Phosphatases: Decoding the Role of Mycorrhizal Fungi in Plant Disease Resistance
Abstract
:1. Introduction
2. Mycorrhizal Fungi-Induced Host Plant Resistance to Disease
2.1. The Array of Plant Pathologies That Mycorrhizal Fungi Can Suppress
Pathogen | Disease Name | Pathogen | Host Plant | Mycorrhizal Fungal Names | Mycorrhizal Types | Mechanism of Disease Resistance |
---|---|---|---|---|---|---|
Oomycota | Late blight disease | Phytophthora infestans | Solanum tuberosum | Glomus sp. | Arbuscular mycorrhizae | Inducing systemic acquired resistance by activating plant defense genes (such as PR1 and PR2), reducing the leaf infection index, and enhancing resistance to late blight [23] |
Fungi | Fusarium wilt | Fusarium oxysporum | Solanum lycopersicum | Glomus mosseae | Arbuscular mycorrhizae | Combating soil-borne pathogens in tomatoes, providing bioprotection effects [27] |
Fusarium oxysporum | Salvia miltiorrhiza | Glomus versiforme | Arbuscular mycorrhizae | Mycorrrhizal colonization enhances the host plant’s resistance to fungal pathogens by strengthening photosynthesis, root structure, and inducing the expression of defense enzymes and defense-related genes to combat infection [28] | ||
Fusarium oxysporum | Musa acuminate | Rhizophagus irregularis | Arbuscular mycorrhizae | Promoting the growth of banana plants, inducing the expression of defense-related genes, aiding in the suppression of wilt disease [29] | ||
Fusarium oxysporum | Citrullus lanatus | Funneliformis mosseae or Glomus versiforme | Arbuscular mycorrhizae | By inducing the root exudation of phthalic esters, altering soil enzyme activity and bacterial community composition, wilt disease in watermelon is mitigated [30] | ||
White Rot | Erysiphe alphitoides | Quercus robur | The commercially available mycorrhizal inoculant Ectovit®, which contains a variety of mycorrhizal fungi, was used | Multiple mycorrhizal fungi | Mycorrhizal fungi can significantly increase the levels of polyamines, soluble osmotic regulators (such as proline), and phenolic compounds in plant leaves, thereby enhancing the plant’s resistance to powdery mildew [31] | |
Rust infection | Melampsora larici-populina | Populus trichocarpa × deltoides | Hebeloma mesophaeum | Ectomycorrhizae | By mitigating the reduction in the synthesis of phenolic compounds triggered by rust disease, the negative impact of rust on the host plant is compensated for [32] | |
Verticillium wilt | Rhizoctonia solani | Cucumis sativus | Glomus mosseae and Glomus clarum | Arbuscular mycorrhizae | Mycorrhizal fungi significantly reduced disease severity and increased plant biomass, potentially through mechanisms such as improving nutritional status, reducing direct competition with pathogens, and inducing plant immunity [33] | |
Verticillium dahliae | Gossypium hirsutum | Glomus etunicatum, Glomus intraradices, Glomus versiforme | Arbuscular mycorrhizae | Mycorrhizal fungi exhibit competitive interactions with the pathogen V. dahliae, which can alleviate the disease effects of V. dahliae on cotton and enhance the plant’s resistance to the disease [34] | ||
Verticillium dahliae | Gossypium hirsutum | Rhizophagus irregularis | Arbuscular mycorrhizae | By inducing the expression of plant resistance-related genes and the potential release of volatile compounds by mycorrhizal fungi symbionts, which directly affect the growth of pathogenic fungi [35] | ||
Early blight disease | Alternaria solani | Solanum lycopersicum | Glomus intraradices | Arbuscular mycorrhizae | Reducing the susceptibility of tomatoes to A. solani, diminishing disease symptoms, is akin to the induction of systemic resistance (ISR) [36] | |
Damping off | Rhizoctonia solani | Pinus tabulaeformis | Suillus laricinus, S. tomentosus, Amanita vaginata, Gomphidius viscidus | Ectomycorrhizae | Inhibiting the growth of pathogens by producing hydrolytic enzymes (chitinase, β-1,3-glucanase, and β-glucosidase) that participate in the parasitic action on the fungi, altering the morphology of the pathogen [15] | |
Black pod disease | Phytophthora megakarya | Theobroma cacao | Gigaspora margarita and Acaulospora tuberculata | Arbuscular mycorrhizae | Promoting the growth of cocoa, enhancing resistance to black pod disease, and increasing plant growth parameters, such as height, root, and stem weight, as well as phosphorus uptake [37] | |
Black foot disease | Cylindrocarpon macrodidymum | Vitis Rupestris | Glomus intraradices | Arbuscular mycorrhizae | Reducing the susceptibility of grapevine roots to black foot disease, enhancing the plant’s resistance to abiotic or biotic stresses, and mitigating the severity of the disease [38] | |
Decline syndrome | Phytophthora cinnamomi | Quercus ilex | Tomentella spp., Russula spp. | Ectomycorrhizae | Affecting the vitality of oak roots and the abundance of mycorrhizal fungi, the interplay of soil properties, topography, and root infection by P. cinnamomi influences the abundance of mycorrhizal fungi [7] | |
Prokaryotes | Bacterial wilt disease | Ralstonia solanacearum | Solanum lycopersicum | Glomus mosseae, Scutellospora sp., Gigaspora margarita | Arbuscular mycorrhizae | The integration of Glomus mosseae with the pathogen significantly enhanced the height and biomass of tomato plants, with no occurrence of disease symptoms [39] |
Ralstonia solanacearum | Nicotiana tabacum | Glomus mosseae | Arbuscular mycorrhizae | The combined application of Trichoderma harzianum-amended bio-organic fertilizer and the mycorrhizal fungus Glomus mosseae reduced the abundance of the pathogen, and increased the activities of polyphenol oxidase (PPO), phenylalanine ammonia-lyase (PAL), and peroxidase (POD) in the plants, promoting plant growth [40] | ||
Bacterial wilt | Ralstonia solanacearum | Solanum lycopersicum | Glomus mosseae | Arbuscular mycorrhizae | Tomatoes inoculated with Glomus mosseae, when combined with the use of organic fertilizers, have exhibited increased plant survival rates and yields [41] | |
Ralstonia solanacearum | Solanum lycopersicum | Rhizophagus irregularis | Arbuscular mycorrhizae | By activating the plant’s defense mechanisms [42] | ||
Nematodes | Root-knot nematode disease | Meloidogyne incognita | Solanum lycopersicum | Glomus mosseae | Arbuscular mycorrhizae | Inducing systemic acquired resistance reduced the number of root-knot nematodes, mitigating their damage to tomato root systems [43] |
