Comparative Study of Autogenic and Allogenic Chondrocyte Transplants on Polyethersulfone Scaffolds for Cartilage Regeneration
Abstract
:1. Introduction
- Assessment of the chondrogenic potential of autogenic and allogenic chondrocytes cultured on polyethersulfone membranes transplanted into articular cartilage lesions in rabbits.
- Comparison of the regenerated tissues between study groups.
- Evaluation of the stability of the regenerated tissues 8 and 12 weeks after operation within groups. These time points were used because after 8 weeks we should observe regeneration and after 12 weeks we are checking the stability of the regeneration.
2. Results
2.1. In Vitro Study
2.1.1. Number of Cells and Observation of Chondrocytes with Their Products after Cultivation
2.1.2. Elementary Analysis
2.2. In Vivo Study
Microscopic and Macroscopic Evaluation
3. Discussion
4. Materials and Methods
4.1. Scaffolds
4.2. Rabbits
4.3. Removal of the Cartilage and Lesion Creation
4.4. Chondrocyte Isolation
4.5. Culture of Chondrocytes
4.6. Implantation of Chondrocyte Transplants
4.7. Termination of the Animal Experiment
4.8. SEM Observation
4.9. Hoechst Staining Procedure
4.10. Recovery of the Cells and Their Products from PES Scaffolds
4.11. Elemental Analysis
4.12. The Macroscopic Analysis
4.13. The Microscopic Evaluation
4.14. Statistical Analysis
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Sophia Fox, A.J.; Bedi, A.; Rodeo, S.A. The basic science of articular cartilage: Structure, composition, and function. Sports Health 2009, 1, 461–468. [Google Scholar] [CrossRef]
- Zhang, L.; Hu, J.; Athanasiou, K.A. The role of tissue engineering in articular cartilage repair and regeneration. Crit. Rev. Biomed. Eng. 2009, 37, 1–57. [Google Scholar] [CrossRef] [PubMed]
- Iyer, K.M. The Knee Joint; Springer Editions: New York, NY, USA, 2013; ISBN 9781447144625. [Google Scholar]
- Walter, S.G.; Ossendorff, R.; Schildberg, F.A. Articular cartilage regeneration and tissue engineering models: A systematic review. Arch. Orthop. Trauma Surg. 2019, 139, 305–316. [Google Scholar] [CrossRef]
- Krishnan, Y.; Grodzinsky, A.J. Cartilage diseases. Matrix Biol. 2018, 71–72, 51–69. [Google Scholar] [CrossRef]
- Oliveira, M.C.; Vullings, J.; van de Loo, F.A.J. Osteoporosis and osteoarthritis are two sides of the same coin paid for obesity. Nutrition 2020, 70, 110486. [Google Scholar] [CrossRef] [PubMed]
- Temenoff, J.S.; Mikos, A.G. Review: Tissue engineering for regeneration of articular cartilage. Biomaterials 2000, 21, 431–440. [Google Scholar] [CrossRef]
- Curl, W.W.; Krome, J.; Gordon, E.S.; Rushing, J.; Smith, B.P.; Poehling, G.G. Cartilage injuries: A review of 31,516 knee arthroscopies. Arthroscopy 1997, 13, 456–460. [Google Scholar] [CrossRef] [PubMed]
- Widuchowski, W.; Widuchowski, J.; Trzaska, T. Articular cartilage defects: Study of 25,124 knee arthroscopies. Knee 2007, 14, 177–182. [Google Scholar] [CrossRef] [PubMed]
- Weinstein, A.M.; Rome, B.N.; Reichmann, W.M.; Collins, J.E.; Burbine, S.A.; Thornhill, T.S.; Wright, J.; Katz, J.N.; Losina, E. Estimating the burden of total knee replacement in the United States. J. Bone Jt. Surg. 2013, 95, 385–392. [Google Scholar] [CrossRef]
