Intracellular Survival and Pathogenicity Modulation of Salmonella Lon, CpxR, and RfaL Mutants Used as Live Bacterial Vectors under Abiotic Stress, Unveiling the Link between Stress Response and Virulence in Epithelial Cells
Abstract
:1. Introduction
2. Results
2.1. ST Mutants (JOL 912 and JOL 1800) Exposed to Abiotic Stress Remain Invasive in Both Eukaryotic Cell Lines
2.2. Fenton Reaction: Free Radical Production Is Dependent on Gene Knockout and pH
2.3. Invasion of HeLa and HepG2 by ST Causes Actin Rearrangement
2.4. ST Localization and Intracellular Spread
2.5. Expression of Cytokine, Cyclin, and Caspase Transcripts
2.6. Effect on Cell Cycle Kinetics Demarcates G2/M Arrest
3. Discussion
4. Materials and Methods
4.1. Bacterial Strains
4.2. Cell Culture
4.3. Bacterial Growth under Stress Conditions
4.4. Bacterial Invasion and Intracellular Replication
4.5. Hydroxyl Radical (OH·) Measurement
4.6. Effect on Actin during ST Interaction for Invasion
4.7. Localization of ST in the HeLa and HepG2 Cells
4.8. Expression of Cytokines, Cyclin, and Apoptosis Genes
4.9. Real-Time Quantitative PCR (qPCR) Analysis
4.10. Cell Cycle Analysis by Flow Cytometer
4.11. Statistical Analysis
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Da Silva, A.J.; Zangirolami, T.C.; Novo-Mansur, M.T.; Giordano Rde, C.; Martins, E.A. Live bacterial vaccine vectors: An overview. Braz. J. Microbiol. 2014, 45, 1117–1129. [Google Scholar] [CrossRef] [PubMed]
- Sereme, Y.; Schrimp, C.; Faury, H.; Agapoff, M.; Lefebvre-Wloszczowski, E.; Chang Marchand, Y.; Ageron-Ardila, E.; Panafieu, E.; Blec, F.; Coureuil, M.; et al. A live attenuated vaccine to prevent severe neonatal Escherichia coli K1 infections. Nat. Commun. 2024, 15, 3021. [Google Scholar] [CrossRef] [PubMed]
- Ji, H.J.; Jang, A.Y.; Song, J.Y.; Ahn, K.B.; Han, S.H.; Bang, S.J.; Jung, H.K.; Hur, J.; Seo, H.S. Development of Live Attenuated Salmonella Typhimurium Vaccine Strain Using Radiation Mutation Enhancement Technology (R-MET). Front. Immunol. 2022, 13, 931052. [Google Scholar] [CrossRef]
- Flickinger, J.C., Jr.; Rodeck, U.; Snook, A.E. Listeria monocytogenes as a Vector for Cancer Immunotherapy: Current Understanding and Progress. Vaccines 2018, 6, 48. [Google Scholar] [CrossRef] [PubMed]
- Hochnadel, I.; Hoenicke, L.; Petriv, N.; Neubert, L.; Reinhard, E.; Hirsch, T.; Alfonso, J.C.L.; Suo, H.; Longerich, T.; Geffers, R.; et al. Safety and efficacy of prophylactic and therapeutic vaccine based on live-attenuated Listeria monocytogenes in hepatobiliary cancers. Oncogene 2022, 41, 2039–2053. [Google Scholar] [CrossRef] [PubMed]
- MacLennan, C.A.; Grow, S.; Ma, L.F.; Steele, A.D. The Shigella Vaccines Pipeline. Vaccines 2022, 10, 1376. [Google Scholar] [CrossRef]
- Ravichandran, M.; Tew, H.X.; Prabhakaran, G.; Parasuraman, S.; Norazmi, M.N. Live, Genetically Attenuated, Cold-Chain-Free Cholera Vaccine-A Research and Development Journey: Light at the End of a Long Tunnel. Malays. J. Med. Sci. 2022, 29, 1. [Google Scholar] [CrossRef]
- Mohamad, A.; Mursidi, F.A.; Zamri-Saad, M.; Amal, M.N.A.; Annas, S.; Monir, M.S.; Loqman, M.; Hairudin, F.; Al-Saari, N.; Ina-Salwany, M.Y. Laboratory and Field Assessments of Oral Vibrio Vaccine Indicate the Potential for Protection against Vibriosis in Cultured Marine Fishes. Animals 2022, 12, 133. [Google Scholar] [CrossRef]
- Uriza, P.J.; Trautman, C.; Palomino, M.M.; Fina Martin, J.; Ruzal, S.M.; Roset, M.S.; Briones, G. Development of an Antigen Delivery Platform Using Lactobacillus acidophilus Decorated With Heterologous Proteins: A Sheep in Wolf’s Clothing Story. Front. Microbiol. 2020, 11, 509380. [Google Scholar] [CrossRef]
- Zhou, M.; Tang, Y.; Xu, W.; Hao, X.; Li, Y.; Huang, S.; Xiang, D.; Wu, J. Bacteria-based immunotherapy for cancer: A systematic review of preclinical studies. Front. Immunol. 2023, 14, 1140463. [Google Scholar] [CrossRef]
- Hajra, D.; Datey, A.; Chakravortty, D. Attenuation Methods for Live Vaccines. Methods Mol. Biol. 2021, 2183, 331–356. [Google Scholar] [CrossRef]
- Vujanic, A.; Snibson, K.J.; Wee, J.L.; Edwards, S.J.; Pearse, M.J.; Scheerlinck, J.P.; Sutton, P. Long-term antibody and immune memory response induced by pulmonary delivery of the influenza Iscomatrix vaccine. Clin. Vaccine Immunol. 2012, 19, 79–83. [Google Scholar] [CrossRef]
- Roland, K.L.; Brenneman, K.E. Salmonella as a vaccine delivery vehicle. Expert Rev. Vaccines 2013, 12, 1033–1045. [Google Scholar] [CrossRef] [PubMed]
- Senevirathne, A.; Aganja, R.P.; Hewawaduge, C.; Lee, J.H. Inflammation-Related Immune-Modulatory SLURP1 Prevents the Proliferation of Human Colon Cancer Cells, and Its Delivery by Salmonella Demonstrates Cross-Species Efficacy against Murine Colon Cancer. Pharmaceutics 2023, 15, 2462. [Google Scholar] [CrossRef] [PubMed]
- Tan, S.; Gyles, C.L.; Wilkie, B.N. Evaluation of an aroA mutant Salmonella typhimurium vaccine in chickens using modified semisolid Rappaport Vassiliadis medium to monitor faecal shedding. Vet. Microbiol. 1997, 54, 247–254. [Google Scholar] [CrossRef]
- Datsenko, K.A.; Wanner, B.L. One-step inactivation of chromosomal genes in Escherichia coli K-12 using PCR products. Proc. Natl. Acad. Sci. USA 2000, 97, 6640–6645. [Google Scholar] [CrossRef] [PubMed]
- Matsuda, K.; Chaudhari, A.A.; Lee, J.H. Evaluation of safety and protection efficacy on cpxR and lon deleted mutant of Salmonella Gallinarum as a live vaccine candidate for fowl typhoid. Vaccine 2011, 29, 668–674. [Google Scholar] [CrossRef]
- Toso, J.F.; Gill, V.J.; Hwu, P.; Marincola, F.M.; Restifo, N.P.; Schwartzentruber, D.J.; Sherry, R.M.; Topalian, S.L.; Yang, J.C.; Stock, F.; et al. Phase I study of the intravenous administration of attenuated Salmonella typhimurium to patients with metastatic melanoma. J. Clin. Oncol. 2002, 20, 142–152. [Google Scholar] [CrossRef]
- Fuche, F.J.; Jones, J.A.; Ramachandran, G.; Higginson, E.E.; Simon, R.; Tennant, S.M. Deletions in guaBA and htrA but not clpX or rfaL constitute a live-attenuated vaccine strain of Salmonella Newport to protect against serogroup C(2-)C(3)Salmonella in mice. Hum. Vaccines Immunother. 2019, 15, 1427–1435. [Google Scholar] [CrossRef]
- Hone, D.; Morona, R.; Attridge, S.; Hackett, J. Construction of defined galE mutants of Salmonella for use as vaccines. J. Infect. Dis. 1987, 156, 167–174. [Google Scholar] [CrossRef]
- Hussain, A.; Ong, E.B.B.; Balaram, P.; Ismail, A.; Kien, P.K. Deletion of Salmonella enterica serovar Typhi tolC reduces bacterial adhesion and invasion toward host cells. Front. Microbiol. 2023, 14, 1301478. [Google Scholar] [CrossRef]
- Belousov, M.V.; Kosolapova, A.O.; Fayoud, H.; Sulatsky, M.I.; Sulatskaya, A.I.; Romanenko, M.N.; Bobylev, A.G.; Antonets, K.S.; Nizhnikov, A.A. OmpC and OmpF Outer Membrane Proteins of Escherichia coli and Salmonella enterica Form Bona Fide Amyloids. Int. J. Mol. Sci. 2023, 24, 5522. [Google Scholar] [CrossRef] [PubMed]
- Hyoung, K.J.; Hajam, I.A.; Lee, J.H. A consensus-hemagglutinin-based vaccine delivered by an attenuated Salmonella mutant protects chickens against heterologous H7N1 influenza virus. Oncotarget 2017, 8, 38780–38792. [Google Scholar] [CrossRef]
- Lalsiamthara, J.; Kim, J.H.; Lee, J.H. Engineering of a rough auxotrophic mutant Salmonella Typhimurium for effective delivery. Oncotarget 2018, 9, 25441–25457. [Google Scholar] [CrossRef] [PubMed]
- Kirthika, P.; Senevirathne, A.; Jawalagatti, V.; Park, S.; Lee, J.H. Deletion of the lon gene augments expression of Salmonella Pathogenicity Island (SPI)-1 and metal ion uptake genes leading to the accumulation of bactericidal hydroxyl radicals and host pro-inflammatory cytokine-mediated rapid intracellular clearance. Gut Microbes 2020, 11, 1695–1712. [Google Scholar] [CrossRef]
- Shetty, D.; Abrahante, J.E.; Chekabab, S.M.; Wu, X.; Korber, D.R.; Vidovic, S. Role of CpxR in Biofilm Development: Expression of Key Fimbrial, O-Antigen and Virulence Operons of Salmonella Enteritidis. Int. J. Mol. Sci. 2019, 20, 5146. [Google Scholar] [CrossRef]
- Lhocine, N.; Arena, E.T.; Bomme, P.; Ubelmann, F.; Prevost, M.C.; Robine, S.; Sansonetti, P.J. Apical invasion of intestinal epithelial cells by Salmonella typhimurium requires villin to remodel the brush border actin cytoskeleton. Cell Host Microbe 2015, 17, 164–177. [Google Scholar] [CrossRef]
- Fattinger, S.A.; Sellin, M.E.; Hardt, W.D. Salmonella effector driven invasion of the gut epithelium: Breaking in and setting the house on fire. Curr. Opin. Microbiol. 2021, 64, 9–18. [Google Scholar] [CrossRef] [PubMed]
- Kohanski, M.A.; Dwyer, D.J.; Hayete, B.; Lawrence, C.A.; Collins, J.J. A common mechanism of cellular death induced by bactericidal antibiotics. Cell 2007, 130, 797–810. [Google Scholar] [CrossRef]
- He, J.; Fu, L.H.; Qi, C.; Lin, J.; Huang, P. Metal peroxides for cancer treatment. Bioact. Mater. 2021, 6, 2698–2710. [Google Scholar] [CrossRef] [PubMed]
- Guiney, D.G.; Lesnick, M. Targeting of the actin cytoskeleton during infection by Salmonella strains. Clin. Immunol. 2005, 114, 248–255. [Google Scholar] [CrossRef]
- Chausse, A.M.; Roche, S.M.; Moroldo, M.; Hennequet-Antier, C.; Holbert, S.; Kempf, F.; Barilleau, E.; Trotereau, J.; Velge, P. Epithelial cell invasion by salmonella typhimurium induces modulation of genes controlled by aryl hydrocarbon receptor signaling and involved in extracellular matrix biogenesis. Virulence 2023, 14, 2158663. [Google Scholar] [CrossRef] [PubMed]
- Rosselin, M.; Virlogeux-Payant, I.; Roy, C.; Bottreau, E.; Sizaret, P.Y.; Mijouin, L.; Germon, P.; Caron, E.; Velge, P.; Wiedemann, A. Rck of Salmonella enterica, subspecies enterica serovar enteritidis, mediates zipper-like internalization. Cell Res. 2010, 20, 647–664. [Google Scholar] [CrossRef]