Root-lesion nematode disease | Pratylenchus penetrans | Solanum lycopersicum | Glomus mosseae | Arbuscular mycorrhizae | Inducing systemic resistance significantly reduced the number of root-lesion nematodes, decreased their reproduction rate, and lessened the damage to tomato root systems [43] | |
False root-knot nematode | Nacobbus aberrans | Solanum lycopersicum | Glomus intraradices | Arbuscular mycorrhizae | Reducing root damage caused by nematodes (decreasing the number of root galls) and inhibiting nematode reproduction [44] | |
Viruses | Tomato yellow leaf curl disease | Tomato yellow leaf curl Sardinia virus (TYLCSV) | Solanum tuberosum | Funneliformis mosseae | Arbuscular mycorrhizae | Mitigating the severity of viral symptoms, reducing the concentration of viral DNA in tomatoes, and enhancing the tolerance of tomatoes to TYLCSV [45] |
2.2. The Molecular Mechanisms Underlying the Activation of Plant Disease Resistance by Mycorrhizal Fungi
3. The Role of Phosphatases in the Induction of Plant Disease Resistance by Mycorrhizal Fungi
3.1. The Decomposition of Insoluble and Sparingly Soluble Phosphorus in the Soil
3.2. Involvement in the Regulation of Plant Defense and Immune Responses
3.3. The Interplay with Hormonal Signaling
3.4. Restriction the Invasion and Spread of Pathogens
3.5. The Interaction between Mycorrhizal Fungi and Beneficial Microorganisms
3.5.1. Mycorrhizal Fungi and Beneficial Microbes Synergize to Enhance Crop Disease Resistance
Disease Name | Pathogenic Microorganism | Beneficial Microbial Species | Host Plant | Mycorrhizal Fungal Names | Mycorrhizal Types | Synergistic Mechanism |
---|---|---|---|---|---|---|
Bacterial wilt | Ralstonia solanacearum | Trichoderma harzianum | Nicotiana tabacum | Glomus mosseae | Arbuscular mycorrhizae | The synergistic action of these two factors has led to a reduction in the abundance of soil-borne pathogenic microorganisms and a concomitant enhancement of the activity of plant systemic resistance-related enzymes [40] |
Ralstonia solanacearum | Bacillus spp., Pseudomonas spp., Azotobacter spp. | Solanum tuberosum | Glomus intraradices, G. etunicatum, G. mosseae | Arbuscular mycorrhizae | The combination of biocontrol agents (BCA) and arbuscular mycorrhizal fungi (AMF) may mitigate disease severity through antagonistic interactions and influence the microbial community by altering root exudates [140] | |
Spring black stem and leaf spot | Phoma medicaginis | Sinorhizobium medicae | Medicago sativa | Funneliformis mosseae | Arbuscular mycorrhizae | The mutual promotion between mycorrhizal fungi and other microbes enhances the formation of root nodules and mycorrhizal colonization, which in turn boosts the plant’s phosphorus and nitrogen uptake. This interaction also augments the activity of plant defense compounds and enzymes, consequently reducing the disease index [141] |
Anthracnose | Colletotrichum orbiculare | Phoma sp., Penicillium simplicissimum | Cucumis sativus | Glomus mosseae | Arbuscular mycorrhizae | The interplay between Plant growth-promoting fungi (PGPF) and arbuscular mycorrhizal fungi (AMF) may influence the level of disease protection through competitive interactions for space or nutrients [142] |
Fusarium wilt | Fusarium oxysporum | Trichoderma harzianum | Cucumis melo | Glomus constrictum, G. mosseae, G. claroideum, G. intraradices | Arbuscular mycorrhizae | Trichoderma harzianum and arbuscular mycorrhizal fungi (AMF) may synergistically control diseases by enhancing nutrient uptake and inducing systemic resistance in plants [143] |
Bipolaris sorokiniana | Bipolaris sorokiniana | Epichloë festucae | Lolium perenne | Claroideoglomus etunicatum | Arbuscular mycorrhizae | Endophytic fungi and mycorrhizal fungi enhance the resistance of plants to diseases by activating defense-related enzymes, increasing the activity of plant hormones, and elevating the content of lignin [144] |
Root rot and charcoal rot | Macrophomina phaseolina | Brettanomyces naardensis | Helianthus annuus | Acaulospora bireticulata | Arbuscular mycorrhizae | Yeasts facilitate the development of arbuscular mycorrhizal fungi (AMF) by supplying vitamin B12. The combined action of these two organisms alters the pattern of root exudates, impacting the plant’s rhizosphere microbial community and inhibiting the invasion and growth of pathogenic fungi [145] |
Late blight | Phytophthora infestans | Pseudomonas sp. | Solanum tuberosum | Rhizophagus irregularis | Arbuscular mycorrhizae | The co-inoculation of plant growth-promoting microbes and arbuscular mycorrhizal fungi may activate the plant’s systemic defense system, leading to the upregulation of ethylene response factor 3 (ERF3) and thereby enhancing the plant’s resistance to diseases [146] |
Take-all | Gaeumannomyces graminis | Pseudomonas fluorescens | Triticum aestivum | Glomus mossea | Arbuscular mycorrhizae | Mycorrhizal fungi enhance the plant’s resistance to diseases, while beneficial microbes influence plant metabolism or directly inhibit pathogen growth through their metabolic byproducts [147] |
Root-knot nematode disease | Meloidogyne incognita | Bacillus polymyxa, Bacillus sp. | Solanum lycopersicum | Glomus versiforme, Glomus mosseae | Arbuscular mycorrhizae | Beneficial microbes augment the colonization of arbuscular mycorrhizal (AM) fungi in the roots, and in turn, AM fungi enhance the population of beneficial microbes in the rhizosphere; together, they suppress nematode damage and promote plant growth [148] |
Sphaeropsis Shoot Blight | Sphaeropsis sapinea | Bacillus pumilus | Pinus thunbergii | Hymenochaete sp. Rl | Ectomycorrhizae | Mycorrhizal fungi elicit systemic defense responses in plants. In concert, beneficial bacteria facilitate the formation of symbiotic structures between the mycorrhizal fungi and their host plants [149] |
White rot | Sclerotinia sclerotiorum | PGPR | Fragaria | AMF | Arbuscular mycorrhizae | The combined application of mycorrhizal fungi and plant growth-promoting rhizobacteria (PGPR) enhances plant biomass, promotes vegetative growth, and reduces disease indices [150] |
3.5.2. The Role of Phosphatases in the Synergistic Process
4. Perspectives
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Frank, B. Über die auf Wurzelsymbiose beruhende Ernährung gewisser Bäume durch unterirdische Pilze. Plant Biol. 1885, 3, 128–145. [Google Scholar]
- Dickie, I.A.; Koide, R.T.; Steiner, K.C. Influences of established trees on mycorrhizas, nutrition, and growth of Quercus rubra seedlings. Ecol. Monogr. 2002, 72, 505–521. [Google Scholar] [CrossRef]
