Plastome Evolution, Phylogenomics, and DNA Barcoding Investigation of Gastrochilus (Aeridinae, Orchidaceae), with a Focus on the Systematic Position of Haraella retrocalla
Abstract
:1. Introduction
2. Results
2.1. Plastome Features and Gene Contents
2.2. Plastome Structural Variations
2.3. Examination of Repeats and Codon Usage Bias
2.4. Plastome Sequence Divergence and Barcoding Investigation
2.5. Phylogenomic Analysis
3. Discussion
3.1. Plastome Evolution within Gastrochilus
3.2. Genetic Molecular Markers
3.3. The Systematic Position of Haraella retrocalla and Phylogenomics of Gastrochilus
4. Materials and Methods
4.1. Sampling and Sequencing
4.2. Plastome Assembly and Annotation
4.3. Structure and Sequence Divergence Analyses
4.4. Repetitive Sequence and Codon Usage Analyses
4.5. Evolutionary Hotspots and Phylogenetic Analyses
4.6. Morphological Character Analysis
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Tsi, Z.H. A preliminary revision of Gastrochilus (Orchidaceae). Guihaia 1996, 16, 123–154. [Google Scholar]
- Pridgeon, A.; Cribb, P.; Chase, M.; Rasmussen, F.N. Genera Orchidacearum: Epidendroideae (Part Three); Oxford University Press: New York, NY, USA, 2014. [Google Scholar]
- Li, Y.; Jin, W.T.; Zhang, L.G.; Zhou, P.; Luo, Y.; Zhu, Z.W.; Xiang, X.G. Biogeography and diversification of the tropical and subtropical Asian genus Gastrochilus (orchidaceae, aeridinae). Diversity 2022, 14, 396. [Google Scholar] [CrossRef]
- Zhang, J.Y.; Cheng, Y.H.; Liao, M.; Feng, Y.; Jin, S.L.; He, T.M.; He, H.; Xu, B. A new infrageneric classification of Gastrochilus (Orchidaceae: Epidendroideae) based on molecular and morphological data. Plant Divers. 2024, 46, 435–447. [Google Scholar] [CrossRef]
- Chen, S.C.; Tsi, Z.H.; Wood, J.J. Gastrochilus D. Don. In Flora of China Vol. 25 (Orchidaceae); Wu, Z.Y., Raven, P.H., Hong, D.Y., Eds.; Science Press: Beijing, China; Missouri Botanical Garden Press: St. Louis, MO, USA, 2009; pp. 491–498. [Google Scholar]
- Liu, Q.; Song, Y.; Jin, X.H.; Gao, J.Y. Phylogenetic relationships of Gastrochilus (Orchidaceae) based on nuclear and plastid DNA data. Bot. J. Linn. Soc. 2019, 189, 228–243. [Google Scholar] [CrossRef]
- De, L.C.; Pathak, P.; Rao, A.N.; Rajeevan, P.K. Commercial Orchids; De Gruyter Open: Warsaw, Poland; Berlin, Germany, 2015. [Google Scholar]
- Teoh, E.S. Medicinal Orchids of Asia; Springer: Cham, Switzerland, 2016. [Google Scholar]
- Zou, L.H.; Huang, J.X.; Zhang, G.Q.; Liu, Z.J.; Zhuang, X.Y. A molecular phylogeny of Aeridinae (Orchidaceae: Epidendroideae) inferred from multiple nuclear and chloroplast regions. Mol. Phylogenet. Evol. 2015, 85, 247–254. [Google Scholar] [CrossRef] [PubMed]
