Infertility, IL-17, IL-33 and Microbiome Cross-Talk: The Extended ARIA-MeDALL Hypothesis
Abstract
:1. Introduction
2. The ARIA-MeDALL Hypothesis
3. The Female Reproductive Tract Microbiota and Infertility
3.1. The Female Reproductive Tract (FRT) Microbiota and Endometriosis
3.2. The FRT Microbiome and PCOS
3.3. Treatment of Endometriosis or PCOS by Alteration of the Genital Microbiome
4. The Gut Microbiome and Infertility
5. Estrogens, Dysbiosis, IL-17, and IL-33
6. Male Infertility, Cytokines, and Microbiome
7. Relationship Between Infertile Male and Female Microbiotas
8. Discussion
9. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- De Geyter, C.; Calhaz-Jorge, C.; Kupka, M.S.; Wyns, C.; Mocanu, E.; Motrenko, T.; Scaravelli, G.; Smeenk, J.; Vidakovic, S.; Goossens, V.; et al. ART in Europe, 2014: Results generated from European registries by ESHRE: The European IVF-monitoring Consortium (EIM) for the European Society of Human Reproduction and Embryology (ESHRE). Hum. Reprod. 2018, 33, 1586–1601. [Google Scholar] [CrossRef] [PubMed]
- Fabozzi, G.; Verdone, G.; Allori, M.; Cimadomo, D.; Tatone, C.; Stuppia, L.; Franzago, M.; Ubaldi, N.; Vaiarelli, A.; Ubaldi, F.M.; et al. Personalized Nutrition in the Management of Female Infertility: New Insights on Chronic Low-Grade Inflammation. Nutrients 2022, 14, 1918. [Google Scholar] [CrossRef] [PubMed]
- Bulun, S.E. Endometriosis. N. Engl. J. Med. 2009, 360, 268–279. [Google Scholar] [CrossRef] [PubMed]
- Zondervan, K.T.; Becker, C.M.; Koga, K.; Missmer, S.A.; Taylor, R.N.; Viganò, P. Endometriosis. Nat. Rev. Dis. Primers 2018, 4, 9. [Google Scholar] [CrossRef]
- Bozdag, G.; Mumusoglu, S.; Zengin, D.; Karabulut, E.; Yildiz, B.O. The prevalence and phenotypic features of polycystic ovary syndrome: A systematic review and meta-analysis. Hum. Reprod. 2016, 31, 2841–2855. [Google Scholar] [CrossRef]
- Kearns, D.G.; Uppal, S.; Chat, V.S.; Wu, J.J. Comparison of Guidelines for the Use of Interleukin-17 Inhibitors for Psoriasis in the United States, Britain, and Europe: A Critical Appraisal and Comprehensive Review. J. Clin. Aesthetic Dermatol. 2021, 14, 55–59. [Google Scholar]
- Miyagawa, I.; Nakayamada, S.; Tanaka, Y. Optimal Biologic Selection for Treatment of Psoriatic Arthritis: The Approach to Precision Medicine. Curr. Rheumatol. Rep. 2019, 21, 21. [Google Scholar] [CrossRef]
- Cayrol, C.; Girard, J.-P. IL-33: An alarmin cytokine with crucial roles in innate immunity, inflammation and allergy. Curr. Opin. Immunol. 2014, 31, 31–37. [Google Scholar] [CrossRef]
- Ramezani, F.; Babaie, F.; Aslani, S.; Hemmatzadeh, M.; Mohammadi, F.S.; Gowhari-Shabgah, A.; Jadidi-Niaragh, F.; Ezzatifar, F.; Mohammadi, H. The Role of the IL-33/ST2 Immune Pathway in Autoimmunity: New Insights and Perspectives. Immunol. Investig. 2022, 51, 1060–1086. [Google Scholar] [CrossRef]
- Lemonnier, N.; Melén, E.; Jiang, Y.; Joly, S.; Ménard, C.; Aguilar, D.; Acosta-Perez, E.; Bergström, A.; Boutaoui, N.; Bustamante, M.; et al. A novel whole blood gene expression signature for asthma, dermatitis, and rhinitis multimorbidity in children and adolescents. Allergy 2020, 75, 3248–3260. [Google Scholar] [CrossRef]
- Asarnoj, A.; Hamsten, C.; Lupinek, C.; Melén, E.; Andersson, N.; Anto, J.M.; Bousquet, J.; Valenta, R.; van Hage, M.; Wickman, M.; et al. Prediction of peanut allergy in adolescence by early childhood storage protein-specific IgE signatures: The BAMSE population-based birth cohort. J. Allergy Clin. Immunol. 2017, 140, 587–590.e7. [Google Scholar] [CrossRef] [PubMed]
- Asarnoj, A.; Hamsten, C.; Wadén, K.; Lupinek, C.; Andersson, N.; Kull, I.; Curin, M.; Anto, J.; Bousquet, J.; Valenta, R.; et al. Sensitization to cat and dog allergen molecules in childhood and prediction of symptoms of cat and dog allergy in adolescence: A BAMSE/MeDALL study. J. Allergy Clin. Immunol. 2016, 137, 813–821.e7. [Google Scholar] [CrossRef] [PubMed]