- Barilleau, E.; Vedrine, M.; Koczerka, M.; Burlaud-Gaillard, J.; Kempf, F.; Grepinet, O.; Virlogeux-Payant, I.; Velge, P.; Wiedemann, A. Investigation of the invasion mechanism mediated by the outer membrane protein PagN of Salmonella Typhimurium. BMC Microbiol. 2021, 21, 153. [Google Scholar] [CrossRef]
- Liu, T.; Zhang, L.; Joo, D.; Sun, S.C. NF-kappaB signaling in inflammation. Signal Transduct. Target. Ther. 2017, 2, 17023. [Google Scholar] [CrossRef]
- Sokol, C.L.; Luster, A.D. The chemokine system in innate immunity. Cold Spring Harb. Perspect. Biol. 2015, 7, a016303. [Google Scholar] [CrossRef]
- Pridmore, A.C.; Jarvis, G.A.; John, C.M.; Jack, D.L.; Dower, S.K.; Read, R.C. Activation of toll-like receptor 2 (TLR2) and TLR4/MD2 by Neisseria is independent of capsule and lipooligosaccharide (LOS) sialylation but varies widely among LOS from different strains. Infect. Immun. 2003, 71, 3901–3908. [Google Scholar] [CrossRef] [PubMed]
- Babolmorad, G.; Latif, A.; Domingo, I.K.; Pollock, N.M.; Delyea, C.; Rieger, A.M.; Allison, W.T.; Bhavsar, A.P. Toll-like receptor 4 is activated by platinum and contributes to cisplatin-induced ototoxicity. EMBO Rep. 2021, 22, e51280. [Google Scholar] [CrossRef] [PubMed]
- Yan, J.; Racaud-Sultan, C.; Pezier, T.; Edir, A.; Rolland, C.; Claverie, C.; Burlaud-Gaillard, J.; Olivier, M.; Velge, P.; Lacroix-Lamande, S.; et al. Intestinal organoids to model Salmonella infection and its impact on progenitors. Sci. Rep. 2024, 14, 15160. [Google Scholar] [CrossRef]
- Mambu, J.; Barilleau, E.; Fragnet-Trapp, L.; Le Vern, Y.; Olivier, M.; Sadrin, G.; Grepinet, O.; Taieb, F.; Velge, P.; Wiedemann, A. Rck of Salmonella Typhimurium Delays the Host Cell Cycle to Facilitate Bacterial Invasion. Front. Cell. Infect. Microbiol. 2020, 10, 586934. [Google Scholar] [CrossRef]
- Lisowski, C.; Dias, J.; Costa, S.; Silva, R.J.; Mano, M.; Eulalio, A. Dysregulated endolysosomal trafficking in cells arrested in the G(1) phase of the host cell cycle impairs Salmonella vacuolar replication. Autophagy 2022, 18, 1785–1800. [Google Scholar] [CrossRef]
- Hajam, I.A.; Lee, J.H. An Influenza HA and M2e Based Vaccine Delivered by a Novel Attenuated Salmonella Mutant Protects Mice against Homologous H1N1 Infection. Front. Microbiol. 2017, 8, 872. [Google Scholar] [CrossRef]
- Hur, J.; Lee, J.H. Enhancement of immune responses by an attenuated Salmonella enterica serovar Typhimurium strain secreting an Escherichia coli heat-labile enterotoxin B subunit protein as an adjuvant for a live Salmonella vaccine candidate. Clin. Vaccine Immunol. 2011, 18, 203–209. [Google Scholar] [CrossRef]
- Velge, P.; Wiedemann, A.; Rosselin, M.; Abed, N.; Boumart, Z.; Chausse, A.M.; Grepinet, O.; Namdari, F.; Roche, S.M.; Rossignol, A.; et al. Multiplicity of Salmonella entry mechanisms, a new paradigm for Salmonella pathogenesis. Microbiologyopen 2012, 1, 243–258. [Google Scholar] [CrossRef]
- Boddicker, J.D.; Jones, B.D. Lon protease activity causes down-regulation of Salmonella pathogenicity island 1 invasion gene expression after infection of epithelial cells. Infect. Immun. 2004, 72, 2002–2013. [Google Scholar] [CrossRef]
