Inactivation of sacB Gene Allows Higher 2,3-Butanediol Production by Bacillus licheniformis from Inulin
Abstract
:1. Introduction
2. Results
2.1. Inactivation of sacB Gene in BL24
2.2. EPS Synthesis by BLΔsacB from Sucrose and Monosaccharides
2.3. Effect of pH on Inulin Conversion to 2,3-BD by the Engineered BLΔsacB
2.4. Reverse Transcription Real-Time PCR (RT-qPCR)
3. Discussion
4. Materials and Methods
4.1. Bacterial Strains, Media, and Cultivation Conditions
4.2. DNA and RNA Isolation, PCR, and Gibson Assembly Cloning
4.3. Transformation of E. coli and BL24
4.4. RT-qPCR
4.5. Analytical Methods
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Muras, A.; Romero, M.; Mayer, C.; Otero, A. Biotechnological applications of Bacillus licheniformis. Crit. Rev. Biotechnol. 2021, 41, 609–627. [Google Scholar] [CrossRef] [PubMed]
- Kumar, P.; Patel, S.K.; Lee, J.K.; Kalia, V.C. Extending the limits of Bacillus for novel biotechnological applications. Biotechnol. Adv. 2013, 31, 1543–1561. [Google Scholar] [CrossRef] [PubMed]
- Martín-González, D.; Bordel, S.; Solis, S.; Gutierrez-Merino, J.; Santos-Beneit, F. Characterization of Bacillus Strains from Natural Honeybee Products with High Keratinolytic Activity and Antimicrobial Potential. Microorganisms 2023, 11, 456. [Google Scholar] [CrossRef] [PubMed]
- Shleeva, M.O.; Kondratieva, D.A.; Kaprelyants, A.S. Bacillus licheniformis: A Producer of Antimicrobial Substances, including Antimycobacterials, Which Are Feasible for Medical Applications. Pharmaceutics 2023, 15, 1893. [Google Scholar] [CrossRef]
- Maina, S.; Prabhu, A.A.; Vivek, N.; Vlysidis, A.; Koutinas, A.; Kumar, V. Prospects on bio-based 2,3-butanediol and acetoin production: Recent progress and advances. Biotechnol. Adv. 2022, 54, 107783. [Google Scholar] [CrossRef] [PubMed]
- Song, D.; Cho, S.-Y.; Vu, T.-T.; Duong, H.-P.-Y.; Kim, E. Dehydration of 2,3-Butanediol to 1,3-Butadiene and Methyl Ethyl Ketone: Modeling, Numerical Analysis and Validation Using Pilot-Scale Reactor Data. Catalysts 2021, 11, 999. [Google Scholar] [CrossRef]
- Li, L.X.; Li, K.; Wang, K.; Chen, C.; Gao, C.; Ma, C.Q.; Xu, P. Efficient production of 2,3-butanediol from corn stover hydrolysate by using a thermophilic Bacillus licheniformis strain. Bioresour. Technol. 2014, 170, 256–261. [Google Scholar] [CrossRef]
- Lü, C.; Ge, Y.; Cao, M.; Guo, X.; Liu, P.; Gao, C.; Xu, P.; Ma, C. Metabolic Engineering of Bacillus licheniformis for Production of Acetoin. Front. Bioeng. Biotechnol. 2020, 8, 125. [Google Scholar] [CrossRef]
- Tinôco, D.; Seldin, L.; Coutinho, P.; Freire, D.M.G. Sustainable production of optically pure platform chemical bio-based (R,R)−2,3-butanediol from sugarcane molasses in a low-cost salt medium. Ind. Crops Prod. 2024, 209, 117931. [Google Scholar] [CrossRef]
- Rebecchi, S.; Pinelli, D.; Zanaroli, G.; Fava, F.; Frascari, D. Effect of oxygen mass transfer rate on the production of 2,3-butanediol from glucose and agro-industrial byproducts by Bacillus licheniformis ATCC 9789. Biotechnol. Biofuels 2018, 11, 145. [Google Scholar] [CrossRef]