- Burte, E.; Bousquet, J.; Varraso, R.; Gormand, F.; Just, J.; Matran, R.; Pin, I.; Siroux, V.; Jacquemin, B.; Nadif, R. Characterization of Rhinitis According to the Asthma Status in Adults Using an Unsupervised Approach in the EGEA Study. PLoS ONE 2015, 10, e0136191. [Google Scholar] [CrossRef] [PubMed]
- Burte, E.; Bousquet, J.; Siroux, V.; Just, J.; Jacquemin, B.; Nadif, R. The sensitization pattern differs according to rhinitis and asthma multimorbidity in adults: The EGEA study. Clin. Exp. Allergy 2017, 47, 520–529. [Google Scholar] [CrossRef]
- Jiang, I.; Yong, P.J.; Allaire, C.; Bedaiwy, M.A. Intricate Connections between the Microbiota and Endometriosis. Int. J. Mol. Sci. 2021, 22, 5644. [Google Scholar] [CrossRef]
- Nicolò, S.; Tanturli, M.; Mattiuz, G.; Antonelli, A.; Baccani, I.; Bonaiuto, C.; Baldi, S.; Nannini, G.; Menicatti, M.; Bartolucci, G.; et al. Vaginal Lactobacilli and Vaginal Dysbiosis-Associated Bacteria Differently Affect Cervical Epithelial and Immune Homeostasis and Anti-Viral Defenses. Int. J. Mol. Sci. 2021, 22, 6487. [Google Scholar] [CrossRef]
- Mauries, C.; Ranisavljevic, N.; Gallet, R.; Fournier, A.; Gala, A.; Ferrières-Hoa, A.; Brouillet, S.; Hamamah, S. Assessment of genital microbiota: An emerging approach in assisted reproductive techniques. Gynecol. Obstet. Fertil. Senol. 2021, 49, 185–192. [Google Scholar] [CrossRef]
- Moosa, Y.; Kwon, D.; de Oliveira, T.; Wong, E.B. Determinants of Vaginal Microbiota Composition. Front. Cell. Infect. Microbiol. 2020, 10, 467. [Google Scholar] [CrossRef]
- Lehtoranta, L.; Ala-Jaakkola, R.; Laitila, A.; Maukonen, J. Healthy Vaginal Microbiota and Influence of Probiotics Across the Female Life Span. Front. Microbiol. 2022, 13, 819958. [Google Scholar] [CrossRef]
- Koninckx, P.R.; Ussia, A.; Tahlak, M.; Adamyan, L.; Wattiez, A.; Martin, D.C.; Gomel, V. Infection as a potential cofactor in the genetic-epigenetic pathophysiology of endometriosis: A systematic review. Facts Views Vis. ObGyn 2019, 11, 209–216. [Google Scholar]
- Chang, C.Y.-Y.; Chiang, A.-J.; Lai, M.-T.; Yan, M.-J.; Tseng, C.-C.; Lo, L.-C.; Wan, L.; Li, C.-J.; Tsui, K.-H.; Chen, C.-M.; et al. A More Diverse Cervical Microbiome Associates with Better Clinical Outcomes in Patients with Endometriosis: A Pilot Study. Biomedicines 2022, 10, 174. [Google Scholar] [CrossRef] [PubMed]
- Bagri, P.; Anipindi, V.C.; Kaushic, C. The Role of IL-17 During Infections in the Female Reproductive Tract. Front. Immunol. 2022, 13, 861444. [Google Scholar] [CrossRef] [PubMed]
- Shi, J.-L.; Zheng, Z.-M.; Chen, M.; Shen, H.-H.; Li, M.-Q.; Shao, J. IL-17: An important pathogenic factor in endometriosis. Int. J. Med. Sci. 2022, 19, 769–778. [Google Scholar] [CrossRef] [PubMed]
- Wu, X.-G.; Chen, J.-J.; Zhou, H.-L.; Wu, Y.; Lin, F.; Shi, J.; Wu, H.-Z.; Xiao, H.-Q.; Wang, W. Identification and Validation of the Signatures of Infiltrating Immune Cells in the Eutopic Endometrium Endometria of Women with Endometriosis. Front. Immunol. 2021, 12, 671201. [Google Scholar] [CrossRef] [PubMed]
- Correa, F.J.S.; Andres, M.P.; Rocha, T.P.; Carvalho, A.E.Z.; Aloia, T.P.A.; Corpa, M.V.N.; Kallas, E.G.; Mangueira, C.L.P.; Baracat, E.C.; Carvalho, K.I.; et al. Invariant Natural Killer T-cells and their subtypes may play a role in the pathogenesis of endometriosis. Clinics 2022, 77, 100032. [Google Scholar] [CrossRef]
- Anipindi, V.C.; Bagri, P.; Roth, K.; Dizzell, S.E.; Nguyen, P.V.; Shaler, C.R.; Chu, D.K.; Jiménez-Saiz, R.; Liang, H.; Swift, S.; et al. Estradiol Enhances CD4+ T-Cell Anti-Viral Immunity by Priming Vaginal DCs to Induce Th17 Responses via an IL-1-Dependent Pathway. PLoS Pathog. 2016, 12, e1005589. [Google Scholar] [CrossRef]