- Kwon, H.; Brown, W.E.; Lee, C.A.; Wang, D.; Paschos, N.; Hu, J.C.; Athanasiou, K.A. Surgical and tissue engineering strategies for articular cartilage and meniscus repair. Nat. Rev. Rheumatol. 2019, 15, 550–570. [Google Scholar] [CrossRef]
- Zhao, Z.; Fan, C.; Chen, F.; Sun, Y.; Xia, Y.; Ji, A.; Wang, D. Progress in Articular Cartilage Tissue Engineering: A Review on Therapeutic Cells and Macromolecular Scaffolds. Macromol. Biosci. 2019, 20, 1900278. [Google Scholar] [CrossRef]
- Medvedeva, E.V.; Grebenik, E.A.; Gornostaeva, S.N.; Telpuhov, V.I.; Lychagin, A.V.; Timashev, P.S.; Chagin, A.S. Repair of damaged articular cartilage: Current approaches and future directions. Int. J. Mol. Sci. 2018, 19, 2366. [Google Scholar] [CrossRef] [PubMed]
- Brittberg, M. Symposium Scaffold based Autologous Chondrocyte Implantation: The Surgical Technique. Asian J Arthrosc. 2019, 4, 23–26. [Google Scholar] [CrossRef]
- Wasyłeczko, M.; Sikorska, W.; Chwojnowski, A. Review of synthetic and hybrid scaffolds in cartilage tissue engineering. Membranes 2020, 10, 348. [Google Scholar] [CrossRef]
- Xue, X.; Hu, Y.; Deng, Y.; Su, J. Recent Advances in Design of Functional Biocompatible Hydrogels for Bone Tissue Engineering. Adv. Funct. Mater. 2021, 31, 2009432. [Google Scholar] [CrossRef]
- Tamaddon, M.; Gilja, H.; Wang, L.; Oliveira, J.M.; Sun, X.; Tan, R.; Liu, C. Osteochondral scaffolds for early treatment of cartilage defects in osteoarthritic joints: From bench to clinic. Biomater. Transl. 2020, 1, 3–17. [Google Scholar]
- Baranowski, M.; Wasyłeczko, M.; Kosowska, A.; Plichta, A.; Kowalczyk, S.; Chwojnowski, A.; Bielecki, W.; Czubak, J. Regeneration of Articular Cartilage Using Membranes of Polyester Scaffolds in a Rabbit Model. Pharmaceutics 2022, 14, 1016. [Google Scholar] [CrossRef]
- Lam, A.T.L.; Reuveny, S.; Oh, S.K.W. Human mesenchymal stem cell therapy for cartilage repair: Review on isolation, expansion, and constructs. Stem Cell Res. 2020, 44, 101738. [Google Scholar] [CrossRef] [PubMed]
- Huang, B.J.; Hu, J.C.; Athanasiou, K.A. Cell-based tissue engineering strategies used in the clinical repair of articular cartilage. Biomaterials 2016, 98, 1–22. [Google Scholar] [CrossRef]
- Demoor, M.; Ollitrault, D.; Gomez-Leduc, T.; Bouyoucef, M.; Hervieu, M.; Fabre, H.; Lafont, J.; Denoix, J.M.; Audigié, F.; Mallein-Gerin, F.; et al. Cartilage tissue engineering: Molecular control of chondrocyte differentiation for proper cartilage matrix reconstruction. Biochim. Biophys. Acta (BBA)-Gen. Subj. 2014, 1840, 2414–2440. [Google Scholar] [CrossRef]
- Ahmadi, F.; Giti, R.; Mohammadi-Samani, S.; Mohammadi, F. Biodegradable Scaffolds for Cartilage Tissue Engineering GMJ. Gmj 2017, 6, 70–80. [Google Scholar] [CrossRef]
- Kalkan, R.; Nwekwo, C.W.; Adali, T. The Use of Scaffolds in Cartilage Regeneration. Eukaryot. Gene Expr. 2018, 28, 343–348. [Google Scholar]
- Eltom, A.; Zhong, G.; Muhammad, A. Scaffold Techniques and Designs in Tissue Engineering Functions and Purposes: A Review. Adv. Mater. Sci. Eng. 2019, 2019, 3429527. [Google Scholar] [CrossRef]
- Armiento, A.R.; Stoddart, M.J.; Alini, M.; Eglin, D. Biomaterials for articular cartilage tissue engineering: Learning from biology. Acta Biomater. 2018, 65, 1–20. [Google Scholar] [CrossRef] [PubMed]
- Jeuken, R.M.; Roth, A.K.; Peters, R.J.R.W.; van Donkelaar, C.C.; Thies, J.C.; van Rhijn, L.W.; Emans, P.J. Polymers in cartilage defect repair of the knee: Current status and future prospects. Polymers 2016, 8, 219. [Google Scholar] [CrossRef] [PubMed]
- Setayeshmehr, M.; Esfandiari, E.; Rafieinia, M.; Hashemibeni, B.; Taheri-Kafrani, A.; Samadikuchaksaraei, A.; Kaplan, D.L.; Moroni, L.; Joghataei, M.T. Hybrid and composite scaffolds based on extracellular matrices for cartilage tissue engineering. Tissue Eng. Part B Rev. 2019, 25, 202–224. [Google Scholar] [CrossRef]
- Chen, S.; Chen, X.; Geng, Z.; Su, J. The horizon of bone organoid: A perspective on construction and application. Bioact. Mater. 2022, 18, 15–25. [Google Scholar] [CrossRef] [PubMed]
- Sun, C.; Kang, J.; Yang, C.; Zheng, J.; Su, Y.; Dong, E.; Liu, Y.; Yao, S.; Shi, C.; Pang, H.; et al. Additive manufactured polyether-ether-ketone implants for orthopaedic applications: A narrative review. Biomater. Transl. 2022, 3, 116–133. [Google Scholar] [CrossRef] [PubMed]
- Irawan, V.; Akon, T.S.; Toshiyuki, H. Collagen Scaffolds in Cartilage Tissue Engineering and Relevant Approaches for Future Development. Tissue Eng. Regen. Med. 2018, 15, 673–697. [Google Scholar] [CrossRef]
- Płończak, M.; Wasyłeczko, M.; Jakutowicz, T.; Chwojnowski, A. Intraarticular Implantation of Autologous Chondrocytes Placed on Collagen or Polyethersulfone Scaffolds: An Experimental Study in Rabbits. Polymers 2023, 15, 2360. [Google Scholar] [CrossRef]
- Wasyłeczko, M.; Krysiak, Z.J.; Łukowska, E.; Gruba, M.; Sikorska, W.; Kruk, A.; Dulnik, J.; Czubak, J.; Chwojnowski, A. Three-dimensional scaffolds for bioengineering of cartilage tissue. Biocybern. Biomed. Eng. 2022, 42, 494–511. [Google Scholar] [CrossRef]
- Wasyłeczko, M.; Sikorska, W.; Przytulska, M.; Dulnik, J.; Chwojnowski, A. Polyester membranes as 3D scaffolds for cell culture. Desalin. Water Treat. 2021, 214, 181–193. [Google Scholar] [CrossRef]
- Silva, D.; Kaduri, M.; Poley, M.; Adir, O.; Krinsky, N.; Shainsky-roitman, J.; Schroeder, A. Mini Review Biocompatibility, biodegradation and excretion of polylactic acid (PLA) in medical implants and theranostic systems. Chem. Eng. J. 2018, 340, 9–14. [Google Scholar] [CrossRef]
- Wen, Y.T.; Dai, N.T.; Hsu, S. hui Biodegradable water-based polyurethane scaffolds with a sequential release function for cell-free cartilage tissue engineering. Acta Biomater. 2019, 88, 301–313. [Google Scholar] [CrossRef] [PubMed]
- Mahboudi, H.; Soleimani, M.; Enderami, S.E.; Kehtari, M.; Hanaee- Ahvaz, H.; Ghanbarian, H.; Bandehpour, M.; Nojehdehi, S.; Mirzaei, S.; Kazemi, B. The effect of nanofibre-based polyethersulfone (PES) scaffold on the chondrogenesis of human induced pluripotent stem cells. Artif. Cells Nanomed. Biotechnol. 2018, 46, 1948–1956. [Google Scholar] [CrossRef] [PubMed]
- Wu, S.; Wu, X.; Wang, X.; SU, J. Hydrogels for bone organoid construction: From a materiobiological perspective. J. Mater. Sci. Technol. 2023, 136, 21–31. [Google Scholar]
- Wasyłeczko, M.; Remiszewska, E.; Sikorska, W.; Dulnik, J.; Chwojnowski, A. Scaffolds for Cartilage Tissue Engineering from a Blend of Polyethersulfone and Polyurethane Polymers. Molecules 2023, 28, 3195. [Google Scholar] [CrossRef]
- Wasyłeczko, M.; Wojciechowski, C.; Chwojnowski, A. Polyethersulfone Polymer for Biomedical Applications and Biotechnology. Int. J. Mol. Sci. 2024, 25, 4233. [Google Scholar] [CrossRef] [PubMed]
- Song, X.; Ji, H.; Zhao, W.; Sun, S.; Zhao, C. Hemocompatibility enhancement of polyethersulfone membranes: Strategies and challenges. Adv. Membr. 2021, 1, 100013. [Google Scholar] [CrossRef]
- Irfan, M.; Idris, A. Overview of PES biocompatible/hemodialysis membranes: PES-blood interactions and modification techniques. Mater. Sci. Eng. C 2015, 56, 574–592. [Google Scholar] [CrossRef]
- Chen, Y.A.; Ou, S.M.; Lin, C.C. Influence of Dialysis Membranes on Clinical Outcomes: From History to Innovation. Membranes 2022, 12, 152. [Google Scholar] [CrossRef]
- Woźniak-Budych, M.J. Polymeric membranes for biomedical applications. In Membrane Technologies; Walter de Gruyter GmbH: Berlin, Germany; Boston, MA, USA, 2022; pp. 111–140. [Google Scholar] [CrossRef]
- Mirek, A.; Grzeczkowicz, M.; Belaid, H.; Bartkowiak, A.; Barranger, F.; Abid, M.; Wasyłeczko, M.; Pogorielov, M.; Bechelany, M.; Lewińska, D. Electrospun UV-cross-linked polyvinylpyrrolidone fibers modified with polycaprolactone/polyethersulfone microspheres for drug delivery. Biomater. Adv. 2023, 147, 213330. [Google Scholar] [CrossRef]
- Peterson, L.; Minas, T.; Brittberg, M.; Nilsson, A.; Sjogren-jansson, E.; Lindahl, A. Two- to 9-Year Outcome After Autologous Chondrocyte Transplantation of the Knee. Clin. Orthop. Relat. Res. 2000, 374, 212–234. [Google Scholar]
- Metineren, H.; Dülgeroğlu, T.C. Regenerative effect of platelet-rich fibrin on articular cartilage defects in an experimental rat model. Eur. Res. J. 2018, 5, 299–305. [Google Scholar] [CrossRef]
- O’Driscoll, S.W.; Marx, R.G.; Beaton, D.E.; Miura, Y.; Gallay, S.H.; Fitzsimmons, J.S. Validation of a simple histological-histochemical cartilage scoring system. Tissue Eng. 2001, 7, 313–320. [Google Scholar] [CrossRef]
- Buckwalter, J.A.; Mankin, H.J. Articular cartilage: Degeneration and osteoarthritis, repair, regeneration, and transplantation. Instr. Course Lect. 1998, 47, 487–504. [Google Scholar] [PubMed]
- Shah, M.R.; Kaplan, K.M.; Meislin, R.J.; Bosco, J.A. Articular cartilage restoration of the knee. Bull. NYU Hosp. Jt. Dis. 2007, 65, 51–60. [Google Scholar]
- Benya, P.D.; Padilla, S.R.; Nimni, M.E. Independent regulation of collagen types by chondrocytes during the loss of differentiated function in culture. Cell 1978, 15, 1313–1321. [Google Scholar] [CrossRef] [PubMed]
- Benya, P.D.; Shaffer, J.D. Dedifferentiated chondrocytes reexpress the differentiated collagen phenotype when cultured in agarose gels. Cell 1982, 30, 215–224. [Google Scholar] [CrossRef] [PubMed]
- Adkisson, H.D.; Martin, J.A.; Amendola, R.L.; Milliman, C.; Mauch, K.A.; Katwal, A.B.; Seyedin, M.; Amendola, A.; Streeter, P.R.; Buckwalter, J.A. The potential of human allogeneic juvenile chondrocytes for restoration of articular cartilage. Am. J. Sports Med. 2010, 38, 1324–1333. [Google Scholar] [CrossRef]
- Moskalewski, S.; Hyc, A.; Osiecka-Iwan, A. Immune response by host after allogeneic chondrocyte transplant to the cartilage. Microsc. Res. Tech. 2002, 58, 3–13. [Google Scholar] [CrossRef]
- Moskolewski, S.; Kawiak, J.; Rymaszewski, T. Local Cellular Response Evoked by Cartilage Formed after Auto- and Allogeneic Transplantation of Isolated Chondrocytes. Transplantation 1966, 4, 572–581. [Google Scholar]
- Moskalewski, S.; Hyc, A.; Grzela, T.; Malejczyk, J. Differences in cartilage formed intramuscularly or in joint surface defects by syngeneic rat chondrocytes isolated from the articular-epiphyseal cartilage complex. Cell Transplant. 1993, 2, 467–473. [Google Scholar] [CrossRef]
- Sekiya, I.; Vuoristo, J.T.; Larson, B.L.; Prockop, D.J. In vitro cartilage formation by human adult stem cells from bone marrow stroma defines the sequence of cellular and molecular events during chondrogenesis. Proc. Natl. Acad. Sci. USA 2002, 99, 4397–4402. [Google Scholar] [CrossRef]
- Sekiya, I.; Larson, B.L.; Vuoristo, J.T.; Reger, R.L.; Prockop, D.J. Comparison of effect of BMP-2, -4, and -6 on in vitro cartilage formation of human adult stem cells from bone marrow stroma. Cell Tissue Res. 2005, 320, 269–276. [Google Scholar] [CrossRef] [PubMed]
- Sekiya, I.; Colter, D.C.; Prockop, D.J. BMP-6 enhances chondrogenesis in a subpopulation of human marrow stromal cells. Biochem. Biophys. Res. Commun. 2001, 284, 411–418. [Google Scholar] [CrossRef]
- Johnstone, B.; Hering, T.M.; Caplan, A.I.; Goldberg, V.M.; Yoo, J.U. In vitro chondrogenesis of bone marrow-derived mesenchymal progenitor cells. Exp. Cell Res. 1998, 238, 265–272. [Google Scholar] [CrossRef]
- Jakobsen, R.B.; Østrup, E.; Zhang, X.; Mikkelsen, T.S.; Brinchmann, J.E. Analysis of the effects of five factors relevant to in vitro chondrogenesis of human mesenchymal stem cells using factorial design and high throughput mRNA-profiling. PLoS ONE 2014, 9, e96615. [Google Scholar] [CrossRef]
- Yoo, J.U.; Barthel, T.S.; Nishimura, K.; Solchaga, L.; Caplan, A.I.; Goldberg, V.M.; Johnstone, B. The chondrogenic potential of human bone-marrow-derived mesenchymal progenitor cells. J. Bone Jt. Surg. 1998, 80, 1745–1757. [Google Scholar] [CrossRef]
- Frenz, D.A.; Liu, W.; Williams, J.D.; Hatcher, V.; Galinovic-Schwartz, V.; Flanders, K.C.; Van De Water, T.R. Induction of chondrogenesis: Requirement for synergistic interaction of basic fibroblast growth factor and transforming growth factor-beta. Development 1994, 120, 415–424. [Google Scholar] [CrossRef] [PubMed]
- Mackay, A.M.; Beck, S.C.; Murphy, J.M.; Barry, F.P.; Chichester, C.O.; Pittenger, M.F. Chondrogenic differentiation of cultured human mesenchymal stem cells from marrow. Tissue Eng. 1998, 4, 415–428. [Google Scholar] [CrossRef] [PubMed]
- Frenkel, S.R.; Toolan, B.; Menche, D.; Pitman, M.I.; Pachence, J.M. Chondrocyte transplantation using a collagen bilayer matrix for cartilage repair. J. Bone Jt. Surg. Ser. B 1997, 79, 831–836. [Google Scholar] [CrossRef]
- Harris, J.D.; Flanigan, D.C. Management of Knee Articular Cartilage Injuries. Mod. Arthrosc. 2011, 6, 103–128. [Google Scholar] [CrossRef]
- Hunziker, E.B. Articular cartilage repair: Basic science and clinical progress. A review of the current status and prospects. Osteoarthr. Cartil. 2002, 10, 432–463. [Google Scholar] [CrossRef]
- Moskalewski, S.; Osiecka-iwan, A.; Jozwiak, J. Mechanical Barrier as a Protection Against Rejection of Allogeneic Cartilage Formed in Joint Surface Defects in Rats. Cell Transplant. 2000, 9, 349–357. [Google Scholar]
- Bugbee, W.; Cavallo, M.; Giannini, S. Osteochondral Allograft Transplantation in the Knee. J. Knee Surg. 2012, 25, 109–116. [Google Scholar] [CrossRef]
- Pritzker, K.P.; Gross, A.E.; Langer, F.; Luk, S.C.; Houpt, J.B. Articular Cartilage Transplantation. Hum. Pathol. 1977, 8, 635–651. [Google Scholar] [CrossRef] [PubMed]
- Division, O.; Chaim, T.; Medical, S.; Hashomer, T. Fresh osteochondral allografts at the knee joint: Good functional results in a follow-up study of more than 15 years. Arch. Orthop. Trauma Surg. 1997, 116, 423–425. [Google Scholar]
- Pelttari, K.; Pippenger, B.; Mumme, M.; Feliciano, S.; Scotti, C.; Mainil-varlet, P.; Procino, A.; Rechenberg, B.V.; Schwamborn, T.; Jakob, M.; et al. Adult human neural crest—Derived cells for articular cartilage repair. Sci. Transl. Med. 2014, 6, 251ra119. [Google Scholar]
- Barandun, M.; Iselin, L.D.; Santini, F.; Pansini, M.; Scotti, C.; Baumhoer, D.; Bieri, O.; Studler, U.; Wirz, D.; Haug, M.; et al. Generation and Characterization of Osteochondral Grafts With Human Nasal Chondrocytes. J. Orthop. Res. 2015, 33, 1111–1119. [Google Scholar] [CrossRef]
- Farr, J.; Cole, B.; Dhawan, A.; Kercher, J. Clinical cartilage restoration: Evolution and Overview. Clin. Cartil. Restor. Evol. Overv. 2011, 469, 2696–2705. [Google Scholar] [CrossRef]
- Peterson, L.; Brittberg, M.; Kiviranta, I.; Akerlund, E.L.; Lindahl, A. Autologous Chondrocyte Transplantation. Biomechanics and long-term durability. Am. J. Sports Med. 2002, 30, 2–12. [Google Scholar] [PubMed]
- Zhang, Q.; Lu, H.; Kawazoe, N.; Chen, G. Pore size effect of collagen scaffolds on cartilage regeneration. Acta Biomater. 2014, 10, 2005–2013. [Google Scholar] [CrossRef]
Number of Weeks | Content of Nitrogen in Scaffolds (% ± SD) | Content of Protein in Scaffolds (% ± SD) |
---|---|---|
0 | 0.48 ± 0.16 | 0.00 |
2 | 0.48 ± 0.21 | 3.00 ± 1.33 |
3 | 0.81 ± 0.12 | 5.05 ± 0.73 |
4 | 1.08 ± 0.21 | 6.72 ± 1.33 |
5 | 1.29 ± 0.09 | 8.06 ± 0.57 |
6 | 1.47 ± 0.18 | 9.20 ± 1.13 |
Group | Macroscopic Evaluation Median (Range) | Microscopic Evaluation Median (Range) | ||||
---|---|---|---|---|---|---|
8 Weeks | 12 Weeks | p-Value | 8 Weeks | 12 Weeks | p-Value | |
I | 11 (0–11) | 11 (0–11) | 0.471 | 16 (0–19) | 8.5 (1–19) | 0.367 |
II | 11 (8–11) | 9 (0–11) | 0.047 | 19 (16–20) | 17.5 (0–20) | 0.092 |
III | 11 (11–11) | 8.5 (0–11) | 0.027 | 11 (3–18) | 17 (1–20) | 0.187 |
IV | 11 (11–11) | 6.5 (0–9) | < 0.001 | 17.3 (0–20) | 13 (0–18) | 0.140 |
Time (Weeks) | Macroscopic Evaluation—Median (Range) | ||||
Group I | Group II | Group III | Group IV | p-Value | |
8 | 11 (0–11) | 11 (8–11) | 11 (11–11) | 11 (11–11) | 0.275 |
12 | 11 (0–11) | 9 (0–11) | 8.5 (0–11) | 6.5 (0–9) | 0.102 |
Time (Weeks) | Microscopic Evaluation—Median (Range) | ||||
Group I | Group II | Group III | Group IV | p-Value | |
8 | 16 (0–19) | 19 (16–20) | 11 (3–18) | 17.3 (0–20) | 0.001 |
12 | 8.5 (1–19) | 17.5 (0–20) | 17 (1–20) | 13 (0–18) | 0.138 |
Numbers of Groups Compared | p-Value * |
---|---|
I vs. II | 0.002 |
I vs. III | 0.027 |
I vs. IV | 0.462 |
II vs. III | <0.001 |
II vs. IV | 0.379 |
III vs. IV | 0.126 |
The Graft Assessment Maximal Score is 12 Points | Criteria | Points |
---|---|---|
Degree of defect repair | Level with surrounding cartilage | 4 |
75% repair of defect depth | 3 | |