- Koutinas, A.A.; Yepez, B.; Kopsahelis, N.; Freire, D.M.G.; de Castro, A.M.; Papanikolaou, S.; Kookos, I.K. Techno-economic evaluation of a complete bioprocess for 2,3-butanediol production from renewable resources. Bioresour. Technol. 2016, 204, 55–64. [Google Scholar] [CrossRef]
- Dai, J.-Y.; Guan, W.-T.; Xiu, Z.-L. Bioconversion of inulin to 2,3-butanediol by a newly isolated Klebsiella pneumoniae producing inulinase. Process Biochem. 2020, 98, 247–253. [Google Scholar] [CrossRef]
- Petrov, K.; Petrova, P. Current Advances in Microbial Production of Acetoin and 2,3-Butanediol by Bacillus spp. Fermentation 2021, 7, 307. [Google Scholar] [CrossRef]
- Sun, R.; Kang, J.; Wang, X.; Xiu, B.; Ping, W.; Ge, J. Enhancement of 2,3-Butanediol Production by Klebsiella pneumoniae: Emphasis on the Mediation of sRNA-SgrS on the Carbohydrate Utilization. Fermentation 2022, 8, 359. [Google Scholar] [CrossRef]
- Palaiogeorgou, A.M.; Delopoulos, E.I.M.; Koutinas, A.A.; Papanikolaou, S. Screening Bacterial Strains Capable of Producing 2,3-Butanediol: Process Optimization and High Diol Production by Klebsiella oxytoca FMCC-197. Fermentation 2023, 9, 1014. [Google Scholar] [CrossRef]
- Ju, J.-H.; Jo, M.-H.; Heo, S.-Y.; Kim, M.-S.; Kim, C.-H.; Paul, N.C.; Sang, H.; Oh, B.-R. Production of highly pure R,R-2,3-butanediol for biological plant growth promoting agent using carbon feeding control of Paenibacillus polymyxa MDBDO. Microb. Cell Factories 2023, 22, 121. [Google Scholar] [CrossRef] [PubMed]
- Jurchescu, I.M.; Hamann, J.; Zhou, X.; Ortmann, T.; Kuenz, A.; Prusse, U.; Lang, S. Enhanced 2,3-butanediol production in fed batch cultures of free and immobilized Bacillus licheniformis DSM 8785. Appl. Microbiol. Biotechnol. 2013, 97, 6715–6723. [Google Scholar] [CrossRef] [PubMed]
- Tsigoriyna, L.; Ganchev, D.; Petrova, P.; Petrov, K. Highly Efficient 2,3-Butanediol Production by Bacillus licheniformis via Complex Optimization of Nutritional and Technological Parameters. Fermentation 2021, 7, 118. [Google Scholar] [CrossRef]
- Guo, Z.-W.; Ni, Z.-F.; Zong, M.-H.; Lou, W.-Y. Modular Metabolic Engineering of Bacillus licheniformis for Efficient 2,3-Butanediol Production by Consolidated Bioprocessing of Jerusalem Artichoke Tubers. ACS Sustain. Chem. Eng. 2022, 10, 9624–9634. [Google Scholar] [CrossRef]
- Petrova, M.; Miladinova-Georgieva, K.; Geneva, M. Influence of Abiotic and Biotic Elicitors on Organogenesis, Biomass Accumulation, and Production of Key Secondary Metabolites in Asteraceae Plants. Int. J. Mol. Sci. 2024, 25, 4197. [Google Scholar] [CrossRef]
- Alonso-Allende, J.; Milagro, F.I.; Aranaz, P. Health Effects and Mechanisms of Inulin Action in Human Metabolism. Nutrients 2024, 16, 2935. [Google Scholar] [CrossRef] [PubMed]
- China Chicory Prices. Available online: https://www.selinawamucii.com/insights/prices/china/chicory/ (accessed on 12 October 2024).