- Makita, N.; Hirano, Y.; Yamanaka, T.; Yoshimura, K.; Kosugi, Y. Ectomycorrhizal-fungal colonization induces physio-morphological changes in Quercus serrata leaves and roots. J. Plant Nutr. Soil Sci. 2012, 175, 900–906. [Google Scholar] [CrossRef]
- Guo, Y.; Martin, K.; Hrynkiewicz, K.; Rasche, F. Arbuscular mycorrhizal fungi-based bioremediation of mercury: Insights from zinc and cadmium transporter studies. Int. J. Environ. Sci. Technol. 2024, 21, 3475–3488. [Google Scholar] [CrossRef]
- Stallmann, J.; Schweiger, R. Effects of arbuscular mycorrhiza on primary metabolites in phloem exudates of Plantago major and Poa annua and on a generalist aphid. Int. J. Mol. Sci. 2021, 22, 13086. [Google Scholar] [CrossRef]
- Latef, A.A.H.A.; Chaoxing, H. Effect of arbuscular mycorrhizal fungi on growth, mineral nutrition, antioxidant enzymes activity and fruit yield of tomato grown under salinity stress. Sci. Hortic. 2011, 127, 228–233. [Google Scholar] [CrossRef]
- Corcobado, T.; Vivas, M.; Moreno, G.; Solla, A. Ectomycorrhizal symbiosis in declining and non-declining Quercus ilex trees infected with or free of Phytophthora cinnamomi. For. Ecol. Manag. 2014, 324, 72–80. [Google Scholar] [CrossRef]
- Perrin, R. Interactions between mycorrhizae and diseases caused by soil-borne fungi. Soil Use Manag. 1990, 6, 189–194. [Google Scholar] [CrossRef]
- Raymond, N.S.; Gómez-Muñoz, B.; van der Bom, F.J.; Nybroe, O.; Jensen, L.S.; Müller-Stöver, D.S.; Oberson, A.; Richardson, A.E. Phosphate-solubilising microorganisms for improved crop productivity: A critical assessment. New Phytol. 2021, 229, 1268–1277. [Google Scholar] [CrossRef]
- Zhang, L.; Feng, G.; Declerck, S. Signal beyond nutrient, fructose, exuded by an arbuscular mycorrhizal fungus triggers phytate mineralization by a phosphate solubilizing bacterium. ISME J. 2018, 12, 2339–2351. [Google Scholar] [CrossRef]
- Crombez, H.; Motte, H.; Beeckman, T. Tackling plant phosphate starvation by the roots. Dev. Cell 2019, 48, 599–615. [Google Scholar] [CrossRef] [PubMed]
- Bücking, H.; Liepold, E.; Ambilwade, P. The role of the mycorrhizal symbiosis in nutrient uptake of plants and the regulatory mechanisms underlying these transport processes. Plant Sci. 2012, 4, 108–132. [Google Scholar]
- Smith, S.E.; Read, D.J. Mycorrhizal Symbiosis; Academic press: Cambridge, MA, USA, 2010. [Google Scholar]
- Tyśkiewicz, R.; Nowak, A.; Ozimek, E.; Jaroszuk-Ściseł, J. Trichoderma: The current status of its application in agriculture for the biocontrol of fungal phytopathogens and stimulation of plant growth. Int. J. Mol. Sci. 2022, 23, 2329. [Google Scholar] [CrossRef]
- Tang, M.; Zhang, R.-Q.; Chen, H.; Zhang, H.-H.; Tian, Z.-Q. Induced hydrolytic enzymes of ectomycorrhizal fungi against pathogen Rhizoctonia solani. Biotechnol. Lett. 2008, 30, 1777–1782. [Google Scholar] [CrossRef] [PubMed]
- Dreischhoff, S.; Das, I.S.; Jakobi, M.; Kasper, K.; Polle, A. Local responses and systemic induced resistance mediated by ectomycorrhizal fungi. Front. Plant Sci. 2020, 11, 590063. [Google Scholar] [CrossRef] [PubMed]
- Ortas, I.; Rafique, M.; Çekiç, F. Do Mycorrhizal Fungi enable plants to cope with abiotic stresses by overcoming the detrimental effects of salinity and improving drought tolerance? In Symbiotic Soil Microorganisms: Biology and Applications; Springer International Publishing: Berlin/Heidelberg, Germany, 2021; pp. 391–428. [Google Scholar]
- Tapia-Vázquez, I.; Montoya-Martínez, A.C.; De los Santos-Villalobos, S.; Ek-Ramos, M.J.; Montesinos-Matías, R.; Martínez-Anaya, C. Root-knot nematodes (Meloidogyne spp.) a threat to agriculture in Mexico: Biology, current control strategies, and perspectives. World J. Microbiol. Biotechnol. 2022, 38, 26. [Google Scholar] [CrossRef]
- Stukenbrock, E.; McDonald, B. The origins of plant pathogens in agro-ecosystems. Annu. Rev. Phytopathol. 2008, 46, 75–100. [Google Scholar] [CrossRef]
- Lahlali, R.; Ezrari, S.; Radouane, N.; Kenfaoui, J.; Esmaeel, Q.; Hamss, H.E.; Belabess, Z.; Barka, E.A. Biological Control of Plant Pathogens: A Global Perspective. Microorganisms 2022, 10, 596. [Google Scholar] [CrossRef]
- Mian, G.; Zuiderduin, K.; Barnes, L.S.; Loketsatian, S.; Bell, L.; Ermacora, P.; Cipriani, G. In vitro application of Eruca vesicaria subsp. sativa leaf extracts and associated metabolites reduces the growth of Oomycota species involved in Kiwifruit Vine Decline Syndrome. Front. Plant Sci. 2023, 14, 1292290. [Google Scholar] [CrossRef]
- Kaczmarek, A.; Boguś, M. Fungi of entomopathogenic potential in Chytridiomycota and Blastocladiomycota, and in fungal allies of the Oomycota and Microsporidia. IMA Fungus 2021, 12, 29. [Google Scholar] [CrossRef]
- Gallou, A.; Mosquera, H.P.L.; Cranenbrouck, S.; Suárez, J.P.; Declerck, S. Mycorrhiza induced resistance in potato plantlets challenged by Phytophthora infestans. Physiol. Mol. Plant Pathol. 2011, 76, 20–26. [Google Scholar] [CrossRef]
- Mansfield, J.; Genin, S.; Magori, S.; Citovsky, V.; Sriariyanum, M.; Ronald, P.; Dow, M.; Verdier, V.; Beer, S.V.; Machado, M.A. Top 10 plant pathogenic bacteria in molecular plant pathology. Mol. Plant Pathol. 2012, 13, 614–629. [Google Scholar] [CrossRef] [PubMed]
- Ahmed, S.H.; Abdelgani, M.E.; Yassin, A. Effects of interaction between Vesicular-Arbuscular Mycorrhizal (VAM) fungi and root-knot nematodes on Dolichos bean (Lablab niger Medik.) plants. Am.-Eurasian J. Sustain. Agric. 2009, 3, 678–683. [Google Scholar]
- Aseel, D.G.; Rashad, Y.M.; Hammad, S.M. Arbuscular mycorrhizal fungi trigger transcriptional expression of flavonoid and chlorogenic acid biosynthetic pathways genes in tomato against Tomato Mosaic Virus. Sci. Rep. 2019, 9, 9692. [Google Scholar] [CrossRef] [PubMed]
- Steinkellner, S.; Hage-Ahmed, K.; García-Garrido, J.M.; Illana, A.; Ocampo, J.A.; Vierheilig, H. A comparison of wild-type, old and modern tomato cultivars in the interaction with the arbuscular mycorrhizal fungus Glomus mosseae and the tomato pathogen Fusarium oxysporum f. sp. lycopersici. Mycorrhiza 2012, 22, 189–194. [Google Scholar] [CrossRef]
- Pu, C.; Ge, Y.; Yang, G.; Zheng, H.; Guan, W.; Chao, Z.; Shen, Y.; Liu, S.; Chen, M.; Huang, L. Arbuscular mycorrhizal fungi enhance disease resistance of Salvia miltiorrhiza to Fusarium wilt. Front. Plant Sci. 2022, 13, 975558. [Google Scholar] [CrossRef]
- Lin, P.; Zhang, M.; Wang, M.; Li, Y.; Liu, J.; Chen, Y. Inoculation with arbuscular mycorrhizal fungus modulates defense-related genes expression in banana seedlings susceptible to wilt disease. Plant Signal. Behav. 2021, 16, 1884782. [Google Scholar] [CrossRef]
