The 5:2 Diet Affects Markers of Insulin Secretion and Sensitivity in Subjects with and without Type 2 Diabetes—A Non-Randomized Controlled Trial
Abstract
:1. Introduction
2. Results
2.1. Baseline Characteristics
2.2. Six Months of Intervention
2.3. Compliance of Diet and Physical Activity
2.4. Twelve Months of Follow-Up
3. Discussion
4. Materials and Methods
4.1. Study Design
4.2. Eligibility Criteria
4.3. Subjects
4.4. Procedure
4.5. Dietary Intervention
4.6. Questionnaires
4.7. Laboratory Analysis
4.8. Outcomes
4.9. Statistics
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- International Diabetes Federation. IDF Diabetes Atlas 2021; International Diabetes Federation: Brussels, Belgium, 2021. [Google Scholar]
- Afshin, A.; Forouzanfar, M.H.; Reitsma, M.B.; Sur, P.; Estep, K.; Lee, A.; Marczak, L.; Mokdad, A.H.; Moradi-Lakeh, M.; Naghavi, M.; et al. Health Effects of Overweight and Obesity in 195 Countries over 25 Years. N. Engl. J. Med. 2017, 377, 13–27. [Google Scholar] [CrossRef]
- Ng, M.; Fleming, T.; Robinson, M.; Thomson, B.; Graetz, N.; Margono, C.; Mullany, E.C.; Biryukov, S.; Abbafati, C.; Abera, S.F.; et al. Global, regional, and national prevalence of overweight and obesity in children and adults during 1980-2013: A systematic analysis for the Global Burden of Disease Study 2013. Lancet 2014, 384, 766–781. [Google Scholar] [CrossRef] [PubMed]
- Seidell, J.C.; Halberstadt, J. The global burden of obesity and the challenges of prevention. Ann. Nutr. Metab. 2015, 66 (Suppl. S2), 7–12. [Google Scholar] [CrossRef]
- Alberti, K.G.; Eckel, R.H.; Grundy, S.M.; Zimmet, P.Z.; Cleeman, J.I.; Donato, K.A.; Fruchart, J.C.; James, W.P.; Loria, C.M.; Smith, S.C., Jr.; et al. Harmonizing the metabolic syndrome: A joint interim statement of the International Diabetes Federation Task Force on Epidemiology and Prevention; National Heart, Lung, and Blood Institute; American Heart Association; World Heart Federation; International Atherosclerosis Society; and International Association for the Study of Obesity. Circulation 2009, 120, 1640–1645. [Google Scholar] [CrossRef]
- Aroor, A.R.; Jia, G.; Sowers, J.R. Cellular mechanisms underlying obesity-induced arterial stiffness. Am. J. Physiol. Regul. Integr. Comp. Physiol. 2018, 314, R387–R398. [Google Scholar] [CrossRef] [PubMed]
- Haslam, D.W.; James, W.P.T. Obesity. Lancet 2005, 366, 1197–1209. [Google Scholar] [CrossRef]
- Ortega-Loubon, C.; Fernandez-Molina, M.; Singh, G.; Correa, R. Obesity and its cardiovascular effects. Diabetes Metab. Res. Rev. 2019, 35, e3135. [Google Scholar] [CrossRef]
- Van Gaal, L.F.; Mertens, I.L.; De Block, C.E. Mechanisms linking obesity with cardiovascular disease. Nature 2006, 444, 875–880. [Google Scholar] [CrossRef] [PubMed]
- Franz, M.J.; Boucher, J.L.; Rutten-Ramos, S.; VanWormer, J.J. Lifestyle weight-loss intervention outcomes in overweight and obese adults with type 2 diabetes: A systematic review and meta-analysis of randomized clinical trials. J. Acad. Nutr. Diet 2015, 115, 1447–1463. [Google Scholar] [CrossRef] [PubMed]
- Knuth, N.D.; Johannsen, D.L.; Tamboli, R.A.; Marks-Shulman, P.A.; Huizenga, R.; Chen, K.Y.; Abumrad, N.N.; Ravussin, E.; Hall, K.D. Metabolic adaptation following massive weight loss is related to the degree of energy imbalance and changes in circulating leptin. Obesity 2014, 22, 2563–2569. [Google Scholar] [CrossRef]