- Rajaei, S.; Zarnani, A.H.; Jeddi-Tehrani, M.; Tavakoli, M.; Mohammadzadeh, A.; Dabbagh, A.; Mirahmadian, M. Cytokine profile in the endometrium of normal fertile and women with repeated implantation failure. Iran. J. Immunol. 2011, 8, 201–208. [Google Scholar]
- Crosby, D.A.; Glover, L.E.; Brennan, E.P.; Kelly, P.; Cormican, P.; Moran, B.; Giangrazi, F.; Downey, P.; Mooney, E.E.; Loftus, B.J.; et al. Dysregulation of the interleukin-17A pathway in endometrial tissue from women with unexplained infertility affects pregnancy outcome following assisted reproductive treatment. Hum. Reprod. 2020, 35, 1875–1888. [Google Scholar] [CrossRef]
- Wang, W.; Zhang, H.; Chen, Z.; Zhang, W.; Liu, X.; Fang, J.; Liu, F.; Kwak-Kim, J. Endometrial TGF-β, IL-10, IL-17 and autophagy are dysregulated in women with recurrent implantation failure with chronic endometritis. Reprod. Biol. Endocrinol. RBE 2019, 17, 2. [Google Scholar] [CrossRef]
- Zhao, Y.; Zhang, T.; Guo, X.; Wong, C.K.; Chen, X.; Chan, Y.L.; Wang, C.C.; Laird, S.; Li, T.C. Successful implantation is associated with a transient increase in serum pro-inflammatory cytokine profile followed by a switch to anti-inflammatory cytokine profile prior to confirmation of pregnancy. Fertil. Steril. 2021, 115, 1044–1053. [Google Scholar] [CrossRef]
- Olkowska-Truchanowicz, J.; Sztokfisz-Ignasiak, A.; Zwierzchowska, A.; Janiuk, I.; Dąbrowski, F.; Korczak-Kowalska, G.; Barcz, E.; Bocian, K.; Malejczyk, J. Endometriotic Peritoneal Fluid Stimulates Recruitment of CD4+CD25highFOXP3+ Treg Cells. J. Clin. Med. 2021, 10, 3789. [Google Scholar] [CrossRef] [PubMed]
- Jiang, Y.; Wang, L.; Peng, Y.; Qin, J.; Tan, A.; Wang, S. Interleukin 17 receptor E identifies heterogeneous T helper 17 cells in peritoneal fluid of moderate and severe endometriosis patients. Clin. Exp. Immunol. 2022, 207, 360–369. [Google Scholar] [CrossRef] [PubMed]
- Mary, A.P.; Nandeesha, H.; Papa, D.; Chitra, T.; Ganesh, R.N.; Menon, V. Matrix metalloproteinase-9 is elevated and related to interleukin-17 and psychological stress in male infertility: A cross-sectional study. Int. J. Reprod. Biomed. 2021, 19, 333–338. [Google Scholar] [CrossRef] [PubMed]
- Oh, J.E.; Kim, B.-C.; Chang, D.-H.; Kwon, M.; Lee, S.Y.; Kang, D.; Kim, J.Y.; Hwang, I.; Yu, J.-W.; Nakae, S.; et al. Dysbiosis-induced IL-33 contributes to impaired antiviral immunity in the genital mucosa. Proc. Natl. Acad. Sci. USA 2016, 113, E762–E771. [Google Scholar] [CrossRef]
- Begum, S.; Perlman, B.E.; Valero-Pacheco, N.; O’Besso, V.; Wu, T.; Morelli, S.S.; Beaulieu, A.M.; Douglas, N.C. Dynamic Expression of Interleukin-33 and ST2 in the Mouse Reproductive Tract Is Influenced by Superovulation. J. Histochem. Cytochem. 2020, 68, 253–267. [Google Scholar] [CrossRef]
- Valero-Pacheco, N.; Tang, E.K.; Massri, N.; Loia, R.; Chemerinski, A.; Wu, T.; Begum, S.; El-Naccache, D.W.; Gause, W.C.; Arora, R.; et al. Maternal IL-33 critically regulates tissue remodeling and type 2 immune responses in the uterus during early pregnancy in mice. Proc. Natl. Acad. Sci. USA 2022, 119, e2123267119. [Google Scholar] [CrossRef]
- Kozai, K.; Iqbal, K.; Moreno-Irusta, A.; Scott, R.L.; Simon, M.E.; Dhakal, P.; Fields, P.E.; Soares, M.J. Protective role of IL33 signaling in negative pregnancy outcomes associated with lipopolysaccharide exposure. FASEB J. 2021, 35, e21272. [Google Scholar] [CrossRef]
- Wu, J.; Carlock, C.; Zhou, C.; Nakae, S.; Hicks, J.; Adams, H.P.; Lou, Y. IL-33 is required for disposal of unnecessary cells during ovarian atresia through regulation of autophagy and macrophage migration. J. Immunol. 2015, 194, 2140–2147. [Google Scholar] [CrossRef]
- He, B.; Teng, X.-M.; Hao, F.; Zhao, M.; Chen, Z.-Q.; Li, K.-M.; Yan, Q. Decreased intracellular IL-33 impairs endometrial receptivity in women with adenomyosis. Front. Endocrinol. 2022, 13, 928024. [Google Scholar] [CrossRef]