- Li, W.; Zhu, C.; Song, Y.; Yuan, Y.; Li, M.; Sun, Y. Arbuscular mycorrhizal fungi by inducing watermelon roots secretion phthalates, altering soil enzyme activity and bacterial community composition to alleviate the watermelon wilt. BMC Plant Biol. 2024, 24, 593. [Google Scholar] [CrossRef]
- Kebert, M.; Kostić, S.; Zlatković, M.; Stojnic, S.; Čapelja, E.; Zorić, M.; Kiprovski, B.; Budakov, D.; Orlović, S. Ectomycorrhizal fungi modulate biochemical response against powdery mildew disease in Quercus robur L. Forests 2022, 13, 1491. [Google Scholar] [CrossRef]
- Pfabel, C.; Eckhardt, K.-U.; Baum, C.; Struck, C.; Frey, P.; Weih, M. Impact of ectomycorrhizal colonization and rust infection on the secondary metabolism of poplar (Populus trichocarpa × deltoides). Tree Physiol. 2012, 32, 1357–1364. [Google Scholar] [CrossRef]
- D Aljawasim, B.; M Khaeim, H.; A Manshood, M. Assessment of arbuscular mycorrhizal fungi (Glomus spp.) as potential biocontrol agents against damping-off disease Rhizoctonia solani on cucumber. J. Crop Prot. 2020, 9, 141–147. [Google Scholar]
- Kobra, N.; Jalil, K.; Youbert, G. Arbuscular mycorrhizal fungi and biological control of Verticillium-wilted cotton plants. Arch. Phytopathol. Plant Prot. 2011, 44, 933–942. [Google Scholar] [CrossRef]
- Zhang, Q.; Gao, X.; Ren, Y.; Ding, X.; Qiu, J.; Li, N.; Zeng, F.; Chu, Z. Improvement of Verticillium wilt resistance by applying arbuscular mycorrhizal fungi to a cotton variety with high symbiotic efficiency under field conditions. Int. J. Mol. Sci. 2018, 19, 241. [Google Scholar] [CrossRef] [PubMed]
- Fritz, M.; Jakobsen, I.; Lyngkjær, M.F.; Thordal-Christensen, H.; Pons-Kühnemann, J. Arbuscular mycorrhiza reduces susceptibility of tomato to Alternaria solani. Mycorrhiza 2006, 16, 413–419. [Google Scholar] [CrossRef]
- Tchameni, S.N.; Ngonkeu, M.; Begoude, B.; Nana, L.W.; Fokom, R.; Owona, A.; Mbarga, J.; Tchana, T.; Tondje, P.; Etoa, F. Effect of Trichoderma asperellum and arbuscular mycorrhizal fungi on cacao growth and resistance against black pod disease. Crop Prot. 2011, 30, 1321–1327. [Google Scholar] [CrossRef]
- Petit, E.; Gubler, W.D. Influence of Glomus intraradices on black foot disease caused by Cylindrocarpon macrodidymum on Vitis rupestris under controlled conditions. Plant Dis. 2006, 90, 1481–1484. [Google Scholar] [CrossRef]
- Tahat, M.M.; Sijam, K.; Othman, R. The potential of endomycorrhizal fungi in controlling tomato bacterial wilt Ralstonia solanacearum under glasshouse conditions. Afr. J. Biotechnol. 2012, 11, 13085–13094. [Google Scholar]
- Yuan, S.; Li, M.; Fang, Z.; Liu, Y.; Shi, W.; Pan, B.; Wu, K.; Shi, J.; Shen, B.; Shen, Q. Biological control of tobacco bacterial wilt using Trichoderma harzianum amended bioorganic fertilizer and the arbuscular mycorrhizal fungi Glomus mosseae. Biol. Control 2016, 92, 164–171. [Google Scholar] [CrossRef]
- Taiwo, L.; Adebayo, D.; Adebayo, O.; Adediran, J. Compost and Glomus mosseae for management of bacterial and Fusarium wilts of tomato. Int. J. Veg. Sci. 2007, 13, 49–61. [Google Scholar] [CrossRef]
- Chave, M.; Crozilhac, P.; Deberdt, P.; Plouznikoff, K.; Declerck, S. Rhizophagus irregularis MUCL 41833 transitorily reduces tomato bacterial wilt incidence caused by Ralstonia solanacearum under in vitro conditions. Mycorrhiza 2017, 27, 719–723. [Google Scholar] [CrossRef]
- Vos, C.; Tesfahun, A.; Panis, B.; De Waele, D.; Elsen, A. Arbuscular mycorrhizal fungi induce systemic resistance in tomato against the sedentary nematode Meloidogyne incognita and the migratory nematode Pratylenchus penetrans. Appl. Soil Ecol. 2012, 61, 1–6. [Google Scholar] [CrossRef]
- Lax, P.; Becerra, A.G.; Soteras, F.; Cabello, M.; Doucet, M.E. Effect of the arbuscular mycorrhizal fungus Glomus intraradices on the false root-knot nematode Nacobbus aberrans in tomato plants. Biol. Fertil. Soils 2011, 47, 591–597. [Google Scholar] [CrossRef]
- Maffei, G.; Miozzi, L.; Fiorilli, V.; Novero, M.; Lanfranco, L.; Accotto, G.P. The arbuscular mycorrhizal symbiosis attenuates symptom severity and reduces virus concentration in tomato infected by Tomato yellow leaf curl Sardinia virus (TYLCSV). Mycorrhiza 2014, 24, 179–186. [Google Scholar] [CrossRef]
- Sharma, R.; Rajak, R.C.; Pandey, A.K. Evidence of antagonistic interactions between rhizosphere and mycorrhizal fungi associated with Dendrocalamus strictus (Bamboo). J. Yeast Fungal Res. 2010, 1, 112–117. [Google Scholar]
- Loit, K.; Soonvald, L.; Adamson, K.; Runno-Paurson, E.; Tedersoo, L.; Astover, A. Assessing the effect of commercial arbuscular mycorrhizal fungal inoculum on potato plant disease incidence, yield and the indigenous root fungal community composition. BioControl 2023, 68, 537–547. [Google Scholar] [CrossRef]
- Garcia-Garrido, J.; Ocampo, J. Effect of VA mycorrhizal infection of tomato on damage caused by Pseudomonas syringae. Soil Biol. Biochem. 1989, 21, 165–167. [Google Scholar] [CrossRef]
- Jung, S.C.; Martinez-Medina, A.; Lopez-Raez, J.A.; Pozo, M.J. Mycorrhiza-induced resistance and priming of plant defenses. J. Chem. Ecol. 2012, 38, 651–664. [Google Scholar] [CrossRef] [PubMed]
- Miransari, M. Plant, mycorrhizal fungi, and bacterial network. In Plant Signaling: Understanding the Molecular Crosstalk; Springer: Berlin/Heidelberg, Germany, 2014; pp. 315–325. [Google Scholar]
- He, J.; Dai, H.; Zhang, X.; Wang, E. Mycorrhizal signals promote root development dependent on LysM-receptor like kinases in rice. New Crops 2024, 1, 100009. [Google Scholar] [CrossRef]
- Liese, A.; Eichstädt, B.; Lederer, S.; Schulz, P.; Oehlschläger, J.; Matschi, S.; Feijó, J.A.; Schulze, W.X.; Konrad, K.R.; Romeis, T. Imaging of plant calcium-sensor kinase conformation monitors real time calcium-dependent decoding in planta. Plant Cell 2024, 36, 276–297. [Google Scholar] [CrossRef]
- Li, S.; Xiong, Y.; Ralf, M.-X.; Xing, Q. Distinct expression patterns of WRKY 6 and PR 1 in Arabidopsis stress memory assays. Bull. Bot. Res. 2019, 39, 752–759. [Google Scholar]
- Jain, D.; Khurana, J.P. Role of pathogenesis-related (PR) proteins in plant defense mechanism. In Molecular Aspects of Plant-Pathogen Interaction; Springer: Berlin/Heidelberg, Germany, 2018; pp. 265–281. [Google Scholar]
- Malviya, D.; Singh, P.; Singh, U.B.; Paul, S.; Kumar Bisen, P.; Rai, J.P.; Verma, R.L.; Fiyaz, R.A.; Kumar, A.; Kumari, P. Arbuscular mycorrhizal fungi-mediated activation of plant defense responses in direct seeded rice (Oryza sativa L.) against root-knot nematode Meloidogyne graminicola. Front. Microbiol. 2023, 14, 1104490. [Google Scholar] [CrossRef]
- Li, C.; Xu, M.; Cai, X.; Han, Z.; Si, J.; Chen, D. Jasmonate signaling pathway modulates plant defense, growth, and their trade-offs. Int. J. Mol. Sci. 2022, 23, 3945. [Google Scholar] [CrossRef] [PubMed]
- Campo, S.; San Segundo, B. Systemic induction of phosphatidylinositol-based signaling in leaves of arbuscular mycorrhizal rice plants. Sci. Rep. 2020, 10, 15896. [Google Scholar] [CrossRef] [PubMed]
- Zhang, D.-J.; Tong, C.-L.; Wang, Q.-S.; Bie, S. Mycorrhizas Affect Physiological Performance, Antioxidant System, Photosynthesis, Endogenous Hormones, and Water Content in Cotton under Salt Stress. Plants 2024, 13, 805. [Google Scholar] [CrossRef] [PubMed]
- Camillo, L.R.; Filadelfo, C.R.; Monzani, P.S.; Corrêa, R.X.; Gramacho, K.P.; Micheli, F.; Pirovani, C.P. Tc-cAPX, a cytosolic ascorbate peroxidase of Theobroma cacao L. engaged in the interaction with Moniliophthora perniciosa, the causing agent of witches’ broom disease. Plant Physiol. Biochem. 2013, 73, 254–265. [Google Scholar] [CrossRef]
- Rahikainen, M.; Pascual, J.; Alegre, S.; Durian, G.; Kangasjärvi, S. PP2A phosphatase as a regulator of ROS signaling in plants. Antioxidants 2016, 5, 8. [Google Scholar] [CrossRef]
- Hashem, A.; Akhter, A.; Alqarawi, A.A.; Singh, G.; Almutairi, K.F.; Abd_Allah, E.F. Mycorrhizal fungi induced activation of tomato defense system mitigates Fusarium wilt stress. Saudi J. Biol. Sci. 2021, 28, 5442–5450. [Google Scholar] [CrossRef]
- Xu, F.-Q.; Meng, L.-L.; Kuča, K.; Wu, Q.-S. The mechanism of arbuscular mycorrhizal fungi-alleviated manganese toxicity in plants: A review. Plant Physiol. Biochem. 2024, 213, 108808. [Google Scholar] [CrossRef]
- Wang, G.; Jin, Z.; George, T.S.; Feng, G.; Zhang, L. Arbuscular mycorrhizal fungi enhance plant phosphorus uptake through stimulating hyphosphere soil microbiome functional profiles for phosphorus turnover. New Phytol. 2023, 238, 2578–2593. [Google Scholar] [CrossRef]
- George, T.S.; Giles, C.D.; Menezes-Blackburn, D.; Condron, L.M.; Gama-Rodrigues, A.C.; Jaisi, D.; Lang, F.; Neal, A.L.; Stutter, M.I.; Almeida, D.S. Organic phosphorus in the terrestrial environment: A perspective on the state of the art and future priorities. Plant Soil. 2018, 427, 191–208. [Google Scholar] [CrossRef]
- Li, P.; Liu, J. Protein phosphorylation in plant cell signaling. Plant Phosphoproteomics Methods Protoc. 2021, 2358, 45–71. [Google Scholar]
- Becquer, A.; Garcia, K.; Amenc, L.; Rivard, C.; Doré, J.; Trives-Segura, C.; Szponarski, W.; Russet, S.; Baeza, Y.; Lassalle-Kaiser, B. The Hebeloma cylindrosporum HcPT2 Pi transporter plays a key role in ectomycorrhizal symbiosis. New Phytol. 2018, 220, 1185–1199. [Google Scholar] [CrossRef]
- Wang, Y.; He, X.; Yu, F. Non-host plants: Are they mycorrhizal networks players? Plant Divers. 2022, 44, 127–134. [Google Scholar] [CrossRef]
- Kafle, A.; Cope, K.R.; Raths, R.; Krishna Yakha, J.; Subramanian, S.; Bücking, H.; Garcia, K. Harnessing soil microbes to improve plant phosphate efficiency in cropping systems. Agronomy 2019, 9, 127. [Google Scholar] [CrossRef]
- Shi, J.; Zhao, B.; Zheng, S.; Zhang, X.; Wang, X.; Dong, W.; Xie, Q.; Wang, G.; Xiao, Y.; Chen, F. A phosphate starvation response-centered network regulates mycorrhizal symbiosis. Cell 2021, 184, 5527–5540.e18. [Google Scholar] [CrossRef] [PubMed]
- Hu, Y.; Chen, J.; Hui, D.; Wang, Y.P.; Li, J.; Chen, J.; Chen, G.; Zhu, Y.; Zhang, L.; Zhang, D. Mycorrhizal fungi alleviate acidification-induced phosphorus limitation: Evidence from a decade-long field experiment of simulated acid deposition in a tropical forest in south China. Glob. Change Biol. 2022, 28, 3605–3619. [Google Scholar] [CrossRef]
- Louche, J.; Ali, M.A.; Cloutier-Hurteau, B.; Sauvage, F.X.; Quiquampoix, H.; Plassard, C. Efficiency of acid phosphatases secreted from the ectomycorrhizal fungus Hebeloma cylindrosporum to hydrolyse organic phosphorus in podzols. FEMS Microbiol. Ecol. 2010, 73, 323–335. [Google Scholar] [CrossRef]
- Courty, P.-E.; Labbé, J.; Kohler, A.; Marçais, B.; Bastien, C.; Churin, J.-L.; Garbaye, J.; Le Tacon, F. Effect of poplar genotypes on mycorrhizal infection and secreted enzyme activities in mycorrhizal and non-mycorrhizal roots. J. Exp. Bot. 2011, 62, 249–260. [Google Scholar] [CrossRef]
- Garcia, K.; Delteil, A.; Conéjéro, G.; Becquer, A.; Plassard, C.; Sentenac, H.; Zimmermann, S. Potassium nutrition of ectomycorrhizal Pinus pinaster: Overexpression of the H ebeloma cylindrosporum H c T rk1 transporter affects the translocation of both K+ and phosphorus in the host plant. New Phytol. 2014, 201, 951–960. [Google Scholar] [CrossRef]
- Sardans, J.; Lambers, H.; Preece, C.; Alrefaei, A.F.; Penuelas, J. Role of mycorrhizas and root exudates in plant uptake of soil nutrients (calcium, iron, magnesium, and potassium): Has the puzzle been completely solved? Plant J. 2023, 114, 1227–1242. [Google Scholar] [CrossRef]
- Baghel, R.; Sharma, R.; Pandey, A. Activity of acid phosphatase in the ectomycorrhizal fungus Cantharellus tropicalis under controlled conditions. J. Trop. For. Sci. 2009, 21, 218–222. [Google Scholar]
- Meeds, J.A.; Kranabetter, J.M.; Zigg, I.; Dunn, D.; Miros, F.; Shipley, P.; Jones, M.D. Phosphorus deficiencies invoke optimal allocation of exoenzymes by ectomycorrhizas. ISME J. 2021, 15, 1478–1489. [Google Scholar] [CrossRef] [PubMed]
- Plassard, C.; Fransson, P. Regulation of low-molecular weight organic acid production in fungi. Fungal Biol. Rev. 2009, 23, 30–39. [Google Scholar] [CrossRef]
- Rúa, M.A.; Moore, B.; Hergott, N.; Van, L.; Jackson, C.R.; Hoeksema, J.D. Ectomycorrhizal fungal communities and enzymatic activities vary across an ecotone between a forest and field. J. Fungi 2015, 1, 185–210. [Google Scholar] [CrossRef]
- Miyauchi, S.; Kiss, E.; Kuo, A.; Drula, E.; Kohler, A.; Sánchez-García, M.; Morin, E.; Andreopoulos, B.; Barry, K.W.; Bonito, G. Large-scale genome sequencing of mycorrhizal fungi provides insights into the early evolution of symbiotic traits. Nat. Commun. 2020, 11, 5125. [Google Scholar] [CrossRef]
- Hai-Yan, F.; Gu, F.; Jian-Lan, S.; Jing-Guo, W.; Xiao-Lin, L. Studies on the relationship between the activity of alkaline phosphatase in intraradical hyphae of arbuscular mycorrhizae fungi and efficiency of mycorrhizal symbiosis. Chin. J. Eco-Agric. 2004, 12, 124–127. [Google Scholar]
- Ang, Y.-f.; Guo, Y.; Chen, H.-y.; Liu, R.-y.; Zhu, Q.-q.; Wang, L.; Zhu, Y.-y.; Yi, K.-k.; Zeng, H.-q. Interaction between plant phosphorus nutrition and abiotic stress responses and its potential application in agricultural production. J. Plant Nutr. Fertil. 2023, 29, 2345–2359. [Google Scholar]