- Lean, M.E.J.; Leslie, W.S.; Barnes, A.C.; Brosnahan, N.; Thom, G.; McCombie, L.; Peters, C.; Zhyzhneuskaya, S.; Al-Mrabeh, A.; Hollingsworth, K.G.; et al. Primary care-led weight management for remission of type 2 diabetes (DiRECT): An open-label, cluster-randomised trial. Lancet 2018, 391, 541–551. [Google Scholar] [CrossRef] [PubMed]
- Omodei, D.; Fontana, L. Calorie restriction and prevention of age-associated chronic disease. FEBS Lett. 2011, 585, 1537–1542. [Google Scholar] [CrossRef] [PubMed]
- Barte, J.C.; ter Bogt, N.C.; Bogers, R.P.; Teixeira, P.J.; Blissmer, B.; Mori, T.A.; Bemelmans, W.J. Maintenance of weight loss after lifestyle interventions for overweight and obesity, a systematic review. Obes. Rev. 2010, 11, 899–906. [Google Scholar] [CrossRef] [PubMed]
- James, R.; Salton, R.I.; Byrnes, J.M.; Scuffham, P.A. Cost-utility analysis for bariatric surgery compared with usual care for the treatment of obesity in Australia. Surg. Obes. Relat. Dis. 2017, 13, 2012–2020. [Google Scholar] [CrossRef]
- Klebanoff, M.J.; Chhatwal, J.; Nudel, J.D.; Corey, K.E.; Kaplan, L.M.; Hur, C. Cost-effectiveness of Bariatric Surgery in Adolescents With Obesity. JAMA Surg. 2017, 152, 136–141. [Google Scholar] [CrossRef]
- Mattson, M.P.; Allison, D.B.; Fontana, L.; Harvie, M.; Longo, V.D.; Malaisse, W.J.; Mosley, M.; Notterpek, L.; Ravussin, E.; Scheer, F.A.; et al. Meal frequency and timing in health and disease. Proc. Natl. Acad. Sci. USA 2014, 111, 16647–16653. [Google Scholar] [CrossRef]
- Borgundvaag, E.; Mak, J.; Kramer, C.K. Metabolic Impact of Intermittent Fasting in Patients With Type 2 Diabetes Mellitus: A Systematic Review and Meta-analysis of Interventional Studies. J. Clin. Endocrinol. Metab. 2021, 106, 902–911. [Google Scholar] [CrossRef]
- Carter, S.; Clifton, P.M.; Keogh, J.B. Effect of Intermittent Compared With Continuous Energy Restricted Diet on Glycemic Control in Patients With Type 2 Diabetes: A Randomized Noninferiority Trial. JAMA Netw. Open 2018, 1, e180756. [Google Scholar] [CrossRef]
- Schubel, R.; Nattenmuller, J.; Sookthai, D.; Nonnenmacher, T.; Graf, M.E.; Riedl, L.; Schlett, C.L.; von Stackelberg, O.; Johnson, T.; Nabers, D.; et al. Effects of intermittent and continuous calorie restriction on body weight and metabolism over 50 wk: A randomized controlled trial. Am. J. Clin. Nutr. 2018, 108, 933–945. [Google Scholar] [CrossRef]
- Trepanowski, J.F.; Kroeger, C.M.; Barnosky, A.; Klempel, M.C.; Bhutani, S.; Hoddy, K.K.; Gabel, K.; Freels, S.; Rigdon, J.; Rood, J.; et al. Effect of Alternate-Day Fasting on Weight Loss, Weight Maintenance, and Cardioprotection Among Metabolically Healthy Obese Adults: A Randomized Clinical Trial. JAMA Intern. Med. 2017, 177, 930–938. [Google Scholar] [CrossRef]
- Varady, K.A.; Cienfuegos, S.; Ezpeleta, M.; Gabel, K. Clinical application of intermittent fasting for weight loss: Progress and future directions. Nat. Rev. Endocrinol. 2022, 18, 309–321. [Google Scholar] [CrossRef] [PubMed]
- Leighton, E.; Sainsbury, C.A.; Jones, G.C. A Practical Review of C-Peptide Testing in Diabetes. Diabetes Ther. 2017, 8, 475–487. [Google Scholar] [CrossRef] [PubMed]
- Frick, F.; Oscarsson, J.; Vikman-Adolfsson, K.; Ottosson, M.; Yoshida, N.; Edén, S. Different effects of IGF-I on insulin-stimulated glucose uptake in adipose tissue and skeletal muscle. Am. J. Physiol. