; Morrow, E.M.; Chen, X.; Mukaddes, N.M.; Yoo, S.-Y.; Hanson, E.; Hundley, R.; et al. Deletions of NRXN1 (neurexin-1) predispose to a wide spectrum of developmental disorders. Am. J. Med. Genet. B Neuropsychiatr. Genet. 2010, 153, 937–947. [Google Scholar] [CrossRef]
- Guilmatre, A.; Dubourg, C.; Mosca, A.-L.; Legallic, S.; Goldenberg, A.; Drouin-Garraud, V.; Layet, V.; Rosier, A.; Briault, S.; Bonnet-Brilhault, F.; et al. Recurrent Rearrangements in Synaptic and Neurodevelopmental Genes and Shared Biologic Pathways in Schizophrenia, Autism, and Mental Retardation. Arch. Gen. Psychiatry 2009, 66, 947. [Google Scholar] [CrossRef]
- Levy, D.; Ronemus, M.; Yamrom, B.; Lee, Y.; Leotta, A.; Kendall, J.; Marks, S.; Lakshmi, B.; Pai, D.; Ye, K.; et al. Rare De Novo and Transmitted Copy-Number Variation in Autistic Spectrum Disorders. Neuron 2011, 70, 886–897. [Google Scholar] [CrossRef]
- Sanders, S.J.; Ercan-Sencicek, A.G.; Hus, V.; Luo, R.; Murtha, M.T.; Moreno-De-Luca, D.; Chu, S.H.; Moreau, M.P.; Gupta, A.R.; Thomson, S.A.; et al. Multiple Recurrent De Novo CNVs, Including Duplications of the 7q11.23 Williams Syndrome Region, Are Strongly Associated with Autism. Neuron 2011, 70, 863–885. [Google Scholar] [CrossRef]
- Zweier, C.; De Jong, E.K.; Zweier, M.; Orrico, A.; Ousager, L.B.; Collins, A.L.; Bijlsma, E.K.; Oortveld, M.A.W.; Ekici, A.B.; Reis, A.; et al. CNTNAP2 and NRXN1 Are Mutated in Autosomal-Recessive Pitt-Hopkins-like Mental Retardation and Determine the Level of a Common Synaptic Protein in Drosophila. Am. J. Hum. Genet. 2009, 85, 655–666. [Google Scholar] [CrossRef]
- Südhof, T.C. Neuroligins and neurexins link synaptic function to cognitive disease. Nature 2008, 455, 903–911. [Google Scholar] [CrossRef]
- Aksu Uzunhan, T.; Ayaz, A. Homozygous exonic and intragenic NRXN1 deletion presenting as either West syndrome or autism spectrum disorder in two siblings. Clin. Neurol. Neurosurg. 2022, 214, 107141. [Google Scholar] [CrossRef] [PubMed]
- Imitola, J.; Walleigh, D.; Anderson, C.E.; Jethva, R.; Carvalho, K.S.; Legido, A.; Khurana, D.S. Fraternal Twins with Autism, Severe Cognitive Deficit, and Epilepsy: Diagnostic Role of Chromosomal Microarray Analysis. Semin. Pediatr. Neurol. 2014, 21, 167–171. [Google Scholar] [CrossRef] [PubMed]
- Melland, H.; Arvell, E.H.; Gordon, S.L. Disorders of synaptic vesicle fusion machinery. J. Neurochem. 2021, 157, 130–164. [Google Scholar] [CrossRef] [PubMed]
- Trimbuch, T.; Rosenmund, C. Should I stop or should I go? The role of complexin in neurotransmitter release. Nat. Rev. Neurosci. 2016, 17, 118–125. [Google Scholar] [CrossRef]
- Redler, S.; Strom, T.M.; Wieland, T.; Cremer, K.; Engels, H.; Distelmaier, F.; Schaper, J.; Küchler, A.; Lemke, J.R.; Jeschke, S.; et al. Variants in CPLX1 in two families with autosomal-recessive severe infantile myoclonic epilepsy and ID. Eur. J. Hum. Genet. 2017, 25, 889–893. [Google Scholar] [CrossRef]
- Karaca, E.; Harel, T.; Pehlivan, D.; Jhangiani, S.N.; Gambin, T.; Coban Akdemir, Z.; Gonzaga-Jauregui, C.; Erdin, S.; Bayram, Y.; Campbell, I.M.; et al. Genes that Affect Brain Structure and Function Identified by Rare Variant Analyses of Mendelian Neurologic Disease. Neuron 2015, 88, 499–513. [Google Scholar] [CrossRef]
- Falace, A.; Buhler, E.; Fadda, M.; Watrin, F.; Lippiello, P.; Pallesi-Pocachard, E.; Baldelli, P.; Benfenati, F.; Zara, F.; Represa, A.; et al. TBC1D24 regulates neuronal migration and maturation through modulation of the ARF6-dependent pathway. Proc. Natl. Acad. Sci. USA 2014, 111, 2337–2342. [Google Scholar] [CrossRef]
- Kim Nguyen, N.T.; Ohbayashi, N.; Kanaho, Y.; Funakoshi, Y. TBC1D24 regulates recycling of clathrin-independent cargo proteins mediated by tubular recycling endosomes. Biochem. Biophys. Res. Commun. 2020, 528, 220–226. [Google Scholar] [CrossRef]
- Lüthy, K.; Mei, D.; Fischer, B.; De Fusco, M.; Swerts, J.; Paesmans, J.; Parrini, E.; Lubarr, N.; Meijer, I.A.; Mackenzie, K.M.; et al. TBC1D24-TLDc-related epilepsy exercise-induced dystonia: Rescue by antioxidants in a disease model. Brain 2019, 142, 2319–2335. [Google Scholar] [CrossRef]
- Campeau, P.M.; Hennekam, R.C.; DOORS Syndrome Collaborative Group. DOORS syndrome: Phenotype, genotype and comparison with Coffin-Siris syndrome. Am. J. Med. Genet. C Semin. Med. Genet. 2014, 166C, 327–332. [Google Scholar] [CrossRef]
- Balestrini, S.; Milh, M.; Castiglioni, C.; Lüthy, K.; Finelli, M.J.; Verstreken, P.; Cardon, A.; Stražišar, B.G.; Holder, J.L.; Lesca, G.; et al. TBC1D24 genotype-phenotype correlation: Epilepsies and other neurologic features. Neurology 2016, 87, 77–85. [Google Scholar] [CrossRef] [PubMed]
- Salemi, M.; Cali’, F.; Giambirtone, M.; Elia, M.; Romano, C. TBC1D24 gene mRNA expression in a boy with early infantile epileptic encephalopathy-16. Acta Neurol. Belg. 2020, 120, 381–383. [Google Scholar] [CrossRef] [PubMed]
- Fang, Z.; Xie, L.; Yan, L.; Lin, H.; Pan, Y.; Liu, B.; Jiang, Y.; Cheng, M.; Li, X.; Jiang, L. Clinical and genetic characteristics of epilepsy of infancy with migrating focal seizures in Chinese children. Epilepsy Res. 2021, 174, 106669. [Google Scholar] [CrossRef] [PubMed]
- Lozano, R.; Herman, K.; Rothfuss, M.; Rieger, H.; Bayrak-Toydemir, P.; Aprile, D.; Fruscione, F.; Zara, F.; Fassio, A. Clinical intrafamilial variability in lethal familial neonatal seizure disorder caused by TBC1D24 mutations. Am. J. Med. Genet. A 2016, 170, 3207–3214. [Google Scholar] [CrossRef]
- Nakashima, M.; Negishi, Y.; Hori, I.; Hattori, A.; Saitoh, S.; Saitsu, H. A case of early-onset epileptic encephalopathy with a homozygous TBC1D24 variant caused by uniparental isodisomy. Am. J. Med. Genet. A 2019, 179, 645–649. [Google Scholar] [CrossRef]
- Banuelos, E.; Ramsey, K.; Belnap, N.; Krishnan, M.; Balak, C.D.; Szelinger, S.; Siniard, A.L.; Russell, M.; Richholt, R.; De Both, M.; et al. Case Report: Novel mutations in TBC1D24 are associated with autosomal dominant tonic-clonic and myoclonic epilepsy and recessive Parkinsonism, psychosis, and intellectual disability. F1000Research 2017, 6, 553. [Google Scholar] [CrossRef]
- Appavu, B.; Guido-Estrada, N.; Lindstrom, K.; Grebe, T.; Kerrigan, J.F.; Troester, M. Electroclinical phenotypes and outcomes in TBC1D24-related epilepsy. Epileptic. Disord. 2016, 18, 324–328. [Google Scholar] [CrossRef]
- Uzunhan, T.A.; Uyanik, B. Disrupted oxidative stress resistance: A homozygous mutation in the catalytic (TLDc) domain of TBC1D24 gene associated with epileptic encephalopathy. Clin. Neurol. Neurosurg. 2020, 196, 106080. [Google Scholar] [CrossRef]
- Zhang, J.; Chen, J.; Zeng, Q.; Zhang, L.; Tian, X.; Yang, X.; Yang, Z.; Wu, Y.; Wu, X.; Zhang, Y. Infantile epilepsy with multifocal myoclonus caused by TBC1D24 mutations. Seizure 2019, 69, 228–234. [Google Scholar] [CrossRef]
- Fung, C.; Kwong, A.K.; Wong, V.C. Gene panel analysis for nonsyndromic cryptogenic neonatal/infantile epileptic encephalopathy. Epilepsia Open 2017, 2, 236–243. [Google Scholar] [CrossRef]
- Lazzara, A.; Asghar, S.; Zacharia, T.; Byler, D. DNM1 Mutation in a child associated with progressive bilateral mesial temporal sclerosis. Clin. Case Rep. 2018, 6, 2037–2039. [Google Scholar] [CrossRef] [PubMed]
- Appenzeller, S.; Balling, R.; Barisic, N.; Baulac, S.; Caglayan, H.; Craiu, D.; De Jonghe, P.; Depienne, C.; Dimova, P.; Djémié, T.; et al. De Novo Mutations in Synaptic Transmission Genes Including DNM1 Cause Epileptic Encephalopathies. Am. J. Hum. Genet. 2014, 95, 360–370. [Google Scholar] [CrossRef] [PubMed]
- Nakashima, M.; Kouga, T.; Lourenço, C.M.; Shiina, M.; Goto, T.; Tsurusaki, Y.; Miyatake, S.; Miyake, N.; Saitsu, H.; Ogata, K.; et al. De novo DNM1 mutations in two cases of epileptic encephalopathy. Epilepsia 2016, 57. [Google Scholar] [CrossRef] [PubMed]
- Li, H.; Fang, F.; Xu, M.; Liu, Z.; Zhou, J.; Wang, X.; Wang, X.; Han, T. Clinical Assessments and EEG Analyses of Encephalopathies Associated with Dynamin-1 Mutation. Front. Pharmacol. 2019, 10, 1454. [Google Scholar] [CrossRef] [PubMed]
- Deng, X.L.; Yin, F.; Zhang, C.L.; Ma, Y.P.; He, F.; Wu, L.W.; Peng, J. Dynamin-1-related infantile spasms: A case report and review of literature. J. Pediatr. 2016, 54, 856–859. [Google Scholar] [CrossRef]
- Brereton, E.; Fassi, E.; Araujo, G.C.; Dodd, J.; Telegrafi, A.; Pathak, S.J.; Shinawi, M. Mutations in the PH Domain of DNM1 are associated with a nonepileptic phenotype characterized by developmental delay and neurobehavioral abnormalities. Mol. Genet. Genomic Med. 2018, 6, 294–300. [Google Scholar] [CrossRef]
- Epi4K Consortium, Epilepsy Phenome/Genome Project. De novo mutations in epileptic encephalopathies. Nature 2013, 501, 217–221. [Google Scholar] [CrossRef]
- Kolnikova, M.; Skopkova, M.; Ilencikova, D.; Foltan, T.; Payerova, J.; Danis, D.; Klimes, I.; Stanik, J.; Gasperikova, D. DNM1 encephalopathy—Atypical phenotype with hypomyelination due to a novel de novo variant in the DNM1 gene. Seizure 2018, 56, 31–33. [Google Scholar] [CrossRef]
- Von Spiczak, S.; Helbig, K.L.; Shinde, D.N.; Huether, R.; Pendziwiat, M.; Lourenço, C.; Nunes, M.E.; Sarco, D.P.; Kaplan, R.A.; Dlugos, D.J.; et al. DNM1 encephalopathy: A new disease of vesicle fission. Neurology 2017, 89, 385–394. [Google Scholar] [CrossRef]
- Mastrangelo, M. Lennox–Gastaut Syndrome: A State of the Art Review. Neuropediatrics 2017, 48, 143–151. [Google Scholar] [CrossRef]
- Valtorta, F.; Benfenati, F.; Zara, F.; Meldolesi, J. PRRT2: From Paroxysmal Disorders to Regulation of Synaptic Function. Trends Neurosci. 2016, 39, 668–679. [Google Scholar] [CrossRef] [PubMed]
- Valente, P.; Castroflorio, E.; Rossi, P.; Fadda, M.; Sterlini, B.; Cervigni, R.I.; Prestigio, C.; Giovedì, S.; Onofri, F.; Mura, E.; et al. PRRT2 Is a Key Component of the Ca2+-Dependent Neurotransmitter Release Machinery. Cell Rep. 2016, 15, 117–131. [Google Scholar] [CrossRef] [PubMed]
- Fruscione, F.; Valente, P.; Sterlini, B.; Romei, A.; Baldassari, S.; Fadda, M.; Prestigio, C.; Giansante, G.; Sartorelli, J.; Rossi, P.; et al. PRRT2 controls neuronal excitability by negatively modulating Na+ channel 1.2/1.6 activity. Brain 2018, 141, 1000–1016. [Google Scholar] [CrossRef] [PubMed]
- Najmabadi, H.; Hu, H.; Garshasbi, M.; Zemojtel, T.; Abedini, S.S.; Chen, W.; Hosseini, M.; Behjati, F.; Haas, S.; Jamali, P.; et al. Deep sequencing reveals 50 novel genes for recessive cognitive disorders. Nature 2011, 478, 57–63. [Google Scholar] [CrossRef] [PubMed]
- Ismail, V.; Zachariassen, L.G.; Godwin, A.; Sahakian, M.; Ellard, S.; Stals, K.L.; Baple, E.; Brown, K.T.; Foulds, N.; Wheway, G.; et al. Identification and functional evaluation of GRIA1 missense and truncation variants in individuals with ID: An emerging neurodevelopmental syndrome. Am. J. Hum. Genet. 2022, 109, 1217–1241. [Google Scholar] [CrossRef] [PubMed]
- Geisheker, M.R.; Heymann, G.; Wang, T.; Coe, B.P.; Turner, T.N.; Stessman, H.A.F.; Hoekzema, K.; Kvarnung, M.; Shaw, M.; Friend, K.; et al. Hotspots of missense mutation identify neurodevelopmental disorder genes and functional domains. Nat. Neurosci. 2017, 20, 1043–1051. [Google Scholar] [CrossRef]
- Cai, Q.; Zhou, Z.; Luo, R.; Yu, T.; Li, D.; Yang, F.; Yang, Z. Novel GRIA2 variant in a patient with atypical autism spectrum disorder and psychiatric symptoms: A case report. BMC Pediatr. 2022, 22, 629. [Google Scholar] [CrossRef]
- Latsko, M.S.; Koboldt, D.C.; Franklin, S.J.; Hickey, S.E.; Williamson, R.K.; Garner, S.; Ostendorf, A.P.; Lee, K.; White, P.; Wilson, R.K. De novo missense variant in GRIA2 in a patient with global developmental delay, autism spectrum disorder, and epileptic encephalopathy. Mol. Case Stud. 2022, 8, a006172. [Google Scholar] [CrossRef]
- Alkelai, A.; Shohat, S.; Greenbaum, L.; Schechter, T.; Draiman, B.; Chitrit-Raveh, E.; Rienstein, S.; Dagaonkar, N.; Hughes, D.; Aggarwal, V.S.; et al. Expansion of the GRIA2 phenotypic representation: A novel de novo loss of function mutation in a case with childhood onset schizophrenia. J. Hum. Genet. 2021, 66, 339–343. [Google Scholar] [CrossRef]
- Zhou, B.; Zhang, C.; Zheng, L.; Wang, Z.; Chen, X.; Feng, X.; Zhang, Q.; Hao, S.; Wei, L.; Gu, W.; et al. Case Report: A Novel De Novo Missense Mutation of the GRIA2 Gene in a Chinese Case of Neurodevelopmental Disorder with Language Impairment. Front. Genet. 2021, 12, 794766. [Google Scholar] [CrossRef]
- Salpietro, V.; Dixon, C.L.; Guo, H.; Bello, O.D.; Vandrovcova, J.; Efthymiou, S.; Maroofian, R.; Heimer, G.; Burglen, L.; Valence, S.; et al. AMPA receptor GluA2 subunit defects are a cause of neurodevelopmental disorders. Nat. Commun. 2019, 10, 3094. [Google Scholar] [CrossRef] [PubMed]
- Deciphering Developmental Disorders Study. Prevalence and architecture of de novo mutations in developmental disorders. Nature 2017, 542, 433–438. [Google Scholar] [CrossRef] [PubMed]
- Hackmann, K.; Matko, S.; Gerlach, E.-M.; Von Der Hagen, M.; Klink, B.; Schrock, E.; Rump, A.; Di Donato, N. Partial deletion of GLRB and GRIA2 in a patient with intellectual disability. Eur. J. Hum. Genet. 2013, 21, 112–114. [Google Scholar] [CrossRef] [PubMed]
- Okano, S.; Makita, Y.; Miyamoto, A.; Taketazu, G.; Kimura, K.; Fukuda, I.; Tanaka, H.; Yanagi, K.; Kaname, T. GRIA3 p.Met661Thr variant in a female with developmental epileptic encephalopathy. Hum. Genome Var. 2023, 10, 4. [Google Scholar] [CrossRef]
- Rinaldi, B.; Ge, Y.-H.; Freri, E.; Tucci, A.; Granata, T.; Estienne, M.; Sun, J.-H.; Gérard, B.; Bayat, A.; Efthymiou, S.; et al. Myoclonic status epilepticus and cerebellar hypoplasia associated with a novel variant in the GRIA3 gene. Neurogenetics 2022, 23, 27–35. [Google Scholar] [CrossRef]
- Martinez-Esteve Melnikova, A.; Pijuan, J.; Aparicio, J.; Ramírez, A.; Altisent-Huguet, A.; Vilanova-Adell, A.; Arzimanoglou, A.; Armstrong, J.; Palau, F.; Hoenicka, J.; et al. The p.Glu787Lys variant in the GRIA3 gene causes developmental and epileptic encephalopathy mimicking structural epilepsy in a female patient. Eur. J. Med. Genet. 2022, 65, 104442. [Google Scholar] [CrossRef]
- Sun, J.-H.; Chen, J.; Ayala Valenzuela, F.E.; Brown, C.; Masser-Frye, D.; Jones, M.; Romero, L.P.; Rinaldi, B.; Li, W.L.; Li, Q.-Q.; et al. X-linked neonatal-onset epileptic encephalopathy associated with a gain-of-function variant p.R660T in GRIA3. PLoS Genet. 2021, 17, e1009608. [Google Scholar] [CrossRef]
- Trivisano, M.; Santarone, M.E.; Micalizzi, A.; Ferretti, A.; Dentici, M.L.; Novelli, A.; Vigevano, F.; Specchio, N. GRIA3 missense mutation is cause of an x-linked developmental and epileptic encephalopathy. Seizure 2020, 82, 1–6. [Google Scholar] [CrossRef]
- Bai, Z.; Kong, X. X-linked mental retardation combined with autism caused by a novel hemizygous mutation of GRIA3 gene. Chin. J. Med. Genet. 2019, 36, 829–833. [Google Scholar] [CrossRef]
- Davies, B.; Brown, L.A.; Cais, O.; Watson, J.; Clayton, A.J.; Chang, V.T.; Biggs, D.; Preece, C.; Hernandez-Pliego, P.; Krohn, J.; et al. A point mutation in the ion conduction pore of AMPA receptor GRIA3 causes dramatically perturbed sleep patterns as well as intellectual disability. Hum. Mol. Genet. 2017, 26, 3869–3882. [Google Scholar] [CrossRef]
- Wang, H.; Liu, J.; Li, F.; Teng, Z.; Liu, M.; Gu, W. Novel Heterozygous Missense Variant in GRIA4 Gene Associated with Neurodevelopmental Disorder With or Without Seizures and Gait Abnormalities. Front. Genet. 2022, 13, 859140. [Google Scholar] [CrossRef] [PubMed]
- Martin, S.; Chamberlin, A.; Shinde, D.N.; Hempel, M.; Strom, T.M.; Schreiber, A.; Johannsen, J.; Ousager, L.B.; Larsen, M.J.; Hansen, L.K.; et al. De Novo Variants in GRIA4 Lead to Intellectual Disability with or without Seizures and Gait Abnormalities. Am. J. Hum. Genet. 2017, 101, 1013–1020. [Google Scholar] [CrossRef] [PubMed]
- Molloy, C.J.; Cooke, J.; Gatford, N.J.F.; Rivera-Olvera, A.; Avazzadeh, S.; Homberg, J.R.; Grandjean, J.; Fernandes, C.; Shen, S.; Loth, E.; et al. Bridging the translational gap: What can synaptopathies tell us about autism? Front. Mol. Neurosci. 2023, 16, 1191323. [Google Scholar] [CrossRef] [PubMed]
- Wilson, H.L.; Crolla, J.A.; Walker, D.; Artifoni, L.; Dallapiccola, B.; Takano, T.; Vasudevan, P.; Huang, S.; Maloney, V.; Yobb, T.; et al. Interstitial 22q13 deletions: Genes other than SHANK3 have major effects on cognitive and language development. Eur. J. Hum. Genet. 2008, 16, 1301–1310. [Google Scholar] [CrossRef]
- Phelan, K.; McDermid, H.E. The 22q13.3 Deletion Syndrome (Phelan-McDermid Syndrome). Mol. Syndromol. 2011, 2, 186–201. [Google Scholar] [CrossRef]
- Dhar, S.U.; Del Gaudio, D.; German, J.R.; Peters, S.U.; Ou, Z.; Bader, P.I.; Berg, J.S.; Blazo, M.; Brown, C.W.; Graham, B.H.; et al. 22q13.3 deletion syndrome: Clinical and molecular analysis using array CGH. Am. J. Med. Genet. A 2010, 152A, 573–581. [Google Scholar] [CrossRef]
- Leblond, C.S.; Nava, C.; Polge, A.; Gauthier, J.; Huguet, G.; Lumbroso, S.; Giuliano, F.; Stordeur, C.; Depienne, C.; Mouzat, K.; et al. Meta-analysis of SHANK Mutations in Autism Spectrum Disorders: A Gradient of Severity in Cognitive Impairments. PLoS Genet. 2014, 10, e1004580. [Google Scholar] [CrossRef]
- Boccuto, L.; Lauri, M.; Sarasua, S.M.; Skinner, C.D.; Buccella, D.; Dwivedi, A.; Orteschi, D.; Collins, J.S.; Zollino, M.; Visconti, P.; et al. Prevalence of SHANK3 variants in patients with different subtypes of autism spectrum disorders. Eur. J. Hum. Genet. 2013, 21, 310–316. [Google Scholar] [CrossRef]
- Gauthier, J.; Spiegelman, D.; Piton, A.; Lafrenière, R.G.; Laurent, S.; St-Onge, J.; Lapointe, L.; Hamdan, F.F.; Cossette, P.; Mottron, L.; et al. Novel de novo SHANK3 mutation in autistic patients. Am. J. Med. Genet. 2009, 150B, 421–424. [Google Scholar] [CrossRef]
- Gauthier, J.; Champagne, N.; Lafrenière, R.G.; Xiong, L.; Spiegelman, D.; Brustein, E.; Lapointe, M.; Peng, H.; Côté, M.; Noreau, A.; et al. De novo mutations in the gene encoding the synaptic scaffolding protein SHANK3 in patients ascertained for schizophrenia. Proc. Natl. Acad. Sci. USA 2010, 107, 7863–7868. [Google Scholar] [CrossRef]
- Berkel, S.; Marshall, C.R.; Weiss, B.; Howe, J.; Roeth, R.; Moog, U.; Endris, V.; Roberts, W.; Szatmari, P.; Pinto, D.; et al. Mutations in the SHANK2 synaptic scaffolding gene in autism spectrum disorder and mental retardation. Nat. Genet. 2010, 42, 489–491. [Google Scholar] [CrossRef] [PubMed]