- Shah, J.; Desai, P.T.; Weimer, B.C. Genetic mechanisms underlying the pathogenicity of cold-stressed Salmonella enterica serovar typhimurium in cultured intestinal epithelial cells. Appl. Environ. Microbiol. 2014, 80, 6943–6953. [Google Scholar] [CrossRef]
- Feeney, A.; Kropp, K.A.; O’Connor, R.; Sleator, R.D. Cronobacter sakazakii: Stress survival and virulence potential in an opportunistic foodborne pathogen. Gut Microbes 2014, 5, 711–718. [Google Scholar] [CrossRef]
- Roche, S.M.; Holbert, S.; Trotereau, J.; Schaeffer, S.; Georgeault, S.; Virlogeux-Payant, I.; Velge, P. Salmonella Typhimurium Invalidated for the Three Currently Known Invasion Factors Keeps Its Ability to Invade Several Cell Models. Front. Cell. Infect. Microbiol. 2018, 8, 273. [Google Scholar] [CrossRef]
- Swanson, J.A.; Baer, S.C. Phagocytosis by zippers and triggers. Trends Cell Biol. 1995, 5, 89–93. [Google Scholar] [CrossRef] [PubMed]
- Ly, K.T.; Casanova, J.E. Mechanisms of Salmonella entry into host cells. Cell. Microbiol 2007, 9, 2103–2111. [Google Scholar] [CrossRef]
- Rosenkranz, A.A.; Slastnikova, T.A. Epidermal Growth Factor Receptor: Key to Selective Intracellular Delivery. Biochemistry 2020, 85, 967–1092. [Google Scholar] [CrossRef]
- Castanheira, S.; Garcia-Del Portillo, F. Salmonella Populations inside Host Cells. Front. Cell. Infect. Microbiol. 2017, 7, 432. [Google Scholar] [CrossRef]
- Mogensen, T.H. Pathogen recognition and inflammatory signaling in innate immune defenses. Clin. Microbiol. Rev. 2009, 22, 240–273. [Google Scholar] [CrossRef]
- Wang, M.; Gao, Z.; Zhang, Y.; Pan, L. Lactic acid bacteria as mucosal delivery vehicles: A realistic therapeutic option. Appl. Microbiol. Biotechnol. 2016, 100, 5691–5701. [Google Scholar] [CrossRef] [PubMed]
- Shu, C.H.; Yang, W.K.; Shih, Y.L.; Kuo, M.L.; Huang, T.S. Cell cycle G2/M arrest and activation of cyclin-dependent kinases associated with low-dose paclitaxel-induced sub-G1 apoptosis. Apoptosis 1997, 2, 463–470. [Google Scholar] [CrossRef]
- Maudet, C.; Mano, M.; Sunkavalli, U.; Sharan, M.; Giacca, M.; Forstner, K.U.; Eulalio, A. Functional high-throughput screening identifies the miR-15 microRNA family as cellular restriction factors for Salmonella infection. Nat. Commun. 2014, 5, 4718. [Google Scholar] [CrossRef]
- Kim, S.W.; Moon, K.H.; Baik, H.S.; Kang, H.Y.; Kim, S.K.; Bahk, J.D.; Hur, J.; Lee, J.H. Changes of physiological and biochemical properties of Salmonella enterica serovar Typhimurium by deletion of cpxR and lon genes using allelic exchange method. J. Microbiol. Methods 2009, 79, 314–320. [Google Scholar] [CrossRef] [PubMed]
- Shah, J.; Desai, P.T.; Chen, D.; Stevens, J.R.; Weimer, B.C. Preadaptation to cold stress in Salmonella enterica serovar Typhimurium increases survival during subsequent acid stress exposure. Appl. Environ. Microbiol. 2013, 79, 7281–7289. [Google Scholar] [CrossRef]
- Wu, J.; Pugh, R.; Laughlin, R.C.; Andrews-Polymenis, H.; McClelland, M.; Baumler, A.J.; Adams, L.G. High-throughput assay to phenotype Salmonella enterica Typhimurium association, invasion, and replication in macrophages. J. Vis. Exp. 2014, 90, e51759. [Google Scholar]
- Chomczynski, P.; Sacchi, N. Single-step method of RNA isolation by acid guanidinium thiocyanate-phenol-chloroform extraction. Anal. Biochem. 1987, 162, 156–159. [Google Scholar]