- Singh, R.S.; Singh, T.; Hassan, M.; Kennedy, J.F. Updates on inulinases: Structural aspects and biotechnological applications. Int. J. Biol. Macromol. 2020, 164, 193–210. [Google Scholar] [CrossRef] [PubMed]
- Singh, R.S.; Chauhan, K.; Kennedy, J.F. A panorama of bacterial inulinases: Production, purification, characterization and industrial applications. Int. J. Biol. Macromol. 2017, 96, 312–322. [Google Scholar] [CrossRef]
- Petrov, K.; Popova, L.; Petrova, P. High lactic acid and fructose production via Mn2+-mediated conversion of inulin by Lactobacillus paracasei. Appl. Microbiol. Biotechnol. 2017, 101, 4433–4445. [Google Scholar] [CrossRef]
- Lara-Fiallos, M.; Ayala Chamorro, Y.T.; Espín-Valladares, R.; DelaVega-Quintero, J.C.; Olmedo-Galarza, V.; Nuñez-Pérez, J.; Pais-Chanfrau, J.-M.; Martínez, A.P. Immobilised Inulinase from Aspergillus niger for Fructose Syrup Production: An Optimisation Model. Foods 2024, 13, 1984. [Google Scholar] [CrossRef]
- Hughes, S.R.; Qureshi, N.; López-Núñez, J.C.; Jones, M.A.; Jarodsky, J.M.; Galindo-Leva, L.Á.; Lindquist, M.R. Utilization of inulin-containing waste in industrial fermentations to produce biofuels and bio-based chemicals. World J. Microbiol. Biotechnol. 2017, 33, 78. [Google Scholar] [CrossRef] [PubMed]
- Patakova, P.; Linhova, M.; Rychtera, M.; Paulova, L.; Melzoch, K. Novel and neglected issues of acetone-butanol-ethanol (ABE) fermentation by clostridia: Clostridium metabolic diversity, tools for process mapping and continuous fermentation systems. Biotechnol. Adv. 2013, 31, 58–67. [Google Scholar] [CrossRef]
- Sun, L.H.; Wang, X.D.; Dai, J.Y.; Xiu, Z.L. Microbial production of 2,3-butanediol from Jerusalem artichoke tubers by Klebsiella pneumoniae. Appl. Microbiol. Biotechnol. 2009, 82, 847–852. [Google Scholar] [CrossRef] [PubMed]
- Fages, J.; Mulard, D.; Rouquet, J.J.; Wilhelm, J.L. 2,3-Butanediol production from Jerusalem artichoke, Helianthus Tuberosus, by Bacillus polymyxa ATCC 12321. Optimization of kL a profile. Appl. Microbiol. Biotechnol. 1986, 25, 197–202. [Google Scholar] [CrossRef]
- Gao, J.; Xu, H.; Li, Q.-J.; Feng, X.-H.; Li, S. Optimization of medium for one-step fermentation of inulin extract from Jerusalem artichoke tubers using Paenibacillus polymyxa ZJ-9 to produce R, R-2,3-butanediol. Bioresour. Technol. 2010, 101, 7087–7093. [Google Scholar] [CrossRef]
- Li, L.X.; Chen, C.; Li, K.; Wang, Y.; Gao, C.; Ma, C.Q.; Xu, P. Efficient simultaneous saccharification and fermentation of inulin to 2,3-butanediol by thermophilic Bacillus licheniformis ATCC 14580. Appl. Environ. Microbiol. 2014, 80, 6458–6464. [Google Scholar] [CrossRef] [PubMed]
- Song, C.W.; Rathnasingh, C.; Park, J.M.; Lee, J.; Song, H. Isolation and evaluation of Bacillus strains for industrial production of 2,3-butanediol. J. Microbiol. Biotechnol. 2018, 28, 409–417. [Google Scholar] [CrossRef] [PubMed]
- Tsigoriyna, L.; Arsov, A.; Petrova, P.; Gergov, E.; Petrov, K. Heterologous Expression of Inulinase Gene in Bacillus licheniformis 24 for 2,3-Butanediol Production from Inulin. Catalysts 2023, 13, 841. [Google Scholar] [CrossRef]