- Ngou, B.P.M.; Ahn, H.-K.; Ding, P.; Jones, J.D. Mutual potentiation of plant immunity by cell-surface and intracellular receptors. Nature 2021, 592, 110–115. [Google Scholar] [CrossRef]
- Yuan, M.; Jiang, Z.; Bi, G.; Nomura, K.; Liu, M.; Wang, Y.; Cai, B.; Zhou, J.-M.; He, S.Y.; Xin, X.-F. Pattern-recognition receptors are required for NLR-mediated plant immunity. Nature 2021, 592, 105–109. [Google Scholar] [CrossRef]
- Song, Y.; Chen, D.; Lu, K.; Sun, Z.; Zeng, R. Enhanced tomato disease resistance primed by arbuscular mycorrhizal fungus. Front. Plant Sci. 2015, 6, 786. [Google Scholar] [CrossRef]
- Campos-Soriano, L.; García-Martínez, J.; Segundo, B.S. The arbuscular mycorrhizal symbiosis promotes the systemic induction of regulatory defence-related genes in rice leaves and confers resistance to pathogen infection. Mol. Plant Pathol. 2012, 13, 579–592. [Google Scholar] [CrossRef]
- Pruitt, R.N.; Locci, F.; Wanke, F.; Zhang, L.; Saile, S.C.; Joe, A.; Karelina, D.; Hua, C.; Fröhlich, K.; Wan, W.-L. The EDS1–PAD4–ADR1 node mediates Arabidopsis pattern-triggered immunity. Nature 2021, 598, 495–499. [Google Scholar] [CrossRef] [PubMed]
- Song, Y.Y.; Cao, M.; Xie, L.J.; Liang, X.T.; Zeng, R.S.; Su, Y.J.; Huang, J.H.; Wang, R.L.; Luo, S.M. Induction of DIMBOA accumulation and systemic defense responses as a mechanism of enhanced resistance of mycorrhizal corn (Zea mays L.) to sheath blight. Mycorrhiza 2011, 21, 721–731. [Google Scholar] [CrossRef]
- Cameron, D.D.; Neal, A.L.; van Wees, S.C.; Ton, J. Mycorrhiza-induced resistance: More than the sum of its parts? Trends Plant Sci. 2013, 18, 539–545. [Google Scholar] [CrossRef] [PubMed]
- Wang, H.; Hao, Z.; Zhang, X.; Xie, W.; Chen, B. Arbuscular mycorrhizal fungi induced plant resistance against fusarium wilt in jasmonate biosynthesis defective mutant and wild type of tomato. J. Fungi 2022, 8, 422. [Google Scholar] [CrossRef] [PubMed]
- Gao, H.; Guo, M.; Song, J.; Ma, Y.; Xu, Z. Signals in systemic acquired resistance of plants against microbial pathogens. Mol. Biol. Rep. 2021, 48, 3747–3759. [Google Scholar] [CrossRef]
- Pozo, M.J.; Azcón-Aguilar, C. Unraveling mycorrhiza-induced resistance. Curr. Opin. Plant Biol. 2007, 10, 393–398. [Google Scholar] [CrossRef]
- He, X.; Anderson, J.C.; Pozo, O.d.; Gu, Y.Q.; Tang, X.; Martin, G.B. Silencing of subfamily I of protein phosphatase 2A catalytic subunits results in activation of plant defense responses and localized cell death. Plant J. 2004, 38, 563–577. [Google Scholar] [CrossRef]
- Liu, Y.; Shepherd, E.G.; Nelin, L.D. MAPK phosphatases—Regulating the immune response. Nat. Rev. Immunol. 2007, 7, 202–212. [Google Scholar] [CrossRef]
- Vilela, B.; Pagès, M.; Lumbreras, V. Regulation of MAPK signaling and cell death by MAPK phosphatase MKP2. Plant Signal. Behav. 2010, 5, 1497–1500. [Google Scholar] [CrossRef]
- Barman, A.; Ray, S.K. Protein phosphatase mediated responses in plant host-pathogen interactions. In Protein Phosphatases and Stress Management in Plants: Functional Genomic Perspective; Springer: Cham, Switzerland, 2020; pp. 289–330. [Google Scholar]
- Kachroo, A.; Liu, H.; Yuan, X.; Kurokawa, T.; Kachroo, P. Systemic acquired resistance-associated transport and metabolic regulation of salicylic acid and glycerol-3-phosphate. Essays Biochem. 2022, 66, 673–681. [Google Scholar] [PubMed]
- Zhao, S.; Li, M.; Ren, X.; Wang, C.; Sun, X.; Sun, M.; Yu, X.; Wang, X. Enhancement of broad-spectrum disease resistance in wheat through key genes involved in systemic acquired resistance. Front. Plant Sci. 2024, 15, 1355178. [Google Scholar] [CrossRef]
- Wang, Y.; Schuck, S.; Wu, J.; Yang, P.; Döring, A.-C.; Zeier, J.; Tsuda, K. A MPK3/6-WRKY33-ALD1-pipecolic acid regulatory loop contributes to systemic acquired resistance. Plant Cell 2018, 30, 2480–2494. [Google Scholar] [CrossRef] [PubMed]
- Wei, J.; Sun, W.; Zheng, X.; Qiu, S.; Jiao, S.; Babilonia, K.; Koiwa, H.; He, P.; Shan, L.; Sun, W. Arabidopsis RNA polymerase II C-terminal domain phosphatase-like 1 targets mitogen-activated protein kinase cascades to suppress plant immunity. J. Integr. Plant Biol. 2023, 65, 2380–2394. [Google Scholar] [CrossRef] [PubMed]
- Sobol, G.; Chakraborty, J.; Martin, G.B.; Sessa, G. The emerging role of PP2C phosphatases in tomato immunity. Mol. Plant-Microbe Interact. 2022, 35, 737–747. [Google Scholar] [CrossRef]
- Seo, J.-K.; Kwon, S.-J.; Cho, W.K.; Choi, H.-S.; Kim, K.-H. Type 2C protein phosphatase is a key regulator of antiviral extreme resistance limiting virus spread. Sci. Rep. 2014, 4, 5905. [Google Scholar] [CrossRef]
- Chen, Y.-r.; Mao, Z.-j.; Li, Z.-w.; Fan, K. Research status and progress in structure and function of protein phosphatase 2C in plants. J. Zhejiang Univ. (Agric. Life Sci.) 2021, 47, 11–20. [Google Scholar]
- Diao, Z.; Yang, R.; Wang, Y.; Cui, J.; Li, J.; Wu, Q.; Zhang, Y.; Yu, X.; Gong, B.; Huang, Y. Functional screening of the Arabidopsis 2C protein phosphatases family identifies PP2C15 as a negative regulator of plant immunity by targeting BRI1-associated receptor kinase 1. Mol. Plant Pathol. 2024, 25, e13447. [Google Scholar] [CrossRef]
- Zhang, H.H.; Li, L.L.; He, Y.Q.; Qin, Q.Q.; Chen, C.H.; Wei, Z.Y.; Tan, X.X.; Xie, K.L.; Zhang, R.F.; Hong, G.J.; et al. Distinct modes of manipulation of rice auxin response factor OsARF17 by different plant RNA viruses for infection. Proc. Natl. Acad. Sci. USA 2020, 117, 9112–9121. [Google Scholar] [CrossRef]
- Yu, X.; Cui, X.; Wu, C.; Shi, S.; Yan, S. Salicylic acid inhibits gibberellin signaling through receptor interactions. Mol. Plant 2022, 15, 1759–1771. [Google Scholar] [CrossRef]
- Li, T.; Wang, Y.; Natran, A.; Zhang, Y.; Wang, H.; Du, K.; Qin, P.; Yuan, H.; Chen, W.; Tu, B. C-TERMINAL DOMAIN PHOSPHATASE-LIKE 3 contributes to GA-mediated growth and flowering by interaction with DELLA proteins. New Phytol. 2024, 242, 2555–2569. [Google Scholar] [CrossRef]
- Oldroyd, G.E. Speak, friend, and enter: Signalling systems that promote beneficial symbiotic associations in plants. Nat. Rev. Microbiol. 2013, 11, 252–263. [Google Scholar] [CrossRef] [PubMed]
- Luo, Y.; Li, W.; Dai, L. The progress of the cross-talk among the signaling pathways of phytohormones in plant defense responses. Chin. Agric. Sci. Bull. 2013, 29, 153–157. [Google Scholar]
- Kaur, K.; Tripathy, M.K.; Pandey, G.K. Role of dual specificity phosphatase in stress and starch metabolism. In Protein Phosphatases and Stress Management in Plants: Functional Genomic Perspectiv; Springers: Berlin/Heidelberg, Germany, 2020; pp. 331–351. [Google Scholar]
- Hayek, S.; Gianinazzi-Pearson, V.; Gianinazzi, S.; Franken, P. Elucidating mechanisms of mycorrhiza-induced resistance against Thielaviopsis basicola via targeted transcript analysis of Petunia hybrida genes. Physiol. Mol. Plant Pathol. 2014, 88, 67–76. [Google Scholar] [CrossRef]
- Fernandes, T.R.; Segorbe, D.; Prusky, D.; Di Pietro, A. How alkalinization drives fungal pathogenicity. PLoS Pathog. 2017, 13, e1006621. [Google Scholar] [CrossRef] [PubMed]
- Jones, J.D.; Dangl, J.L. The plant immune system. Nature 2006, 444, 323–329. [Google Scholar] [CrossRef]
- Boller, T.; Felix, G. A renaissance of elicitors: Perception of microbe-associated molecular patterns and danger signals by pattern-recognition receptors. Annu. Rev. Plant Biol. 2009, 60, 379–406. [Google Scholar] [CrossRef]
- Niu, Y.; Huang, X.; He, Z.; Zhang, Q.; Meng, H.; Shi, H.; Feng, B.; Zhou, Y.; Zhang, J.; Lu, G. Phosphorylation of OsTGA5 by casein kinase II compromises its suppression of defense-related gene transcription in rice. Plant Cell 2022, 34, 3425–3442. [Google Scholar] [CrossRef]
- Pritsch, K.; Garbaye, J. Enzyme secretion by ECM fungi and exploitation of mineral nutrients from soil organic matter. Ann. For. Sci. 2011, 68, 25–32. [Google Scholar] [CrossRef]
- Guo, Y.; Li, F.; Li, Y.; Duan, T. Progress in the elucidation of the mechanisms of arbuscular mycorrhizal fungi in promotion of phosphorus uptake and utilization by plants. Pratacult. Sci. 2016, 10, 2379–2390. [Google Scholar]
- Uroz, S.; Heinonsalo, J. Degradation of N-acyl homoserine lactone quorum sensing signal molecules by forest root-associated fungi. FEMS Microbiol. Ecol. 2008, 65, 271–278. [Google Scholar] [CrossRef]
- Caravaca, F.; Maboreke, H.; Kurth, F.; Herrmann, S.; Tarkka, M.T.; Ruess, L. Synergists and antagonists in the rhizosphere modulate microbial communities and growth of Quercus robur L. Soil Biol. Biochem. 2015, 82, 65–73. [Google Scholar] [CrossRef]
- Berrios, L.; Yeam, J.; Holm, L.; Robinson, W.; Pellitier, P.T.; Chin, M.L.; Henkel, T.W.; Peay, K.G. Positive interactions between mycorrhizal fungi and bacteria are widespread and benefit plant growth. Curr. Biol. 2023, 33, 2878–2887.e2874. [Google Scholar] [CrossRef]
- Huang, J.-H.; Zeng, R.-S.; Luo, S.-M. On disease resistance of maize toward sheath blight induced by arbuscular mycorrhizal fungi. Chin. J. Eco-Agric. 2006, 14, 167–169. [Google Scholar]
- Yang, M.; Zou, J.; Liu, C.; Xiao, Y.; Zhang, X.; Yan, L.; Ye, L.; Tang, P.; Li, X. Chinese white truffles shape the ectomycorrhizal microbial communities of Corylus avellana. Ann. Microbiol. 2019, 69, 553–565. [Google Scholar] [CrossRef]
- Li, X.; Zhang, X.; Yang, M.; Yan, L.; Kang, Z.; Xiao, Y.; Tang, P.; Ye, L.; Zhang, B.; Zou, J. Tuber borchii shapes the ectomycorrhizosphere microbial communities of Corylus avellana. Mycobiology 2019, 47, 180–190. [Google Scholar] [CrossRef] [PubMed]
- Kang, Z.; Zou, J.; Huang, Y.; Zhang, X.; Ye, L.; Zhang, B.; Li, X. Tuber melanosporum shapes nirS-type denitrifying and ammonia-oxidizing bacterial communities in Carya illinoinensis ectomycorrhizosphere soils. PeerJ 2020, 8, e9457. [Google Scholar] [CrossRef]
- Zhang, X.; Ye, L.; Kang, Z.; Zou, J.; Li, X. Mycorrhization of Quercus acutissima with Chinese black truffle significantly altered the host physiology and root-associated microbiomes. PeerJ 2019, 7, e6421. [Google Scholar] [CrossRef]
- Nurlaeny, N.; Marschner, H.; George, E. Effects of liming and mycorrhizal colonization on soil phosphate depletion and phosphate uptake by maize (Zea mays L.) and soybean (Glycine max L.) grown in two tropical acid soils. Plant Soil 1996, 181, 275–285. [Google Scholar] [CrossRef]
- Liu, H.; Li, J.; Carvalhais, L.C.; Percy, C.D.; Prakash Verma, J.; Schenk, P.M.; Singh, B.K. Evidence for the plant recruitment of beneficial microbes to suppress soil-borne pathogens. New Phytol. 2021, 229, 2873–2885. [Google Scholar] [CrossRef]
- Etesami, H.; Jeong, B.R.; Glick, B.R. Contribution of arbuscular mycorrhizal fungi, phosphate–solubilizing bacteria, and silicon to P uptake by plant. Front. Plant Sci. 2021, 12, 699618. [Google Scholar] [CrossRef] [PubMed]
- Xu, Y.; Chen, Z.; Li, X.; Tan, J.; Liu, F.; Wu, J. Mycorrhizal fungi alter root exudation to cultivate a beneficial microbiome for plant growth. Funct. Ecol. 2023, 37, 664–675. [Google Scholar] [CrossRef]
- Seipke, R.F.; Kaltenpoth, M.; Hutchings, M.I. Streptomyces as symbionts: An emerging and widespread theme? FEMS Microbiol. Rev. 2012, 36, 862–876. [Google Scholar] [CrossRef] [PubMed]
- Lehr, N.A.; Adomas, A.; Asiegbu, F.O.; Hampp, R.; Tarkka, M.T. WS-5995 B, an antifungal agent inducing differential gene expression in the conifer pathogen Heterobasidion annosum but not in Heterobasidion abietinum. Appl. Microbiol. Biotechnol. 2009, 85, 347–358. [Google Scholar] [CrossRef]
- Riedlinger, J.; Schrey, S.D.; Tarkka, M.T.; Hampp, R.; Kapur, M.; Fiedler, H.-P. Auxofuran, a novel metabolite that stimulates the growth of fly agaric, is produced by the mycorrhiza helper bacterium Streptomyces strain AcH 505. Appl. Environ. Microbiol. 2006, 72, 3550–3557. [Google Scholar] [CrossRef]
- Duponnois, R.; Garbaye, J. Some mechanisms involved in growth stimulation of ectomycorrhizal fungi by bacteria. Can. J. Bot. 1990, 68, 2148–2152. [Google Scholar] [CrossRef]
- Wang, X.; Ding, T.; Li, Y.; Guo, Y.; Li, Y.; Duan, T. Dual inoculation of alfalfa (Medicago sativa L.) with Funnelliformis mosseae and Sinorhizobium medicae can reduce Fusarium wilt. J. Appl. Microbiol. 2020, 129, 665–679. [Google Scholar] [CrossRef]
- Sanchez, L.; Courteaux, B.; Hubert, J.; Kauffmann, S.; Renault, J.-H.; Clément, C.; Baillieul, F.; Dorey, S. Rhamnolipids elicit defense responses and induce disease resistance against biotrophic, hemibiotrophic, and necrotrophic pathogens that require different signaling pathways in Arabidopsis and highlight a central role for salicylic acid. Plant Physiol. 2012, 160, 1630–1641. [Google Scholar] [CrossRef]
- Jain, A.; Das, S. Insight into the interaction between plants and associated fluorescent Pseudomonas spp. Int. J. Agron. 2016, 2016, 4269010. [Google Scholar] [CrossRef]
- Frey-Klett, P.; Garbaye, J.; Tarkka, M. The mycorrhiza helper bacteria revisited. New Phytol. 2007, 176, 22–36. [Google Scholar] [CrossRef]
- Founoune, H.; Duponnois, R.; Ba, A.; Sall, S.; Branget, I.; Lorquin, J.; Neyra, M.; Chotte, J.-L. Mycorrhiza helper bacteria stimulate ectomycorrhizal symbiosis of Acacia holosericea with Pisolithus alba. New Phytol. 2002, 153, 81–89. [Google Scholar] [CrossRef]