50% repair of defect depth | 2 | |
25% repair of defect depth | 1 | |
0% repair of defect depth | 0 | |
Integration to the border zone | Complete integration with surrounding cartilage | 4 |
Demarcating border < 1 mm | 3 | |
¾ of graft integrated, ¼ with a notable border > 1 mm | 2 | |
½ of graft integrated with surrounding cartilage, ½ with a notable border > 1 mm | 1 | |
From no contact to ¼ of graft integrated with surrounding cartilage | 0 | |
Macroscopic appearance | Intact smooth surface | 4 |
Fibrillated surface | 3 | |
Small, scattered fissures or cracks | 2 | |
Several, small or few but large fissures | 1 | |
Total degeneration of the grafted area | 0 |
Category | Subcategory | Characteristic | Score |
---|---|---|---|
Nature of predominant tissue | Cellular morphology | Hyaline articular cartilage | 4 |
Young hyaline cartilage | 3 | ||
Incompletely differentiated mesenchyme | 2 | ||
Fibrous cartilage | 1 | ||
Fibrous tissue or bone | 0 | ||
Structural characteristics | Surface regularity | Smooth and intact | 3 |
Superficial horizontal lamination | 2 | ||
Fissures 25–100% of the thickness | 1 | ||
Severe disruption including fibrillation | 0 | ||
Structural integrity | Normal | 2 | |
Slight disruption including cysts | 1 | ||
Severe disintegration | 0 | ||
Thickness | 100% of normal adjacent cartilage | 2 | |
50–99% of normal cartilage | 1 | ||
0–50% of normal cartilage | 0 | ||
Bonding to the adjacent cartilage | Bonded at both ends of the graft | 2 | |
Bonded at one end or partially at both ends | 1 | ||
Not bonded | 0 | ||
Stage of degenerative cellular changes | Hypocellularity | Normal cellularity | 3 |
Slight hypocellularity | 2 | ||
Moderate hypocellularity | 1 | ||
Severe hypocellularity | 0 | ||
Degenerative changes | None | 2 | |
Moderate | 1 | ||
Significant changes | 0 | ||
Subchondral bone reconstruction | 100% | 2 | |
50–99% | 1 | ||
<50% | 0 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jakutowicz, T.; Wasyłeczko, M.; Płończak, M.; Wojciechowski, C.; Chwojnowski, A.; Czubak, J. Comparative Study of Autogenic and Allogenic Chondrocyte Transplants on Polyethersulfone Scaffolds for Cartilage Regeneration. Int. J. Mol. Sci. 2024, 25, 9075. https://doi.org/10.3390/ijms25169075
Jakutowicz T, Wasyłeczko M, Płończak M, Wojciechowski C, Chwojnowski A, Czubak J. Comparative Study of Autogenic and Allogenic Chondrocyte Transplants on Polyethersulfone Scaffolds for Cartilage Regeneration. International Journal of Molecular Sciences. 2024; 25(16):9075. https://doi.org/10.3390/ijms25169075
Chicago/Turabian StyleJakutowicz, Tomasz, Monika Wasyłeczko, Maciej Płończak, Cezary Wojciechowski, Andrzej Chwojnowski, and Jarosław Czubak. 2024. "Comparative Study of Autogenic and Allogenic Chondrocyte Transplants on Polyethersulfone Scaffolds for Cartilage Regeneration" International Journal of Molecular Sciences 25, no. 16: 9075. https://doi.org/10.3390/ijms25169075
APA StyleJakutowicz, T., Wasyłeczko, M., Płończak, M., Wojciechowski, C., Chwojnowski, A., & Czubak, J. (2024). Comparative Study of Autogenic and Allogenic Chondrocyte Transplants on Polyethersulfone Scaffolds for Cartilage Regeneration. International Journal of Molecular Sciences, 25(16), 9075. https://doi.org/10.3390/ijms25169075