- Bourdon, M.; Santulli, P.; Chouzenoux, S.; Maignien, C.; Bailly, K.; Andrieu, M.; Millischer, A.-E.; Doridot, L.; Marcellin, L.; Batteux, F.; et al. The Disease Phenotype of Adenomyosis-Affected Women Correlates With Specific Serum Cytokine Profiles. Reprod. Sci. 2019, 26, 198–206. [Google Scholar] [CrossRef]
- Lin, T.-C.; Wang, K.-H.; Chuang, K.-H.; Kao, A.-P.; Kuo, T.-C. Interleukin-33 promotes invasiveness of human ovarian endometriotic stromal cells through the ST2/MAPK/MMP-9 pathway activated by 17β-estradiol. Taiwan. J. Obstet. Gynecol. 2021, 60, 658–664. [Google Scholar] [CrossRef]
- Southcombe, J.H.; Lédée, N.; Perrier d’Hauterive, S.; Turner, K.; Child, T.; Snider, J.V.; Redman, C.W.G.; Sargent, I.L.; Granne, I. Detection of soluble ST2 in human follicular fluid and luteinized granulosa cells. PLoS ONE 2013, 8, e74385. [Google Scholar] [CrossRef]
- Kaitu’u-Lino, T.J.; Tuohey, L.; Tong, S. Maternal serum interleukin-33 and soluble ST2 across early pregnancy, and their association with miscarriage. J. Reprod. Immunol. 2012, 95, 46–49. [Google Scholar] [CrossRef]
- Moretti, E.; Cerretani, D.; Noto, D.; Signorini, C.; Iacoponi, F.; Collodel, G. Relationship Between Semen IL-6, IL-33 and Malondialdehyde Generation in Human Seminal Plasma and Spermatozoa. Reprod. Sci. 2021, 28, 2136–2143. [Google Scholar] [CrossRef]
- Miller, J.E.; Monsanto, S.P.; Ahn, S.H.; Khalaj, K.; Fazleabas, A.T.; Young, S.L.; Lessey, B.A.; Koti, M.; Tayade, C. Interleukin-33 modulates inflammation in endometriosis. Sci. Rep. 2017, 7, 17903. [Google Scholar] [CrossRef]
- Miller, J.E.; Lingegowda, H.; Symons, L.K.; Bougie, O.; Young, S.L.; Lessey, B.A.; Koti, M.; Tayade, C. IL-33 activates group 2 innate lymphoid cell expansion and modulates endometriosis. JCI Insight 2021, 6, e149699. [Google Scholar] [CrossRef]
- Miller, J.E.; Koti, M.; Tayade, C. IL-33-ILC2 axis in the female reproductive tract. Trends Mol. Med. 2022, 28, 569–582. [Google Scholar] [CrossRef]
- Santulli, P.; Even, M.; Chouzenoux, S.; Millischer, A.-E.; Borghese, B.; de Ziegler, D.; Batteux, F.; Chapron, C. Profibrotic interleukin-33 is correlated with uterine leiomyoma tumour burden. Hum. Reprod. 2013, 28, 2126–2133. [Google Scholar] [CrossRef]
- Thackray, V.G. Sex, Microbes, and Polycystic Ovary Syndrome. Trends Endocrinol. Metab. 2019, 30, 54–65. [Google Scholar] [CrossRef]
- Gu, Y.; Zhou, G.; Zhou, F.; Li, Y.; Wu, Q.; He, H.; Zhang, Y.; Ma, C.; Ding, J.; Hua, K. Gut and Vaginal Microbiomes in PCOS: Implications for Women’s Health. Front. Endocrinol. 2022, 13, 808508. [Google Scholar] [CrossRef]
- Hong, X.; Qin, P.; Yin, J.; Shi, Y.; Xuan, Y.; Chen, Z.; Zhou, X.; Yu, H.; Peng, D.; Wang, B. Clinical Manifestations of Polycystic Ovary Syndrome and Associations with the Vaginal Microbiome: A Cross-Sectional Based Exploratory Study. Front. Endocrinol. 2021, 12, 662725. [Google Scholar] [CrossRef]
- Giampaolino, P.; Foreste, V.; di Filippo, C.; Gallo, A.; Mercorio, A.; Serafino, P.; Improda, F.P.; Verrazzo, P.; Zara, G.; Buonfantino, C.; et al. Microbiome and PCOS: State-of-Art and Future Aspects. Int. J. Mol. Sci. 2021, 22, 2048. [Google Scholar] [CrossRef]
- Yang, Y.; Xia, J.; Yang, Z.; Wu, G.; Yang, J. The abnormal level of HSP70 is related to Treg/Th17 imbalance in PCOS patients. J. Ovarian Res. 2021, 14, 155. [Google Scholar] [CrossRef]
- Karakose, M.; Demircan, K.; Tutal, E.; Demirci, T.; Arslan, M.S.; Sahin, M.; Celik, H.T.; Kazanci, F.; Karakaya, J.; Cakal, E.; et al. Clinical significance of ADAMTS1, ADAMTS5, ADAMTS9 aggrecanases and IL-17A, IL-23, IL-33 cytokines in polycystic ovary syndrome. J. Endocrinol. Investig. 2016, 39, 1269–1275. [Google Scholar] [CrossRef]
- Özçaka, Ö.; Buduneli, N.; Ceyhan, B.O.; Akcali, A.; Hannah, V.; Nile, C.; Lappin, D.F. Is interleukin-17 involved in the interaction between polycystic ovary syndrome and gingival inflammation? J. Periodontol. 2013, 84, 1827–1837. [Google Scholar] [CrossRef]
- Venneri, M.A.; Franceschini, E.; Sciarra, F.; Rosato, E.; D’Ettorre, G.; Lenzi, A. Human genital tracts microbiota: Dysbiosis crucial for infertility. J. Endocrinol. Investig. 2022, 45, 1151–1160. [Google Scholar] [CrossRef]
- Spencer, S.P.; Fragiadakis, G.K.; Sonnenburg, J.L. Pursuing Human-Relevant Gut Microbiota-Immune Interactions. Immunity 2019, 51, 225–239. [Google Scholar] [CrossRef]
- Huang, L.; Liu, B.; Liu, Z.; Feng, W.; Liu, M.; Wang, Y.; Peng, D.; Fu, X.; Zhu, H.; Cui, Z.; et al. Gut Microbiota Exceeds Cervical Microbiota for Early Diagnosis of Endometriosis. Front. Cell. Infect. Microbiol. 2021, 11, 788836. [Google Scholar] [CrossRef]
- Talwar, C.; Singh, V.; Kommagani, R. The gut microbiota: A double-edged sword in endometriosis. Biol. Reprod. 2022, 107, 881–901. [Google Scholar] [CrossRef]
- Salliss, M.E.; Farland, L.V.; Mahnert, N.D.; Herbst-Kralovetz, M.M. The role of gut and genital microbiota and the estrobolome in endometriosis, infertility and chronic pelvic pain. Hum. Reprod. Update 2021, 28, 92–131. [Google Scholar] [CrossRef]
- Qi, X.; Yun, C.; Pang, Y.; Qiao, J. The impact of the gut microbiota on the reproductive and metabolic endocrine system. Gut Microbes 2021, 13, 1894070. [Google Scholar] [CrossRef]
- Batra, M.; Bhatnager, R.; Kumar, A.; Suneja, P.; Dang, A.S. Interplay between PCOS and microbiome: The road less travelled. Am. J. Reprod. Immunol. 2022, 88, e13580. [Google Scholar] [CrossRef]
- Qi, X.; Yun, C.; Sun, L.; Xia, J.; Wu, Q.; Wang, Y.; Wang, L.; Zhang, Y.; Liang, X.; Wang, L.; et al. Gut microbiota-bile acid-interleukin-22 axis orchestrates polycystic ovary syndrome. Nat. Med. 2019, 25, 1225–1233. [Google Scholar] [CrossRef]
- Li, Y.; Chen, C.; Ma, Y.; Xiao, J.; Luo, G.; Li, Y.; Wu, D. Multi-system reproductive metabolic disorder: Significance for the pathogenesis and therapy of polycystic ovary syndrome (PCOS). Life Sci. 2019, 228, 167–175. [Google Scholar] [CrossRef]
- Baker, J.M.; Al-Nakkash, L.; Herbst-Kralovetz, M.M. Estrogen-gut microbiome axis: Physiological and clinical implications. Maturitas 2017, 103, 45–53. [Google Scholar] [CrossRef]
- Cryan, J.F.; O’Riordan, K.J.; Cowan, C.S.M.; Sandhu, K.V.; Bastiaanssen, T.F.S.; Boehme, M.; Codagnone, M.G.; Cussotto, S.; Fulling, C.; Golubeva, A.V.; et al. The Microbiota-Gut-Brain Axis. Physiol. Rev. 2019, 99, 1877–2013. [Google Scholar] [CrossRef]
- Cephus, J.-Y.; Gandhi, V.D.; Shah, R.; Brooke Davis, J.; Fuseini, H.; Yung, J.A.; Zhang, J.; Kita, H.; Polosukhin, V.V.; Zhou, W.; et al. Estrogen receptor-α signaling increases allergen-induced IL-33 release and airway inflammation. Allergy 2021, 76, 255–268. [Google Scholar] [CrossRef]
- Bartemes, K.; Chen, C.-C.; Iijima, K.; Drake, L.; Kita, H. IL-33-Responsive Group 2 Innate Lymphoid Cells Are Regulated by Female Sex Hormones in the Uterus. J. Immunol. 2018, 200, 229–236. [Google Scholar] [CrossRef] [PubMed]
- Kang, S.; Wu, Q.; Yang, B.; Wu, C. Estrogen enhanced the expression of IL-17 by tissue-resident memory γδT cells from uterus via interferon regulatory factor 4. FASEB J. 2022, 36, e22166. [Google Scholar] [CrossRef] [PubMed]
- Babinets, L.S.; Migenko, B.O.; Borovyk, I.O.; Halabitska, I.M.; Lobanets, N.V.; Onyskiv, O.O. The role of cytocin imbalance in the development of man infertility. Wiad. Lek. 2020, 73, 525–528. [Google Scholar] [CrossRef]
- Paira, D.A.; Silvera-Ruiz, S.; Tissera, A.; Molina, R.I.; Olmedo, J.J.; Rivero, V.E.; Motrich, R.D. Interferon γ, IL-17, and IL-1β impair sperm motility and viability and induce sperm apoptosis. Cytokine 2022, 152, 155834. [Google Scholar] [CrossRef] [PubMed]
- Sabbaghi, M.; Aram, R.; Roustaei, H.; Fadavi Islam, M.; Daneshvar, M.; Castaño, A.R.; Haghparast, A. IL-17A concentration of seminal plasma and follicular fluid in infertile men and women with various clinical diagnoses. Immunol. Investig. 2014, 43, 617–626. [Google Scholar] [CrossRef]
- Garcia-Segura, S.; del Rey, J.; Closa, L.; Garcia-Martínez, I.; Hobeich, C.; Castel, A.B.; Vidal, F.; Benet, J.; Ribas-Maynou, J.; Oliver-Bonet, M. Seminal Microbiota of Idiopathic Infertile Patients and Its Relationship with Sperm DNA Integrity. Front. Cell Dev. Biol. 2022, 10, 937157. [Google Scholar] [CrossRef]
- Lundy, S.D.; Sangwan, N.; Parekh, N.V.; Selvam, M.K.P.; Gupta, S.; McCaffrey, P.; Bessoff, K.; Vala, A.; Agarwal, A.; Sabanegh, E.S.; et al. Functional and Taxonomic Dysbiosis of the Gut, Urine, and Semen Microbiomes in Male Infertility. Eur. Urol. 2021, 79, 826–836. [Google Scholar] [CrossRef]
- Farahani, L.; Tharakan, T.; Yap, T.; Ramsay, J.W.; Jayasena, C.N.; Minhas, S. The semen microbiome and its impact on sperm function and male fertility: A systematic review and meta-analysis. Andrology 2021, 9, 115–144. [Google Scholar] [CrossRef]
- Wang, H.; Xu, A.; Gong, L.; Chen, Z.; Zhang, B.; Li, X. The Microbiome, an Important Factor That Is Easily Overlooked in Male Infertility. Front. Microbiol. 2022, 13, 831272. [Google Scholar] [CrossRef]
- Ding, N.; Zhang, X.; Zhang, X.D.; Jing, J.; Liu, S.S.; Mu, Y.P.; Peng, L.L.; Yan, Y.J.; Xiao, G.M.; Bi, X.Y.; et al. Impairment of spermatogenesis and sperm motility by the high-fat diet-induced dysbiosis of gut microbes. Gut 2020, 69, 1608–1619. [Google Scholar] [CrossRef]
- Zhao, Y.; Zhang, P.; Ge, W.; Feng, Y.; Li, L.; Sun, Z.; Zhang, H.; Shen, W. Alginate oligosaccharides improve germ cell development and testicular microenvironment to rescue busulfan disrupted spermatogenesis. Theranostics 2020, 10, 3308–3324. [Google Scholar] [CrossRef]
- Loveland, K.L.; Klein, B.; Pueschl, D.; Indumathy, S.; Bergmann, M.; Loveland, B.E.; Hedger, M.P.; Schuppe, H.-C. Cytokines in Male Fertility and Reproductive Pathologies: Immunoregulation and Beyond. Front. Endocrinol. 2017, 8, 307. [Google Scholar] [CrossRef]
- Agarwal, A.; Sharma, R.; Gupta, S.; Harlev, A.; Ahmad, G.; du Plessis, S.S.; Esteves, S.C.; Wang, S.M.; Durairajanayagam, D. (Eds.) Oxidative Stress in Human Reproduction; Springer International Publishing: Cham, Switzerland, 2017; ISBN 978-3-319-48425-9. [Google Scholar]
- Lv, S.; Huang, J.; Luo, Y.; Wen, Y.; Chen, B.; Qiu, H.; Chen, H.; Yue, T.; He, L.; Feng, B.; et al. Gut microbiota is involved in male reproductive function: A review. Front. Microbiol. 2024, 15, 1371667. [Google Scholar] [CrossRef]
- Leelani, N.; Bajic, P.; Parekh, N.; Vij, S.C.; Lundy, S.D. The emerging role of the gut-testis axis in male reproductive health and infertility. F&S Rev. 2023, 4, 131–141. [Google Scholar] [CrossRef]
- Alqawasmeh, O.; Fok, E.; Yim, H.; Li, T.; Chung, J.; Chan, D. The microbiome and male infertility: Looking into the past to move forward. Hum. Fertil. 2023, 26, 450–462. [Google Scholar] [CrossRef] [PubMed]
- Mändar, R.; Punab, M.; Borovkova, N.; Lapp, E.; Kiiker, R.; Korrovits, P.; Metspalu, A.; Krjutškov, K.; Nõlvak, H.; Preem, J.-K.; et al. Complementary seminovaginal microbiome in couples. Res. Microbiol. 2015, 166, 440–447. [Google Scholar] [CrossRef] [PubMed]
- Morison, L.; Ekpo, G.; West, B.; Demba, E.; Mayaud, P.; Coleman, R.; Bailey, R.; Walraven, G. Bacterial vaginosis in relation to menstrual cycle, menstrual protection method, and sexual intercourse in rural Gambian women. Sex. Transm. Infect. 2005, 81, 242–247. [Google Scholar] [CrossRef]
- Crespi, B. Variation among human populations in endometriosis and PCOS A test of the inverse comorbidity model. Evol. Med. Public Health 2021, 9, 295–310. [Google Scholar] [CrossRef]
- Dinsdale, N.L.; Crespi, B.J. Endometriosis and polycystic ovary syndrome are diametric disorders. Evol. Appl. 2021, 14, 1693–1715. [Google Scholar] [CrossRef]
- Schwinge, D.; Carambia, A.; Quaas, A.; Krech, T.; Wegscheid, C.; Tiegs, G.; Prinz, I.; Lohse, A.W.; Herkel, J.; Schramm, C. Testosterone suppresses hepatic inflammation by the downregulation of IL-17, CXCL-9, and CXCL-10 in a mouse model of experimental acute cholangitis. J. Immunol. 2015, 194, 2522–2530. [Google Scholar] [CrossRef]
- Fuseini, H.; Yung, J.A.; Cephus, J.Y.; Zhang, J.; Goleniewska, K.; Polosukhin, V.V.; Peebles, R.S.; Newcomb, D.C. Testosterone Decreases House Dust Mite-Induced Type 2 and IL-17A-Mediated Airway Inflammation. J. Immunol. 2018, 201, 1843–1854. [Google Scholar] [CrossRef]
- Shin, J.-H.; Park, Y.-H.; Sim, M.; Kim, S.-A.; Joung, H.; Shin, D.-M. Serum level of sex steroid hormone is associated with diversity and profiles of human gut microbiome. Res. Microbiol. 2019, 170, 192–201. [Google Scholar] [CrossRef]
In Allergic and Airway Diseases |
---|
The hypothesis focuses on IL-17, IL-33, and their interactions with the microbiome and co-factors. The relationship between these cytokines and the microbiome varies depending on genetic background (such as TLR, IL-33, and other genes), environmental exposures, and other defined or undefined factors. |
In a microbiome with ancestral complexity, IL-17 performs its normal protective function. However, as microbiome diversity diminishes, IL-17’s role shifts to a pathogenic one, interacting with TLRs (local disease) and other mechanisms. For instance, in cases of rhinitis, there is IgE production to a limited number of allergens, and it is probable that co-factors like viral infections contribute to disease onset. This disease commonly appears after childhood. |
With a further reduction in microbiome diversity, the IL-33 pathway becomes activated. In genetically susceptible individuals, this leads to multimorbidity and polysensitization. Such activation can occur shortly after birth (atopic march) or later in early childhood, associated with factors like viruses, Staphylococcus aureus, pollutants, or nonallergenic components of allergens. |
IL-33 may also downregulate IL-17 pathways. |
In other noncommunicable diseases and autoimmune conditions, this hypothesis similarly centers on the roles of IL-17, IL-33 (or other pivotal cytokines), and their interactions with the microbiome |
Term | Definition |
---|---|
Microbiota | The community of microorganisms, including bacteria, archaea, protists, fungi, and viruses, that live in and on the human body. |
Microbiome | The complete set of genetic material belonging to the microbiota. |
Estrobolome | The collection of genes within the gut microbiota that are involved in estrogen metabolism. |
Metabolome | The full set of metabolites found in a particular environment. |
Dysbiosis | A disruption or imbalance in the microbiota, marked by the presence of harmful microbes or a reduction in beneficial ones. |
Prebiotic | Substances that stimulate the growth and activity of beneficial microorganisms. |
Probiotic | Live microorganisms that provide health benefits to the host. |
Author | Year | Study Group | Main Results |
---|---|---|---|
IL-17 mouse | |||
Anipindi [26] | 2016 | Vaginal cells of mice treated by estradiol or placebo | Estradiol Boosts CD4+ T-Cell Antiviral Immunity by Preparing Vaginal Dendritic Cells to Trigger Th17 Responses through an IL-1-Dependent Mechanism. |
IL-17 human | |||
Rajaei [27] | 2011 | Case control, N = 12 + 10 | Undetectable IL-17 |
Crosby [28] | 2020 | 20 infertile women | Increase in the IL-17A pathway in endometrial tissue from women with unexplained infertility affects pregnancy outcome following assisted reproductive treatment. |
Wang [29] | 2019 | Case–control, N = 75 endometriosis + 75 normal | Increased expression of IL-17 and decreased IL-10-TGFß in endometriosis possibly associated with Treg (mTORC1 autophagy) |
Zhao [30] | 2021 | 47 infertile women after blastocyst transfer |
|