- Liu, D.K.; Tu, X.D.; Zhao, Z.; Zeng, M.Y.; Zhang, S.; Ma, L.; Zhang, G.Q.; Wang, M.M.; Liu, Z.J.; Lan, S.R.; et al. Plastid phylogenomic data yield new and robust insights into the phylogeny of Cleisostoma-Gastrochilus clades (Orchidaceae, Aeridinae). Mol. Phylogenet. Evol. 2020, 145, 106729. [Google Scholar] [CrossRef] [PubMed]
- Hayata, B. Icones Plantarum Formosanarum nec non et Contributiones ad Floram Formosanam; Government of Formosa Press: Taiwan, China, 1914. [Google Scholar]
- Hayata, B. Icones Plantarum Formosanarum; Government of Formosa Press: Taiwan, China, 1917. [Google Scholar]
- Kudo, Y. Haraella, a new genus of orchids from Formosa. J. Soc. Trop. Agric. 1930, 2, 26. [Google Scholar]
- Smith, J.J. Gastrochilus odoratus (Kud) J.J, Smith. Bull. Jard. Bot. Buitenz. 1937, 3, 168. [Google Scholar]
- Chase, M.W.; Cameron, K.M.; Freudenstein, J.V.; Pridgeon, A.M.; Salazar, G.; van den Berg, C.; Schuiteman, A. An updated classification of Orchidaceae. Bot. J. Linn. Soc. 2015, 177, 151–174. [Google Scholar] [CrossRef]
- Lu, R.S.; Li, P.; Qiu, Y.X. The complete chloroplast genomes of three Cardiocrinum (Liliaceae) species: Comparative genomic and phylogenetic analyses. Front. Plant Sci. 2016, 7, 2054. [Google Scholar] [CrossRef]
- Chi, X.F.; Wang, J.L.; Gao, Q.B.; Zhang, F.Q.; Chen, S.L. The complete chloroplast genomes of two Lancea species with comparative analysis. Molecules 2018, 23, 602. [Google Scholar] [CrossRef] [PubMed]
- Lee, S.R.; Kim, K.; Lee, B.Y.; Lim, C.E. Complete chloroplast genomes of all six Hosta species occurring in Korea: Molecular structures, comparative, and phylogenetic analyses. BMC Genom. 2019, 20, 833. [Google Scholar] [CrossRef] [PubMed]
- Shi, N.X.; Yang, Z.F.; Miao, K.; Tang, L.L.; Zhou, N.; Xie, P.X.; Wen, G.S. Comparative analysis of the medicinal plant Polygonatum kingianum (Asparagaceae) with related verticillate leaf types of the Polygonatum species based on chloroplast genomes. Front. Plant Sci. 2023, 14, 1202634. [Google Scholar] [CrossRef] [PubMed]
- Chen, J.L.; Wang, F.; Zhou, C.Y.; Ahmad, S.; Zhou, Y.Z.; Li, M.H.; Liu, Z.J.; Peng, D.H. Comparative phylogenetic analysis for Aerides (Aeridinae, Orchidaceae) based on six complete plastid genomes. Int. J. Mol. Sci. 2023, 24, 12473. [Google Scholar] [CrossRef] [PubMed]
- Zhou, C.Y.; Lin, W.J.; Li, R.; Wu, Y.; Liu, Z.J.; Li, M.H. Characterization of Angraecum (Angraecinae, Orchidaceae) plastomes and utility of sequence variability hotspots. Int. J. Mol. Sci. 2024, 25, 184. [Google Scholar] [CrossRef] [PubMed]
- Li, L.; Wang, W.Y.; Zhang, G.Q.; Wu, K.L.; Fang, L.; Li, M.Z.; Liu, Z.J.; Zeng, S.J. Comparative analyses and phylogenetic relationships of thirteen Pholidota species (Orchidaceae) inferred from complete chloroplast genomes. BMC Plant Biol. 2023, 23, 269. [Google Scholar] [CrossRef] [PubMed]
- Zhao, Z.; Zeng, M.Y.; Wu, Y.W.; Li, J.W.; Zhou, Z.; Liu, Z.J.; Li, M.H. Characterization and comparative analysis of the complete plastomes of five Epidendrum (Epidendreae, Orchidaceae) species. Int. J. Mol. Sci. 2023, 24, 14437. [Google Scholar] [CrossRef] [PubMed]
- Cui, Y.F.; Zhou, P.; Xiang, K.L.; Zhang, Q.; Yan, H.; Zhang, L.G.; Pan, B.; Huang, Y.S.; Guo, Z.Y.; Li, Z.Y.; et al. Plastome evolution and phylogenomics of Trichosporeae (Gesneriaceae) with its morphological characters appraisal. Front. Plant Sci. 2023, 14, 1160535. [Google Scholar] [CrossRef] [PubMed]
- Schelkunov, M.I.; Shtratnikova, V.Y.; Nuraliev, M.S.; Selosse, M.A.; Penin, A.A.; Logacheva, M.D. Exploring the limits for reduction of plastid genomes: A case study of the mycoheterotrophic orchids Epipogium aphyllum and Epipogium roseum. Genome Biol. Evol. 2015, 7, 1179–1191. [Google Scholar] [CrossRef]
- Guo, Y.Y.; Yang, J.X.; Li, H.K.; Zhao, H.S. Chloroplast genomes of two species of Cypripedium: Expanded genome size and proliferation of AT-Biased repeat sequences. Front. Plant Sci. 2021, 12, 609729. [Google Scholar] [CrossRef]
- Chen, J.L.; Wang, F.; Zhao, Z.; Li, M.H.; Liu, Z.J.; Peng, D.H. Complete chloroplast genomes and comparative analyses of three Paraphalaenopsis (Aeridinae, Orchidaceae) species. Int. J. Mol. Sci. 2023, 24, 11167. [Google Scholar] [CrossRef] [PubMed]
- Liu, D.K.; Zhou, C.Y.; Tu, X.D.; Zhao, Z.; Chen, J.L.; Gao, X.Y.; Xu, S.W.; Zeng, M.Y.; Ma, L.; Ahmad, S.; et al. Comparative and phylogenetic analysis of Chiloschista (Orchidaceae) species and DNA barcoding investigation based on plastid genomes. BMC Genom. 2023, 24, 749. [Google Scholar] [CrossRef] [PubMed]
- Kim, Y.K.; Jo, S.; Cheon, S.H.; Joo, M.J.; Hong, J.R.; Kwak, M.; Kim, K.J. Plastome evolution and phylogeny of Orchidaceae, with 24 new sequences. Front. Plant Sci. 2020, 11, 22. [Google Scholar] [CrossRef] [PubMed]
- Wu, Y.W.; Zeng, M.Y.; Wang, H.X.; Lan, S.R.; Liu, Z.J.; Zhang, S.B.; Li, M.H.; Guan, Y.X. The complete chloroplast genomes of Bulbophyllum (Orchidaceae) species: Insight into genome structure divergence and phylogenetic analysis. Int. J. Mol. Sci. 2024, 25, 2665. [Google Scholar] [CrossRef] [PubMed]
- Cheng, Y.J.; de Vicente, M.C.; Meng, H.; Guo, W.W.; Tao, N.; Deng, X.X. A set of primers for analyzing chloroplast DNA diversity in Citrus and related genera. Tree Physiol. 2005, 25, 661–672. [Google Scholar] [CrossRef] [PubMed]
- Angioi, S.A.; Desiderio, F.; Rau, D.; Bitocchi, E.; Attene, G.; Papa, R. Development and use of chloroplast microsatellites in Phaseolus spp. and other legumes. Plant Biol. 2009, 11, 598–612. [Google Scholar] [CrossRef] [PubMed]
- Ebert, D.; Peakall, R. A new set of universal de novo sequencing primers for extensive coverage of noncoding chloroplast DNA: New opportunities for phylogenetic studies and cpSSR discovery. Mol. Ecol. Resour. 2009, 9, 777–783. [Google Scholar] [CrossRef] [PubMed]
- Xiang, K.L.; Mao, W.; Peng, H.W.; Erst, A.S.; Yang, Y.X.; He, W.C.; Wu, Z.Q. Organization, phylogenetic marker exploitation, and gene evolution in the plastome of Thalictrum (Ranunculaceae). Front. Plant Sci. 2022, 13, 897843. [Google Scholar] [CrossRef] [PubMed]
- Li, L.; Wu, Q.P.; Zhai, J.W.; Wu, K.L.; Fang, L.; Li, M.Z.; Zeng, S.J.; Li, S.J. Comparative chloroplast genomics of 24 species shed light on the genome evolution and phylogeny of subtribe Coelogyninae (Orchidaceae). BMC Plant Biol. 2024, 24, 31. [Google Scholar] [CrossRef]
- Niu, Z.T.; Xue, Q.Y.; Zhu, S.Y.; Sun, J.; Liu, W.; Ding, X.Y. The complete plastome sequences of four orchid species: Insights into the evolution of the Orchidaceae and the utility of plastomic mutational hotspots. Front. Plant Sci. 2017, 8, 715. [Google Scholar] [CrossRef]
- Dong, W.L.; Wang, R.N.; Zhang, N.Y.; Fan, W.B.; Fang, M.F.; Li, Z.H. Molecular evolution of chloroplast genomes of orchid species: Insights into phylogenetic relationship and adaptive evolution. Int. J. Mol. Sci. 2018, 19, 716. [Google Scholar] [CrossRef] [PubMed]
- Shrestha, N.; Wang, Z.H.; Su, X.Y.; Xu, X.T.; Lyu, L.S.; Liu, Y.P.; Dimitrov, D.; Kennedy, J.D.; Wang, Q.G.; Tang, Z.Y.; et al. Global patterns of Rhododendron diversity: The role of evolutionary time and diversification rates. Global Ecol. Biogeogr. 2018, 27, 913–924. [Google Scholar] [CrossRef]
- Azani, N.; Bruneau, A.; Wojciechowski, M.F.; Zarre, S. Miocene climate change as a driving force for multiple origins of annual species in Astragalus (Fabaceae, Papilionoideae). Mol. Phylogenet. Evol. 2019, 137, 210–221. [Google Scholar] [CrossRef] [PubMed]
- Renner, M.A.M.; Foster, C.S.P.; Miller, J.T.; Murphy, D.J. Increased diversification rates are coupled with higher rates of climate space exploration in Australian Acacia (Caesalpinioideae). New Phytol. 2020, 226, 609–622. [Google Scholar] [CrossRef] [PubMed]
- Kearse, M.; Moir, R.; Wilson, A.; Stones-Havas, S.; Cheung, M.; Sturrock, S.; Buxton, S.; Cooper, A.; Markowitz, S.; Duran, C.; et al. Geneious Basic: An integrated and extendable desktop software platform for the organization and analysis of sequence data. Bioinformatics 2012, 28, 1647–1649. [Google Scholar] [CrossRef] [PubMed]
- Doyle, J.J.; Doyle, J.L. A rapid DNA isolation procedure for small amounts of fresh leaf tissue. Phytochem. Bull. 1987, 19, 11–15. [Google Scholar]
- Brown, J.; Pirrung, M.; McCue, L.A. FQC Dashboard: Integrates FastQC results into a web-based, interactive, and extensible FASTQ quality control tool. Bioinformatics 2017, 33, 3137–3139. [Google Scholar] [CrossRef]
- Bolger, A.M.; Lohse, M.; Usadel, B. Trimmomatic: A flexible trimmer for Illumina sequence data. Bioinformatics 2014, 30, 2114–2120. [Google Scholar] [CrossRef]
- Jin, J.J.; Yu, W.B.; Yang, J.B.; Song, Y.; dePamphilis, C.W.; Yi, T.S.; Li, D.Z. GetOrganelle: A fast and versatile toolkit for accurate de novo assembly of organelle genomes. Genome Biol. 2020, 21, 241. [Google Scholar] [CrossRef]
- Wick, R.R.; Schultz, M.B.; Zobel, J.; Holt, K.E. Bandage: Interactive visualization of de novo genome assemblies. Bioinformatics 2015, 31, 3350–3352. [Google Scholar] [CrossRef]
- Amiryousefi, A.; Hyvönen, J.; Poczai, P. IRscope: An online program to visualize the junction sites of chloroplast genomes. Bioinformatics 2018, 34, 3030–3031. [Google Scholar] [CrossRef] [PubMed]
- Darling, A.E.; Mau, B.; Perna, N.T. ProgressiveMauve: Multiple genome alignment with gene gain, loss and rearrangement. PLoS ONE 2010, 5, e11147. [Google Scholar] [CrossRef]
- Frazer, K.A.; Pachter, L.; Poliakov, A.; Rubin, E.M.; Dubchak, I. VISTA: Computational tools for comparative genomics. Nucleic Acids Res. 2004, 32, W273–W279. [Google Scholar] [CrossRef]
- Beier, S.; Thiel, T.; Münch, T.; Scholz, U.; Mascher, M. MISA-web: A web server for microsatellite prediction. Bioinformatics 2017, 33, 2583–2585. [Google Scholar] [CrossRef]
- Kassambara, A. ggpubr: “ggplot2” Based Publication Ready Plots. 2023. Available online: https://CRAN.R-project.org/package=ggpubr (accessed on 8 June 2024).
- Wickham, H. ggplot2: Elegant Graphics for Data Analysis; Springer: New York, NY, USA, 2016. [Google Scholar]
- Benson, G. Tandem repeats finder: A program to analyze DNA sequences. Nucleic Acids Res. 1999, 27, 573–580. [Google Scholar] [CrossRef]
- Kurtz, S.; Choudhuri, J.V.; Ohlebusch, E.; Schleiermacher, C.; Stoye, J.; Giegerich, R. REPuter: The manifold applications of repeat analysis on a genomic scale. Nucleic Acids Res. 2001, 29, 4633–4642. [Google Scholar] [CrossRef] [PubMed]
- Cauz-Santos, L.A.; da Costa, Z.P.; Callot, C.; Cauet, S.; Zucchi, M.I.; Bergès, H.; van den Berg, C.; Vieira, M.L.C. A repertory of rearrangements and the loss of an inverted repeat region in Passiflora chloroplast genomes. Genome Biol. Evol. 2020, 12, 1841–1857. [Google Scholar] [CrossRef] [PubMed]
- Sun, X.Y.; Yang, Q.; Xia, X.H. An improved implementation of efective number of codons (nc). Mol. Biol. Evol. 2013, 30, 191–196. [Google Scholar] [CrossRef]
- Sharp, P.M.; Li, W.H. The codon adaptation indexa measure of directional synonymous codon usage bias, and its potential applications. Nucleic Acids Res. 1987, 15, 1281–1295. [Google Scholar] [CrossRef]
- Kolde, R. Pheatmap: Pretty Heatmaps. 2019. Available online: https://CRAN.R-project.org/package=pheatmap (accessed on 8 June 2024).