- Moessner, R.; Marshall, C.R.; Sutcliffe, J.S.; Skaug, J.; Pinto, D.; Vincent, J.; Zwaigenbaum, L.; Fernandez, B.; Roberts, W.; Szatmari, P.; et al. Contribution of SHANK3 Mutations to Autism Spectrum Disorder. Am. J. Hum. Genet. 2007, 81, 1289–1297. [Google Scholar] [CrossRef] [PubMed]
- Kanani, F.; Study, D.; Balasubramanian, M. SHANK3 variant as a cause of nonsyndromal autism in an 11-year-old boy and a review of published literature. Clin. Dysmorphol. 2018, 27, 113–115. [Google Scholar] [CrossRef] [PubMed]
- Paris Autism Research International Sibpair Study; Jamain, S.; Quach, H.; Betancur, C.; Råstam, M.; Colineaux, C.; Gillberg, I.C.; Soderstrom, H.; Giros, B.; Leboyer, M.; et al. Mutations of the X-linked genes encoding neuroligins NLGN3 and NLGN4 are associated with autism. Nat. Genet. 2003, 34, 27–29. [Google Scholar] [CrossRef]
- Laumonnier, F.; Bonnet-Brilhault, F.; Gomot, M.; Blanc, R.; David, A.; Moizard, M.-P.; Raynaud, M.; Ronce, N.; Lemonnier, E.; Calvas, P.; et al. X-Linked Mental Retardation and Autism Are Associated with a Mutation in the NLGN4 Gene, a Member of the Neuroligin Family. Am. J. Hum. Genet. 2004, 74, 552–557. [Google Scholar] [CrossRef]
- Tümer, Z.; Dye, T.J.; Prada, C.; White-Brown, A.M.; MacKenzie, A.; Levy, A.M. DLG4-Related Synaptopathy. In GeneReviews®; Adam, M.P., Mirzaa, G.M., Pagon, R.A., Wallace, S.E., Bean, L.J., Gripp, K.W., Amemiya, A., Eds.; University of Washington: Seattle, WA, USA, 1993. [Google Scholar]
- Parnell, E.; Shapiro, L.P.; Voorn, R.A.; Forrest, M.P.; Jalloul, H.A.; Loizzo, D.D.; Penzes, P. KALRN: A central regulator of synaptic function and synaptopathies. Gene 2021, 768, 145306. [Google Scholar] [CrossRef]
- Leblond, C.S.; Cliquet, F.; Carton, C.; Huguet, G.; Mathieu, A.; Kergrohen, T.; Buratti, J.; Lemière, N.; Cuisset, L.; Bienvenu, T.; et al. Both rare and common genetic variants contribute to autism in the Faroe Islands. npj Genomic Med. 2019, 4, 1. [Google Scholar] [CrossRef]
- Satterstrom, F.K.; Kosmicki, J.A.; Wang, J.; Breen, M.S.; De Rubeis, S.; An, J.-Y.; Peng, M.; Collins, R.; Grove, J.; Klei, L.; et al. Large-Scale Exome Sequencing Study Implicates Both Developmental and Functional Changes in the Neurobiology of Autism. Cell 2020, 180, 568–584.e23. [Google Scholar] [CrossRef]
- Howrigan, D.P.; Rose, S.A.; Samocha, K.E.; Fromer, M.; Cerrato, F.; Chen, W.J.; Churchhouse, C.; Chambert, K.; Chandler, S.D.; Daly, M.J.; et al. Exome sequencing in schizophrenia-affected parent–offspring trios reveals risk conferred by protein-coding de novo mutations. Nat. Neurosci. 2020, 23, 185–193. [Google Scholar] [CrossRef]
- Makrythanasis, P.; Guipponi, M.; Santoni, F.A.; Zaki, M.; Issa, M.Y.; Ansar, M.; Hamamy, H.; Antonarakis, S.E. Exome sequencing discloses KALRN homozygous variant as likely cause of intellectual disability and short stature in a consanguineous pedigree. Hum. Genom. 2016, 10, 26. [Google Scholar] [CrossRef]
- Hu, C.; Ahmed, M.; Melia, T.J.; Söllner, T.H.; Mayer, T.; Rothman, J.E. Fusion of Cells by Flipped SNAREs. Science 2003, 300, 1745–1749. [Google Scholar] [CrossRef] [PubMed]
- Chen, Y.A.; Scales, S.J.; Patel, S.M.; Doung, Y.-C.; Scheller, R.H. SNARE Complex Formation Is Triggered by Ca 2+ and Drives Membrane Fusion. Cell 1999, 97, 165–174. [Google Scholar] [CrossRef] [PubMed]
- Ramakrishnan, N.A.; Drescher, M.J.; Drescher, D.G. The SNARE complex in neuronal and sensory cells. Mol. Cell. Neurosci. 2012, 50, 58–69. [Google Scholar] [CrossRef] [PubMed]
- Li, F.; Kümmel, D.; Coleman, J.; Reinisch, K.M.; Rothman, J.E.; Pincet, F. A Half-Zippered SNARE Complex Represents a Functional Intermediate in Membrane Fusion. J. Am. Chem. Soc. 2014, 136, 3456–3464. [Google Scholar] [CrossRef] [PubMed]
- Rothman, J.E.; Söllner, T.H. Throttles and Dampers: Controlling the Engine of Membrane Fusion. Science 1997, 276, 1212. [Google Scholar] [CrossRef]
- Zhou, Q.; Zhou, P.; Wang, A.L.; Wu, D.; Zhao, M.; Südhof, T.C.; Brunger, A.T. The primed SNARE–complexin–synaptotagmin complex for neuronal exocytosis. Nature 2017, 548, 420–425. [Google Scholar] [CrossRef]
- Böhme, M.A.; Beis, C.; Reddy-Alla, S.; Reynolds, E.; Mampell, M.M.; Grasskamp, A.T.; Lützkendorf, J.; Bergeron, D.D.; Driller, J.H.; Babikir, H.; et al. Active zone scaffolds differentially accumulate Unc13 isoforms to tune Ca2+ channel–vesicle coupling. Nat. Neurosci. 2016, 19, 1311–1320. [Google Scholar] [CrossRef]
- Gerber, S.H.; Rah, J.-C.; Min, S.-W.; Liu, X.; De Wit, H.; Dulubova, I.; Meyer, A.C.; Rizo, J.; Arancillo, M.; Hammer, R.E.; et al. Conformational Switch of Syntaxin-1 Controls Synaptic Vesicle Fusion. Science 2008, 321, 1507–1510. [Google Scholar] [CrossRef]