- Park, J.M.; Oh, B.-R.; Kang, I.Y.; Heo, S.-Y.; Seo, J.-W.; Park, S.-M.; Hong, W.-K.; Kim, C.H. Enhancement of 2,3-butanediol production from Jerusalem artichoke tuber extract by a recombinant Bacillus sp. strain BRC1 with increased inulinase activity. J. Ind. Microbiol. Biotechnol. 2017, 44, 1107–1113. [Google Scholar] [CrossRef] [PubMed]
- Tsigoriyna, L.; Arsov, A.; Gergov, E.; Petrova, P.; Petrov, K. Influence of pH on Inulin Conversion to 2,3-Butanediol by Bacillus licheniformis 24: A Gene Expression Assay. Int. J. Mol. Sci. 2023, 24, 14065. [Google Scholar] [CrossRef]
- Doan, C.T.; Tran, T.N.; Nguyen, T.T.; Tran, T.P.H.; Nguyen, V.B.; Tran, T.D.; Nguyen, A.D.; Wang, S.L. Production of Sucrolytic Enzyme by Bacillus licheniformis by the Bioconversion of Pomelo Albedo as a Carbon Source. Polymers 2021, 13, 1959. [Google Scholar] [CrossRef]
- Domżał-Kędzia, M.; Ostrowska, M.; Lewińska, A.; Łukaszewicz, M. Recent Developments and Applications of Microbial Levan, A Versatile Polysaccharide-Based Biopolymer. Molecules 2023, 28, 5407. [Google Scholar] [CrossRef]
- Novamont: Opening of the World’s First Industrial Scale Plant for the Production of Butanediol via Fermentation of Renewable Raw Materials. Available online: https://uk.novamont.com/leggi_press.php?id_press=84 (accessed on 30 October 2024).
- Inulin Suppliers. Available online: https://www.made-in-china.com/manufacturers/inulin.html (accessed on 30 October 2024).
- Inulin Market Size & Share Analysis. Available online: https://www.mordorintelligence.com/industry-reports/inulin-market (accessed on 30 October 2024).
- Leal, E.; Teixeira, J.A.; Gudiña, E.J. Development of Foam-Free Biosurfactant Production Processes Using Bacillus licheniformis. Fermentation 2024, 10, 340. [Google Scholar] [CrossRef]
- Wei, X.; Yang, L.; Chen, Z.; Xia, W.; Chen, Y.; Cao, M.; He, N. Molecular weight control of poly-γ-glutamic acid reveals novel insights into extracellular polymeric substance synthesis in Bacillus licheniformis. Biotechnol. Biofuels 2024, 17, 60. [Google Scholar] [CrossRef]
- Song, C.W.; Kwon, M.; Song, H. Simultaneous and selective production of exopolymers and polyols by metabolically engineered Bacillus licheniformis strains. Biochem. Eng. J. 2022, 181, 108381. [Google Scholar] [CrossRef]
- Gojgic-Cvijovic, G.D.; Jakovljevic, D.M.; Loncarevic, B.D.; Todorovic, N.M.; Pergal, M.V.; Ciric, J.; Loos, K.; Beskoski, V.P.; Vrvic, M.M. Production of levan by Bacillus licheniformis NS032 in sugar beet molasses-based medium. Int. J. Biol. Macromol. 2019, 121, 142–151. [Google Scholar] [CrossRef] [PubMed]
- Liu, C.; Lu, J.; Lu, L.; Liu, Y.; Wang, F.; Xiao, M. Isolation, structural characterization and immunological activity of an exopolysaccharide produced by Bacillus licheniformis 8-37-0-1. Bioresour. Technol. 2010, 101, 5528–5533. [Google Scholar] [CrossRef] [PubMed]
- Xavier, J.R.; Ramana, K.V. Optimization of Levan Production by Cold-Active Bacillus licheniformis ANT 179 and Fructooligosaccharide Synthesis by Its Levansucrase. Appl. Biochem. Biotechnol. 2017, 181, 986–1006. [Google Scholar] [CrossRef]
- Petrova, P.; Arsov, A.; Ivanov, I.; Tsigoriyna, L.; Petrov, K. New Exopolysaccharides Produced by Bacillus licheniformis 24 Display Substrate-Dependent Content and Antioxidant Activity. Microorganisms 2021, 9, 2127. [Google Scholar] [CrossRef]
- Öner, E.T.; Hernández, L.; Combie, J. Review of Levan polysaccharide: From a century of past experiences to future prospects. Biotechnol. Adv. 2016, 34, 827–844. [Google Scholar] [CrossRef]
- Vinothkanna, A.; Sathiyanarayanan, G.; Balaji, P.; Mathivanan, K.; Pugazhendhi, A.; Ma, Y.; Sekar, S.; Thirumurugan, R. Structural characterization, functional and biological activities of an exopolysaccharide produced by probiotic Bacillus licheniformis AG-06 from Indian polyherbal fermented traditional medicine. Int. J. Biol. Macromol. 2021, 174, 144–152. [Google Scholar] [CrossRef]
- Xu, Z.; Chen, G.; Xue, L.; Zhang, H.; Wang, J.; Xiang, H.; Lia, J.; Zheng, K. Isolation, structural characterizations and bioactivities of exopolysaccharides produced by Bacillus licheniformis. Int. J. Biol. Macromol. 2019, 141, 298–306. [Google Scholar] [CrossRef]
- Nguyen, H.-T.; Pham, T.-T.; Nguyen, P.-T.; Le-Buanec, H.; Rabetafika, H.N.; Razafindralambo, H.L. Advances in Microbial Exopolysaccharides: Present and Future Applications. Biomolecules 2024, 14, 1162. [Google Scholar] [CrossRef] [PubMed]
- Białkowska, A.M.; Jedrzejczak-Krzepkowska, M.; Gromek, E.; Krysiak, J.; Sikora, B.; Kalinowska, H.; Kubik, C.; Schütt, F.; Turkiewicz, M. Effects of genetic modifications and fermentation conditions on 2,3-butanediol production by alkaliphilic Bacillus subtilis. Appl. Microbiol. Biotechnol. 2016, 100, 2663–2676. [Google Scholar] [CrossRef]
- Porras-Domínguez, J.R.; Ávila-Fernández, Á.; Rodríguez-Alegría, M.E.; Miranda-Molina, A.; Escalante, A.; González-Cervantes, R.; Olvera, C.; López-Munguía, A. Levan-type FOS production using a Bacillus licheniformis endolevanase. Process Biochem. 2014, 49, 783–790. [Google Scholar] [CrossRef]
- Fan, Y.; Wang, J.; Gao, C.; Zhang, Y.; Du, W. A novel exopolysaccharide-producing and long-chain n-alkane degrading bacterium Bacillus licheniformis strain DM-1 with potential application for in-situ enhanced oil recovery. Sci. Rep. 2020, 10, 8519. [Google Scholar] [CrossRef] [PubMed]
- Zhou, C.; Zhou, H.; Li, D.; Zhang, H.; Wang, H.; Lu, F. Optimized expression and enhanced production of alkaline protease by genetically modified Bacillus licheniformis 2709. Microb. Cell Factories 2020, 19, 45. [Google Scholar] [CrossRef] [PubMed]
- Chen, Z.; Liu, P.; Li, Z.; Yu, W.; Wang, Z.; Yao, H.; Wang, Y.; Li, Q.; Deng, X.; He, N. Identification of key genes involved in polysaccharide bioflocculant synthesis in Bacillus licheniformis. Biotechnol. Bioeng. 2017, 114, 645–655. [Google Scholar] [CrossRef]
- Rey, M.W.; Ramaiya, P.; Nelson, B.A.; Brody-Karpin, S.D.; Zaretsky, E.; Tang, M.; Lopez de Leon, A.; Xiang, H.; Gusti, V.; Clausen, I.G.; et al. Complete genome sequence of the industrial bacterium Bacillus licheniformis and comparisons with closely related Bacillus species. Genome Biol. 2004, 5, R77. [Google Scholar] [CrossRef]
- Xue, G.-P.; Johnson, J.S.; Dalrymple, B.P. High osmolarity improves the electro-transformation efficiency of the gram-positive bacteria Bacillus subtilis and Bacillus licheniformis. J. Microbiol. Methods 1999, 34, 183–191. [Google Scholar] [CrossRef]
- Dubois, M.; Gilles, K.A.; Hamilton, J.K.; Rebers, P.A.; Smith, F. Colorimetric method for determination of sugars and related substances. Anal. Chem. 1956, 28, 350–356. [Google Scholar] [CrossRef]
Strain | Conditions | Products | Maximum Gene Expression Levels | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
CFP 1 (g/L) | pH | 2,3-BD (g/L) | Acetoin (g/L) | Glycerol (g/L) | LA 2 (g/L) | SA 3 (g/L) | sacA (FC 4) | sacB (FC 4) | sacC (FC 4) | fruA (FC 4) | levB (FC 4) | |
BL24 5 | 200 | 6.25 | 67.5 ± 3.5 | 0.3 ± 0.3 | 9.8 ± 1.4 | ND | 1.3 ± 0.1 | 66.26 ± 2.1 | 196.72 ± 6.1 | 163.14 ± 5.8 | 53.82 ± 2.4 | 0.40 ± 0.1 |
BLΔsacB | 200 | 6.25 | 75.5 ± 2.3 | 1.3 ± 1.2 | 14.1 ± 1.6 | ND | 0.5 ± 0.1 | 64.71 ± 2.3 | ND | 118.16 ± 5.4 | 49.13 ± 2.1 | 59.73 ± 1.9 |
BLΔsacB | 300 | 6.50 | 128.7 ± 4.1 | 1.8 ± 1.1 | 30.2 ± 2.5 | ND | 3.3 ± 0.2 | 68.45 ± 2.8 | ND | 126.64 ± 5.7 | 46.03 ± 2.3 | 82.16 ± 5.2 |
BLΔsacB | 300 | 6.75 | 96.4 ± 4.7 | 2.1 ± 2.0 | 10.9 ± 2.3 | 44.8 ± 2.8 | 2.0 ± 0.2 | 70.40 ± 3.2 | ND | 134.24 ± 5.8 | 48.79 ± 2.3 | 88.19 ± 5.3 |
Strain | Substrate | EPS | Description | Reference |
---|---|---|---|---|
B. licheniformis | Sucrose | 71 g/L | Levan, ΔepsAB | [44] |
B. licheniformis NS032 | Sucrose | 53.20 g/L | Levan, optimum pH 7.2 | [45] |
B. licheniformis 8-37-0-1 | Sucrose | 47.45 g/L | Levan, optimum pH 6.5–7.0 | [46] |
B. licheniformis ANT 179 | Sugarcane juice | 50.25 g/L | Levan, optimum pH 7.0 | [47] |
BL24 | Glucose (fed-batch) | 12.61 g/L | EPS of galactose, glucose, and mannose in ratio 54/39/7; pH 6.23 | [48] |
BL24 | Fructose (fed-batch) | 7.03 g/L | EPS of glucose, mannose, and galactose in ratio 51/30/19; pH 6.23 | [48] |
Strain/Plasmid | Description and Use | Source or Reference |
---|---|---|
BL24 | Natural isolate from a soil sample taken near Yantra River’s bed near Veliko Tarnovo, Bulgaria (43°04′52.46″ N 25°37′44.54″ E). Used as a host for sacB gene disruption. | [18,36] |
E. coli STELLARTM | F-, endA1, supE44, thi-1, recA1, relA1, gyrA96, phoA, Φ80d lacZΔ M15, Δ(lacZYA-argF) U169, Δ(mrr-hsdRMS-mcrBC), ΔmcrA, λ-. Used as a host in cloning procedures. | Takara Bio Company (Mountain View, CA, USA) |
pBacTag-DYKDDDDK | B. subtilis chromosomal integration vector; EryR, AmpR, Epitope FLAG tag. Used for ΔsacB disruption cassette construction. | MoBiTec GmbH, Goettingen, Germany |
pCR®2.1-TOPO® | E. coli TOPO-TA cloning vector. Used as a source of the KanR (NeoR) gene. | Thermo Fisher Scientific Inc., Waltham, MA, USA |
BLΔsacB | A mutant of BL24 containing sacB gene knockout. Used for 2,3-BD production. | This study |
pBac_Kan | Chromosomal integration vector; KanR, AmpR. Used for cloning of ΔsacB PCR fragment. | This study |
pBac_Kan_ΔsacB | ΔsacB—containing integrative construct. Used for ΔsacB knockout in BL24 chromosomes. | This study |
Primer | Sequence (5′–3′) | PCR Product | Tm (°C) | Molecule Size (bp) |
---|---|---|---|---|
Bac_F | attctatgagtcgcttttgtaaatt | pBacTag_ΔEryR | 63.8 | 4738 |
Bac_R | tgtaatcactccttcttaattacaa | 62.4 | ||
Kan_F | gaaggagtgattacaaaagagaaagcaggtagcttgc | KanR | 65.2 | 1009 |
Kan_R | agcgactcatagaattcagaagaactcgtcaagaaggcg | 68.5 | ||
BK_F | ggattataaagatgatgatgataaa | pBacTag_KanR | 59.2 | 5747 |
BK_R | ggtaccctcgactctagat | 63.4 | ||
sac_F | gatctagagtcgagggtacctactaatagcaaggagaagactccctattc | ΔsacB | 61.0 | 685 |
sac_R | ctttataatccggccgaaaattccccgctttattctaag | 62.0 |
Primer | Sequence (5′–3′) | PCR Product (bp) | Position in Gene * |
---|---|---|---|
16S_F | gagtacgaccgcaaggttga | 100 | 875–895 |
16S_R | cctggtaaggttcttcgcgt | 975–955 | |
sacA_RTF | aagagatcgccctcacgccgagcgactggttt | 125 | 255–286 |
sacA_RTR | atttccctcgccgtctctgacattccccgtgt | 379–348 | |
sacB_RTF | caacagagcctactacgggggcagcaagaagt | 117 | 861–892 |
sacB_RTR | tcgatgattccgagagcgccgttagccagcga | 977–946 | |
sacC_RTF | gccgctcgttgccatttatacgcaggaccgga | 64 | 375–406 |
sacC_RTR | gctgtaggcgatgctttgcacttgttccccgc | 438–407 | |
levB_RTF | gcatactggacaggcagcttcaacggcaacga | 121 | 784–815 |
levB_RTR | cgttcgtttcgccgtcctcaaatgtcacgccc | 904–873 | |
fruA_RTF | gggagtcagagatgccgacgaaagcagacgga | 62 | 893–924 |
fruA_RTR | ttcacgcggcaaagttaatgccccgcaccatc | 954–923 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gergov, E.; Petrova, P.; Arsov, A.; Ignatova, I.; Tsigoriyna, L.; Armenova, N.; Petrov, K. Inactivation of sacB Gene Allows Higher 2,3-Butanediol Production by Bacillus licheniformis from Inulin. Int. J. Mol. Sci. 2024, 25, 11983. https://doi.org/10.3390/ijms252211983
Gergov E, Petrova P, Arsov A, Ignatova I, Tsigoriyna L, Armenova N, Petrov K. Inactivation of sacB Gene Allows Higher 2,3-Butanediol Production by Bacillus licheniformis from Inulin. International Journal of Molecular Sciences. 2024; 25(22):11983. https://doi.org/10.3390/ijms252211983
Chicago/Turabian StyleGergov, Emanoel, Penka Petrova, Alexander Arsov, Ina Ignatova, Lidia Tsigoriyna, Nadya Armenova, and Kaloyan Petrov. 2024. "Inactivation of sacB Gene Allows Higher 2,3-Butanediol Production by Bacillus licheniformis from Inulin" International Journal of Molecular Sciences 25, no. 22: 11983. https://doi.org/10.3390/ijms252211983
APA StyleGergov, E., Petrova, P., Arsov, A., Ignatova, I., Tsigoriyna, L., Armenova, N., & Petrov, K. (2024). Inactivation of sacB Gene Allows Higher 2,3-Butanediol Production by Bacillus licheniformis from Inulin. International Journal of Molecular Sciences, 25(22), 11983. https://doi.org/10.3390/ijms252211983