- Katoh, K.; Standley, D.M. MAFFT multiple sequence alignment software version 7: Improvements in performance and usability. Mol. Biol. Evol. 2013, 30, 772–780. [Google Scholar] [CrossRef]
- Hall, T.A. BioEdit: A user-friendly biological sequence alignment editor and analysis program for windows 95/98/NT. Nuclc. Acids Symp. Ser. 1999, 41, 95–98. [Google Scholar]
- Rozas, J.; Ferrer-Mata, A.; Sánchez-DelBarrio, J.C.; Guirao-Rico, S.; Librado, P.; Ramos-Onsins, S.E.; Sánchez-Gracia, A. DnaSP 6: DNA sequence polymorphism analysis of large data sets. Mol. Biol. Evol. 2017, 34, 3299–3302. [Google Scholar] [CrossRef] [PubMed]
- Stamatakis, A. RAxML version 8: A tool for phylogenetic analysis and post-analysis of large phylogenies. Bioinformatics 2014, 30, 1312–1313. [Google Scholar] [CrossRef] [PubMed]
- Darriba, D.; Taboada, G.L.; Doallo, R.; Posada, D. jModelTest 2: More models, new heuristics and parallel computing. Nat. Methods 2012, 9, 772. [Google Scholar] [CrossRef] [PubMed]
- Ronquist, F.; Teslenko, M.; van der Mark, P.; Ayres, D.L.; Darling, A.; Höhna, S.; Larget, B.; Liu, L.; Suchard, M.A.; Huelsenbeck, J.P. MrBayes 3.2: Efficient Bayesian phylogenetic inference and model choice across a large model space. Syst. Biol. 2012, 61, 539–542. [Google Scholar] [CrossRef]
- Liu, Q.; Wu, X.F.; Zhou, S.S.; Li, J.W.; Jin, X.H. New species and record of Gastrochilus (Orchidaceae, Aeridinae) from China and Laos. Phytotaxa 2023, 585, 210–224. [Google Scholar] [CrossRef]
- Ya, J.D.; Wang, W.T.; Liu, Y.L.; Jiang, H.; Han, Z.D.; Zhang, T.; Huang, H.; Cai, J.; Li, D.Z. Five new and noteworthy species of Epidendroideae (Orchidaceae) from southwestern China based on morphological and phylogenetic evidence. PhytoKeys 2023, 235, 211–236. [Google Scholar] [CrossRef]
- Oksanen, J.; Blanchet, F.G.; Friendly, M.; Kindt, R.; Legendre, P.; Mcglinn, D.; Minchin, P.R.; O’Hara, R.B.; Simpson, G.L.; Solymos, P.; et al. Vegan: Community Ecology Package. 2018. Available online: https://cran.r-project.org/web/packages/vegan/index.html (accessed on 22 June 2024).
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhou, P.; Lei, W.-S.; Shi, Y.-K.; Liu, Y.-Z.; Luo, Y.; Li, J.-H.; Xiang, X.-G. Plastome Evolution, Phylogenomics, and DNA Barcoding Investigation of Gastrochilus (Aeridinae, Orchidaceae), with a Focus on the Systematic Position of Haraella retrocalla. Int. J. Mol. Sci. 2024, 25, 8500. https://doi.org/10.3390/ijms25158500
Zhou P, Lei W-S, Shi Y-K, Liu Y-Z, Luo Y, Li J-H, Xiang X-G. Plastome Evolution, Phylogenomics, and DNA Barcoding Investigation of Gastrochilus (Aeridinae, Orchidaceae), with a Focus on the Systematic Position of Haraella retrocalla. International Journal of Molecular Sciences. 2024; 25(15):8500. https://doi.org/10.3390/ijms25158500
Chicago/Turabian StyleZhou, Peng, Wan-Shun Lei, Ying-Kang Shi, Yi-Zhen Liu, Yan Luo, Ji-Hong Li, and Xiao-Guo Xiang. 2024. "Plastome Evolution, Phylogenomics, and DNA Barcoding Investigation of Gastrochilus (Aeridinae, Orchidaceae), with a Focus on the Systematic Position of Haraella retrocalla" International Journal of Molecular Sciences 25, no. 15: 8500. https://doi.org/10.3390/ijms25158500
APA StyleZhou, P., Lei, W. -S., Shi, Y. -K., Liu, Y. -Z., Luo, Y., Li, J. -H., & Xiang, X. -G. (2024). Plastome Evolution, Phylogenomics, and DNA Barcoding Investigation of Gastrochilus (Aeridinae, Orchidaceae), with a Focus on the Systematic Position of Haraella retrocalla. International Journal of Molecular Sciences, 25(15), 8500. https://doi.org/10.3390/ijms25158500