Olkowska- Truchanowicz [31] | 2021 | Case–control: 36 endometriosis and 26 none |
|
Wu [24] | 2021 | 36 endometriosis |
|
Jiang [32] | 2022 | 48 women with stage III–IV endometriosis |
|
Mary [33] | 2021 | cross-sectional study, 39 men with infertility diagnosed based on semen analysis and 39 subjects with normal semen analysis | In infertile cases, MMP-9 and IL-17 were significantly increased when compared with controls (p = 0.046 and p = 0.041, respectively). A significant association of MMP-9 was observed with IL-17 (p = 0.037) |
IL-33 mouse/rat | |||
Oh [34] | 2016 | mice | Dysbiosis-induced IL- 33 contributes to impaired antiviral immunity in the genital mucosa |
Begum [35] | 2020 | mice | Dynamic Expression of Interleukin-33 and ST2 in the Mouse Reproductive Tract Is Influenced by Superovulation |
Valero-Pacheco [36] | 2022 | mice | Maternal IL-33 critically regulates tissue remodeling and type 2 immune responses in the uterus during early pregnancy in mice |
Kozai [37] | 2021 | rats | Protective role of IL33 signaling in negative pregnancy outcomes associated with lipopolysaccharide exposure |
Wu [38] | 2015 | mice | IL-33 is shown to be associated with follicle atresia and required for disposal of degenerative tissue during ovarian atresia |
IL-33 human | |||
He [39] | 2022 | Case–control, N = 20 + 20 | Reduced intracellular IL-33 levels negatively affect endometrial receptivity in women with adenomyosis. This is linked to a correlation with HOXA10 expression. IL-33 enhances endometrial receptivity by promoting STAT3 phosphorylation |
Bourdon [40] | 2019 | Case–control N = 60 + 20 | Low IL-33 (and IL-17F) in adenomyosis group |
Lin [41] | 2021 | Cells from endometrioma | IL-33 promotes invasiveness of human ovarian endometriotic stromal cells through the ST2/MAPK/MMP-9 pathway activated by 17b-estradiol |
Southcombe [42] | 2013 | N = 21 + 64 | Soluble ST2 detected in Human Follicular Fluid and Luteinized Granulosa Cells. sST2 levels increased in the largest follicules. |
Kaitu’u-Lino [43] | 2012 | Case–control, N = 150 + 20 abortions | Increase in maternal serum IL-33 and soluble ST2 associated with miscarriage. It is proposed that an increase in IL-33 may be a T2 compensatory response to prevent abortion. |
Moretti [44] | 2021 | 44 human semen samples/control group of 11 fertile men | IL-33 was absent in all analyzed semen samples, suggesting a role of a nuclear factor rather than secreted cytokine in human seminal plasma |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hamamah, S.; Barry, F.; Vannier, S.; Anahory, T.; Haahtela, T.; Antó, J.M.; Chapron, C.; Ayoubi, J.-M.; Czarlewski, W.; Bousquet, J. Infertility, IL-17, IL-33 and Microbiome Cross-Talk: The Extended ARIA-MeDALL Hypothesis. Int. J. Mol. Sci. 2024, 25, 11981. https://doi.org/10.3390/ijms252211981
Hamamah S, Barry F, Vannier S, Anahory T, Haahtela T, Antó JM, Chapron C, Ayoubi J-M, Czarlewski W, Bousquet J. Infertility, IL-17, IL-33 and Microbiome Cross-Talk: The Extended ARIA-MeDALL Hypothesis. International Journal of Molecular Sciences. 2024; 25(22):11981. https://doi.org/10.3390/ijms252211981
Chicago/Turabian StyleHamamah, Samir, Fatima Barry, Sarah Vannier, Tal Anahory, Tari Haahtela, Josep M. Antó, Charles Chapron, Jean-Marc Ayoubi, Wienczyslawa Czarlewski, and Jean Bousquet. 2024. "Infertility, IL-17, IL-33 and Microbiome Cross-Talk: The Extended ARIA-MeDALL Hypothesis" International Journal of Molecular Sciences 25, no. 22: 11981. https://doi.org/10.3390/ijms252211981
APA StyleHamamah, S., Barry, F., Vannier, S., Anahory, T., Haahtela, T., Antó, J. M., Chapron, C., Ayoubi, J. -M., Czarlewski, W., & Bousquet, J. (2024). Infertility, IL-17, IL-33 and Microbiome Cross-Talk: The Extended ARIA-MeDALL Hypothesis. International Journal of Molecular Sciences, 25(22), 11981. https://doi.org/10.3390/ijms252211981