- Zeng, M.; Chen, X.; Guan, D.; Xu, J.; Wu, H.; Tong, P.; Zhang, M. Reconstituted Postsynaptic Density as a Molecular Platform for Understanding Synapse Formation and Plasticity. Cell 2018, 174, 1172–1187.e16. [Google Scholar] [CrossRef]
- Spoto, G.; Valentini, G.; Saia, M.C.; Butera, A.; Amore, G.; Salpietro, V.; Nicotera, A.G.; Di Rosa, G. Synaptopathies in Developmental and Epileptic Encephalopathies: A Focus on Pre-synaptic Dysfunction. Front. Neurol. 2022, 13, 826211. [Google Scholar] [CrossRef]
- Ferguson, S.M.; De Camilli, P. Dynamin, a membrane-remodelling GTPase. Nat. Rev. Mol. Cell Biol. 2012, 13, 75–88. [Google Scholar] [CrossRef] [PubMed]
- Scheefhals, N.; MacGillavry, H.D. Functional organization of postsynaptic glutamate receptors. Mol. Cell. Neurosci. 2018, 91, 82–94. [Google Scholar] [CrossRef] [PubMed]
- Sheng, M.; Kim, E. The Postsynaptic Organization of Synapses. Cold Spring Harb. Perspect. Biol. 2011, 3, a005678. [Google Scholar] [CrossRef] [PubMed]
- Paoletti, P.; Bellone, C.; Zhou, Q. NMDA receptor subunit diversity: Impact on receptor properties, synaptic plasticity and disease. Nat. Rev. Neurosci. 2013, 14, 383–400. [Google Scholar] [CrossRef]
- Barbon, A.; Barlati, S. Glutamate receptor RNA editing in health and disease. Biochem. Mosc. 2011, 76, 882–889. [Google Scholar] [CrossRef]
- Isaac, J.T.R.; Ashby, M.C.; McBain, C.J. The Role of the GluR2 Subunit in AMPA Receptor Function and Synaptic Plasticity. Neuron 2007, 54, 859–871. [Google Scholar] [CrossRef]
- Hansen, K.B.; Furukawa, H.; Traynelis, S.F. Control of Assembly and Function of Glutamate Receptors by the Amino-Terminal Domain. Mol. Pharmacol. 2010, 78, 535–549. [Google Scholar] [CrossRef]
- Wu, Y.; Arai, A.C.; Rumbaugh, G.; Srivastava, A.K.; Turner, G.; Hayashi, T.; Suzuki, E.; Jiang, Y.; Zhang, L.; Rodriguez, J.; et al. Mutations in ionotropic AMPA receptor 3 alter channel properties and are associated with moderate cognitive impairment in humans. Proc. Natl. Acad. Sci. USA 2007, 104, 18163–18168. [Google Scholar] [CrossRef]
- Reif, P.S.; Tsai, M.-H.; Helbig, I.; Rosenow, F.; Klein, K.M. Precision medicine in genetic epilepsies: Break of dawn? Expert Rev. Neurother. 2017, 17, 381–392. [Google Scholar] [CrossRef]
- Vyklicky, V.; Korinek, M.; Smejkalova, T.; Balik, A.; Krausova, B.; Kaniakova, M.; Lichnerova, K.; Cerny, J.; Krusek, J.; Dittert, I.; et al. Structure, Function, and Pharmacology of NMDA Receptor Channels. Physiol. Res. 2014, S191–S203. [Google Scholar] [CrossRef]
- Karakas, E.; Furukawa, H. Crystal structure of a heterotetrameric NMDA receptor ion channel. Science 2014, 344, 992–997. [Google Scholar] [CrossRef] [PubMed]
- Endele, S.; Rosenberger, G.; Geider, K.; Popp, B.; Tamer, C.; Stefanova, I.; Milh, M.; Kortüm, F.; Fritsch, A.; Pientka, F.K.; et al. Mutations in GRIN2A and GRIN2B encoding regulatory subunits of NMDA receptors cause variable neurodevelopmental phenotypes. Nat. Genet. 2010, 42, 1021–1026. [Google Scholar] [CrossRef] [PubMed]
- Gandal, M.J.; Anderson, R.L.; Billingslea, E.N.; Carlson, G.C.; Roberts, T.P.L.; Siegel, S.J. Mice with reduced NMDA receptor expression: More consistent with autism than schizophrenia? Genes Brain Behav. 2012, 11, 740–750. [Google Scholar] [CrossRef] [PubMed]
- Eadie, B.D.; Cushman, J.; Kannangara, T.S.; Fanselow, M.S.; Christie, B.R. NMDA receptor hypofunction in the dentate gyrus and impaired context discrimination in adult Fmr1 knockout mice. Hippocampus 2012, 22, 241–254. [Google Scholar] [CrossRef]
- Mangano, G.D.; Riva, A.; Fontana, A.; Salpietro, V.; Mangano, G.R.; Nobile, G.; Orsini, A.; Iacomino, M.; Battini, R.; Astrea, G.; et al. De novo GRIN2A variants associated with epilepsy and autism and literature review. Epilepsy Behav. 2022, 129, 108604. [Google Scholar] [CrossRef]
- Tian, X.J.; Wang, X.H.; Ding, C.H.; Fang, F.; Dai, L.F.; Deng, J.; Wang, H.M. Clinical characteristics and gene analysis of GRIN2B gene related neurological developmental disorders in children. J. Pediatr. 2022, 60, 232–236. [Google Scholar] [CrossRef]
- Sabo, S.L.; Lahr, J.M.; Offer, M.; Weekes, A.L.; Sceniak, M.P. GRIN2B-related neurodevelopmental disorder: Current understanding of pathophysiological mechanisms. Front. Synaptic Neurosci. 2023, 14, 1090865. [Google Scholar] [CrossRef]
- Takeuchi, M.; Hata, Y.; Hirao, K.; Toyoda, A.; Irie, M.; Takai, Y. SAPAPs. J. Biol. Chem. 1997, 272, 11943–11951. [Google Scholar] [CrossRef]