- Pfaffl, M.W. A new mathematical model for relative quantification in real-time RT-PCR. Nucleic Acids Res. 2001, 29, e45. [Google Scholar] [PubMed]
Bacteria | Features |
---|---|
JOL 401 | Salmonella Typhimurium wild type, SPI-1 invAE+, hilA+, avr+; SPI-2, amino acid permease; SPI-3, mgtC+; SPI4, ABC transporter; SPI5, pipB+ |
JOL 911 | JOL 401 ∆lon, ∆cpxR; smooth ST strain |
JOL 912 | JOL 401 ∆lon, ∆cpxR, Δasd; smooth ST strain |
JOL 1800 | JOL 912 ∆rfaL, O-antigen deficient strain, improved bacterial delivery vector; rough ST strain |
Gene | Primer | Sequence (5′ → 3′) |
---|---|---|
Nuclear factor-κB | Forward | TGGGACCAGCAAAGGTTATT |
Reverse | GATCCCATCCTCACAGTGTTT | |
Interferon-γ | Forward | ATGTCCAACGCAAAGCAATAC |
Reverse | ACCTCGAAACAGCATCTGAC | |
Cyclin D1 | Forward | CATCTACACCGACAACTCCATC |
Reverse | TCTGGCATTTTGGAGAGGAAG | |
Cyclin B1 | Forward | GGCTTTCTCTGATGTAATTCTTGC |
Reverse | GTATTTTGGTCTGACTGCTTGC | |
Cyclin B2 | Forward | CCTCCCTTTTCAGTCCGC |
Reverse | CTCCTGTGTCAATATTCTCCAAATC | |
Caspase 3 | Forward | AATGGACCTGTTGACCTGAAA |
Reverse | CACGGCAGGCCTGAATAA | |
Caspase 7 | Forward | CTGACTTCCTCTTCGCCTATTC |
Reverse | TCTGCATGATTTCCAGGTCTT | |
CXCL 8 | Forward | GAGAGTGATTGAGAGTGGACCAC |
Reverse | CACAACCCTCTGCACCCAGTTT | |
CXCL 10 | Forward | GGTGAGAAGAGATGTCTGAATCC |
Reverse | GTCCATCCTTGGAAGCACTGCA | |
GAPDH | Forward | CCCTTCATTGACCTCAACTACA |
Reverse | ATGACAAGCTTCCCGTTCTC |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kirthika, P.; Senevirathne, A.; Park, S.; Aganja, R.P.; Kim, I.-S.; Tae, H.-J.; Lee, J.H. Intracellular Survival and Pathogenicity Modulation of Salmonella Lon, CpxR, and RfaL Mutants Used as Live Bacterial Vectors under Abiotic Stress, Unveiling the Link between Stress Response and Virulence in Epithelial Cells. Int. J. Mol. Sci. 2024, 25, 9056. https://doi.org/10.3390/ijms25169056
Kirthika P, Senevirathne A, Park S, Aganja RP, Kim I-S, Tae H-J, Lee JH. Intracellular Survival and Pathogenicity Modulation of Salmonella Lon, CpxR, and RfaL Mutants Used as Live Bacterial Vectors under Abiotic Stress, Unveiling the Link between Stress Response and Virulence in Epithelial Cells. International Journal of Molecular Sciences. 2024; 25(16):9056. https://doi.org/10.3390/ijms25169056
Chicago/Turabian StyleKirthika, Perumalraja, Amal Senevirathne, Sungwoo Park, Ram Prasad Aganja, In-Shik Kim, Hyun-Jin Tae, and John Hwa Lee. 2024. "Intracellular Survival and Pathogenicity Modulation of Salmonella Lon, CpxR, and RfaL Mutants Used as Live Bacterial Vectors under Abiotic Stress, Unveiling the Link between Stress Response and Virulence in Epithelial Cells" International Journal of Molecular Sciences 25, no. 16: 9056. https://doi.org/10.3390/ijms25169056
APA StyleKirthika, P., Senevirathne, A., Park, S., Aganja, R. P., Kim, I. -S., Tae, H. -J., & Lee, J. H. (2024). Intracellular Survival and Pathogenicity Modulation of Salmonella Lon, CpxR, and RfaL Mutants Used as Live Bacterial Vectors under Abiotic Stress, Unveiling the Link between Stress Response and Virulence in Epithelial Cells. International Journal of Molecular Sciences, 25(16), 9056. https://doi.org/10.3390/ijms25169056