- Nishad, R.; Ahmed, T.; Rahman, V.J.; Kareem, A. Modulation of plant defense system in response to microbial interactions. Front. Microbiol. 2020, 11, 1298. [Google Scholar] [CrossRef] [PubMed]
- Huang, Y.; Zou, J.; Kang, Z.; Zhang, X.; Penttinen, P.; Li, X. Effects of truffle inoculation on a nursery culture substrate environment and seedling of Carya illinoinensis. Fungal Biol. 2021, 125, 576–584. [Google Scholar] [CrossRef]
- Aguk, J.; Karanja, N.; Schulte-Geldermann, E.; Bruns, C.; Kinyua, Z.; Parker, M. Control of bacterial wilt (Ralstonia solanacearum) in potato (Solanum tuberosum) using rhizobacteria and arbuscular mycorrhiza fungi. Afr. J. Food Agric. Nutr. Dev. 2018, 18, 13371–13387. [Google Scholar]
- Gao, P.; Li, Y.; Guo, Y.; Duan, T. Co-inoculation of lucerne (Medicago sativa) with an AM fungus and a rhizobium reduces occurrence of spring black stem and leaf spot caused by Phoma medicaginis. Crop Pasture Sci. 2018, 69, 933–943. [Google Scholar] [CrossRef]
- Chandanie, W.; Kubota, M.; Hyakumachi, M. Interactions between plant growth promoting fungi and arbuscular mycorrhizal fungus Glomus mosseae and induction of systemic resistance to anthracnose disease in cucumber. Plant Soil 2006, 286, 209–217. [Google Scholar] [CrossRef]
- Martínez-Medina, A.; Roldán, A.; Pascual, J.A. Interaction between arbuscular mycorrhizal fungi and Trichoderma harzianum under conventional and low input fertilization field condition in melon crops: Growth response and Fusarium wilt biocontrol. Appl. Soil Ecol. 2011, 47, 98–105. [Google Scholar] [CrossRef]
- Guo, Y.; Gao, P.; Li, F.; Duan, T. Effects of AM fungi and grass endophytes on perennial ryegrass Bipolaris sorokiniana leaf spot disease under limited soil nutrients. Eur. J. Plant Pathol. 2019, 154, 659–671. [Google Scholar] [CrossRef]
- Nafady, N.A.; Hashem, M.; Hassan, E.A.; Ahmed, H.A.; Alamri, S.A. The combined effect of arbuscular mycorrhizae and plant-growth-promoting yeast improves sunflower defense against Macrophomina phaseolina diseases. Biol. Control 2019, 138, 104049. [Google Scholar] [CrossRef]
- Velivelli, S.L.; Lojan, P.; Cranenbrouck, S.; de Boulois, H.D.; Suarez, J.P.; Declerck, S.; Franco, J.; Prestwich, B.D. The induction of Ethylene response factor 3 (ERF3) in potato as a result of co-inoculation with Pseudomonas sp. R41805 and Rhizophagus irregularis MUCL 41833–a possible role in plant defense. Plant Signal. Behav. 2015, 10, e988076. [Google Scholar] [CrossRef]
- Behn, O. Influence of Pseudomonas fluorescens and arbuscular mycorrhiza on the growth, yield, quality and resistance of wheat infected with Gaeumannomyces graminis/Einfluss von Pseudomonas fluorescens und Mykorrhiza auf Wachstum, Ertrag, Qualität und Resistenz von Weizen bei Befall mit Gaeumannomyces graminis. J. Plant Dis. Prot. 2008, 115, 4–8. [Google Scholar]
- Liu, R.; Dai, M.; Wu, X.; Li, M.; Liu, X. Suppression of the root-knot nematode [Meloidogyne incognita (Kofoid & White) Chitwood] on tomato by dual inoculation with arbuscular mycorrhizal fungi and plant growth-promoting rhizobacteria. Mycorrhiza 2012, 22, 289–296. [Google Scholar] [PubMed]
- Wang, Y.-H.; Dai, Y.; Kong, W.-L.; Zhu, M.-L.; Wu, X.-Q. Improvement of sphaeropsis Shoot Blight Disease resistance by applying the ectomycorrhizal fungus Hymenochaete sp. Rl and mycorrhizal helper Bacterium Bacillus pumilus HR10 to Pinus thunbergii. Phytopathology® 2022, 112, 1226–1234. [Google Scholar] [CrossRef] [PubMed]
- Delgado, A.; Toro, M.; Memenza-Zegarra, M.; Zúñiga-Dávila, D. Control of White Rot Caused by Sclerotinia sclerotiorum in Strawberry Using Arbuscular Mycorrhizae and Plant-Growth-Promoting Bacteria. Sustainability 2023, 15, 2901. [Google Scholar] [CrossRef]
- Abdel-Fattah, G.; Mohamedin, A. Interactions between a vesicular-arbuscular mycorrhizal fungus (Glomus intraradices) and Streptomyces coelicolor and their effects on sorghum plants grown in soil amended with chitin of brawn scales. Biol. Fertil. Soils 2000, 32, 401–409. [Google Scholar] [CrossRef]
- Banerjee, A.; Sanyal, S.; Sen, S. Soil phosphatase activity of agricultural land: A possible index of soil fertility. Agric. Sci. Res. J. 2012, 2, 412–419. [Google Scholar]
- Cavagnaro, T.R.; Bender, S.F.; Asghari, H.R.; van der Heijden, M.G. The role of arbuscular mycorrhizas in reducing soil nutrient loss. Trends Plant Sci. 2015, 20, 283–290. [Google Scholar] [CrossRef]
- Hunter, P.J.; Teakle, G.R.; Bending, G.D. Root traits and microbial community interactions in relation to phosphorus availability and acquisition, with particular reference to Brassica. Front. Plant Sci. 2014, 5, 27. [Google Scholar] [CrossRef]
- Fall, A.F.; Nakabonge, G.; Ssekandi, J.; Founoune-Mboup, H.; Apori, S.O.; Ndiaye, A.; Badji, A.; Ngom, K. Roles of Arbuscular Mycorrhizal Fungi on Soil Fertility: Contribution in the Improvement of Physical, Chemical, and Biological Properties of the Soil. Front. Fungal Biol. 2022, 3, 723892. [Google Scholar] [CrossRef]
- Hashem, A.; Abd_Allah, E.F.; Alqarawi, A.A.; Al-Huqail, A.A.; Wirth, S.; Egamberdieva, D. The interaction between arbuscular mycorrhizal fungi and endophytic bacteria enhances plant growth of Acacia gerrardii under salt stress. Front. Microbiol. 2016, 7, 1089. [Google Scholar] [CrossRef]
- Cornejo, P.; Borie, F.; Rubio, R.; Azcón, R. Influence of nitrogen source on the viability, functionality and persistence of Glomus etunicatum fungal propagules in an Andisol. Appl. Soil Ecol. 2007, 35, 423–431. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chen, L.; Zhang, X.; Li, Q.; Yang, X.; Huang, Y.; Zhang, B.; Ye, L.; Li, X. Phosphatases: Decoding the Role of Mycorrhizal Fungi in Plant Disease Resistance. Int. J. Mol. Sci. 2024, 25, 9491. https://doi.org/10.3390/ijms25179491
Chen L, Zhang X, Li Q, Yang X, Huang Y, Zhang B, Ye L, Li X. Phosphatases: Decoding the Role of Mycorrhizal Fungi in Plant Disease Resistance. International Journal of Molecular Sciences. 2024; 25(17):9491. https://doi.org/10.3390/ijms25179491
Chicago/Turabian StyleChen, Li, Xiaoping Zhang, Qiang Li, Xuezhen Yang, Yu Huang, Bo Zhang, Lei Ye, and Xiaolin Li. 2024. "Phosphatases: Decoding the Role of Mycorrhizal Fungi in Plant Disease Resistance" International Journal of Molecular Sciences 25, no. 17: 9491. https://doi.org/10.3390/ijms25179491
APA StyleChen, L., Zhang, X., Li, Q., Yang, X., Huang, Y., Zhang, B., Ye, L., & Li, X. (2024). Phosphatases: Decoding the Role of Mycorrhizal Fungi in Plant Disease Resistance. International Journal of Molecular Sciences, 25(17), 9491. https://doi.org/10.3390/ijms25179491