- Hung, A.Y.; Futai, K.; Sala, C.; Valtschanoff, J.G.; Ryu, J.; Woodworth, M.A.; Kidd, F.L.; Sung, C.C.; Miyakawa, T.; Bear, M.F.; et al. Smaller Dendritic Spines, Weaker Synaptic Transmission, but Enhanced Spatial Learning in Mice Lacking Shank1. J. Neurosci. 2008, 28, 1697–1708. [Google Scholar] [CrossRef]
- Schmeisser, M.J.; Ey, E.; Wegener, S.; Bockmann, J.; Stempel, A.V.; Kuebler, A.; Janssen, A.L.; Udvardi, P.T.; Shiban, E.; Spilker, C.; et al. Autistic-like behaviours and hyperactivity in mice lacking ProSAP1/Shank2. Nature 2012, 486, 256–260. [Google Scholar] [CrossRef]
- Won, H.; Lee, H.-R.; Gee, H.Y.; Mah, W.; Kim, J.-I.; Lee, J.; Ha, S.; Chung, C.; Jung, E.S.; Cho, Y.S.; et al. Autistic-like social behaviour in Shank2-mutant mice improved by restoring NMDA receptor function. Nature 2012, 486, 261–265. [Google Scholar] [CrossRef] [PubMed]
- Bozdagi, O.; Sakurai, T.; Papapetrou, D.; Wang, X.; Dickstein, D.L.; Takahashi, N.; Kajiwara, Y.; Yang, M.; Katz, A.M.; Scattoni, M.L.; et al. Haploinsufficiency of the autism-associated Shank3 gene leads to deficits in synaptic function, social interaction, and social communication. Mol. Autism 2010, 1, 15. [Google Scholar] [CrossRef] [PubMed]
- Peça, J.; Feliciano, C.; Ting, J.T.; Wang, W.; Wells, M.F.; Venkatraman, T.N.; Lascola, C.D.; Fu, Z.; Feng, G. Shank3 mutant mice display autistic-like behaviours and striatal dysfunction. Nature 2011, 472, 437–442. [Google Scholar] [CrossRef] [PubMed]
- Yang, M.; Bozdagi, O.; Scattoni, M.L.; Wöhr, M.; Roullet, F.I.; Katz, A.M.; Abrams, D.N.; Kalikhman, D.; Simon, H.; Woldeyohannes, L.; et al. Reduced Excitatory Neurotransmission and Mild Autism-Relevant Phenotypes in Adolescent Shank3 Null Mutant Mice. J. Neurosci. 2012, 32, 6525–6541. [Google Scholar] [CrossRef]
Gene | Phenotype | Epilepsy Details | References |
---|---|---|---|
VAMP2 (NM_014232) | Axial hypotonia, ID, ASD, Rett-like features, speech impairments, epileptic seizures, chorea. | Severe early-onset epileptic seizures. | Sunaga et al., 2020 [39] Simmons et al., 2020 [40] Salpietro et al., 2019 [20] |
SNAP25 (NM_003081.4) | ID, speech delay, cerebellar ataxia, muscle weakness, epileptic seizures, DEE, dystonia, brain volume loss, spasticity. | DEE, with early-onset seizures and progressive loss of motor functions. | Klöckner et al., 2021 [41] Fukuda et al., 2018 [42] Shen et al., 2014 [43] Rohena et al., 2013 [44] |
SYT1 (NM_005639.3) | Hypotonia, congenital ophthalmic abnormalities, hyperkinesia, motor stereotypies, developmental delay. | Motor abnormalities and early-onset epilepsy with frequent myoclonic seizures. | Baker et al. (2018) [45] Baker et al. (2015) [46] |
UNC13A (NM_001080421.2) | Dyskinetic movement disorder, developmental delay, ASD. | Rare early-onset epilepsy typically associated with motor delays. | Lipstein et al., 2017 [47] |
STXBP1 (NM_003165.3) | ID, epileptic seizures, autistic features, hypotonia, ataxia, DEE, developmental delay. | STXBP1 encephalopathy often features infantile spasms and severe, drug-resistant seizures, including tonic seizures. | Wang et al., 2023 [48] Naseer et al., 2022 [49] Takeda et al., 2022 [50] Yang et al., 2021 [51] Abramov et al., 2020 [52] Stamberger et al., 2018 [53] |
NRXN (NRXN1 NM_001330078.2; NRXN2 NM_015080.4; NRXN3 NM_001330195.2) | ASD, language delay, seizures, ID. | Epilepsy ranging from focal seizures to developmental epileptic encephalopathy. | Vaags et al., 2012 [22] Pinto et al., 2010 [54] Ching et al., 2010 [55] Guilmatre et al., 2009 [56] Levy et al., 2011 [57] Sanders et al., 2011 [58] Zweier et al., 2009 [59] Südhof et al., 2008 [60] Aksu Uzunhan et al., 2022 [61] Imitola et al., 2014 [62] |
CPLX1 (NM_006651.4) | Developmental delay, motor dysfunction, seizures, ID. | Severe drug-resistant seizures, typically early-onset, and contribute to progressive neurodevelopmental decline. | Melland et al., 2021 [63] Trimbuch et al., 2016 [64] Redler et al., 2017 [65] Karaca et al., 2015 [66] |
TBC1D24 (NM_001199107.2) | Epileptic encephalopathy, neurodegeneration, movement disorders. | Severe epileptic encephalopathy with recurrent seizures resistant to treatment, often progressing with neurodegeneration. | Falace et al., 2014 [67] Kim Nguyen et al., 2020 [68] Lüthy et al., 2019 [69] Campeau et al., 2014 [70] Balestrini et al., 2016 [71] Salemi et al., 2020 [72] Fang et al., 2021 [73] Lozano et al., 2016 [74] Nakashima et al., 2019 [75] Banuelos et al., 2017 [76] Appavu et al., 2016 [77] Uzunhan et al., 2020 [78] Zhang et al., 2019 [79] |
DNM1 (NM_004408.4) | Severe developmental delay, ID, movement disorders, seizures. | DEE, drug-resistant epilepsy, frequently involving multiple seizure types. | Fung et al., 2017 [80] Lazzara et al., 2018 [81] Appenzeller et al., 2014 [82] Nakashima et al., 2016 [83] Li et al., 2019 [84] Deng et al., 2016 [85] Brereton et al., 2018 [86] Epi4K Consortium 2013 [87] Kolnikova et al., 2018 [88] Von Spiczak et al., 2017 [89] Mastrangelo et al., 2017 [90] |
PRRT2 (NM_145239.3) | Paroxysmal dyskinesia, hemiplegic migraine, epilepsy. | Benign familial infantile epilepsy, with episodes of paroxysmal movement and hemiplegic migraine, often seizure-free after childhood. | Valtorta et al., 2016 [91] Valente et al., 2016 [92] Fruscione et al., 2018 [93] Najmabadi et al. 2011 [94] |
GRIA1 (NM_000827.4) | ID, ASD, language delay, sleep disturbances, EEG abnormalities, endocrine abnormalities. | EEG abnormalities often associated with focal and generalized seizures. | Ismail et al., 2022 [95] Geisheker et al., 2017 [96] |
GRIA2 (NM_001083619.3) | Neurodevelopmental abnormalities, ID, ASD, Rett-like features, speech impairments, schizophrenia. | Focal seizures, myoclonic seizures, progression to epileptic encephalopathy. | Cai et al., 2022 [97] Latsko et al., 2022 [98] Alkelai et al., 2021 [99] Zhou et al., 2021 [100] Salpietro et al., 2019 [101] DDD Study, 2017 [102] Hackmann et al., 2013 [103] |
GRIA3 (NM_007325.5) | Neurodevelopmental delay, severe sleep-wake cycle alteration, DEE, myoclonic status epilepticus. | Severe epilepsy, myoclonic status epilepticus, and non-convulsive seizures. | Okano et al., 2023 [104] Rinaldi et al., 2022 [105] Melnikova et al., 2022 [106] Sun et al., 2021 [107] Trivisano et al., 2020 [108] Bai et al., 2019 [109] Davies et al., 2017 [110] |
GRIA4 (NM_000829.4) | ID, gait abnormalities, heart and ocular impairments, epileptic seizures. | Focal and tonic-clonic seizures, progression to epileptic encephalopathy. | Wang et al., 2022 [111] Martin et al., 2017 [112] |
SHANK (SHANK1 (NM_016148.5; SHANK2 NM_012309.5; SHANK3 NM_001372044.2) | ASD, intellectual disability, hypotonia, speech impairment, seizures. | Epilepsy is frequent, often involving generalized tonic-clonic seizures and developmental delays. | Monteiro et al., 2016 [28] Molloy et al., 2023 [113] Wilson et al., 2008 [114] Phelan et al., 2011 [115] Dhar et al., 2010 [116] Leblond et al., 2014 [117] Boccuto et al., 2013 [118] Gauthier et al., 2009 [119] Gauthier et al., 2010 [120] Berkel et al., 2010 [121] Moessner et al., 2007 [122] Kanani et al., 2018 [123] |
NLGN (NLGN4 NM_181332.3; NLGN3 NM_181303.2) | ASD, intellectual disability, language delay, seizures. | Focal and generalized seizures. | Quartier et al., 2019 [24] Paris Autism Research International Sibpair Study, 2003 [124] Laumonnier et al., 2004 [125] |
DLG4 (NM_001321075.3) | ID, epilepsy, ASD, cognitive impairment. | Severe drug-resistant seizures, with progressive developmental decline and epilepsy. | Rodríguez-Palmero et al., 2021 [19] Tümer et al., 1993 [126] |
KALRN (NM_001388419.1) | Schizophrenia, ID, seizures, developmental delay. | Early-onset seizures typically focal and often progressing to encephalopathy. | Parnell et al., 2021 [127] Leblond et al., 2019 [128] Satterstrom et al., 2020 [129] Howrigan et al., 2020 [130] Makrythanasis et al., 2016 [131] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Scorrano, G.; Di Francesco, L.; Di Ludovico, A.; Chiarelli, F.; Matricardi, S. Exploring the Landscape of Pre- and Post-Synaptic Pediatric Disorders with Epilepsy: A Narrative Review on Molecular Mechanisms Involved. Int. J. Mol. Sci. 2024, 25, 11982. https://doi.org/10.3390/ijms252211982
Scorrano G, Di Francesco L, Di Ludovico A, Chiarelli F, Matricardi S. Exploring the Landscape of Pre- and Post-Synaptic Pediatric Disorders with Epilepsy: A Narrative Review on Molecular Mechanisms Involved. International Journal of Molecular Sciences. 2024; 25(22):11982. https://doi.org/10.3390/ijms252211982
Chicago/Turabian StyleScorrano, Giovanna, Ludovica Di Francesco, Armando Di Ludovico, Francesco Chiarelli, and Sara Matricardi. 2024. "Exploring the Landscape of Pre- and Post-Synaptic Pediatric Disorders with Epilepsy: A Narrative Review on Molecular Mechanisms Involved" International Journal of Molecular Sciences 25, no. 22: 11982. https://doi.org/10.3390/ijms252211982
APA StyleScorrano, G., Di Francesco, L., Di Ludovico, A., Chiarelli, F., & Matricardi, S. (2024). Exploring the Landscape of Pre- and Post-Synaptic Pediatric Disorders with Epilepsy: A Narrative Review on Molecular Mechanisms Involved. International Journal of Molecular Sciences, 25(22), 11982. https://doi.org/10.3390/ijms252211982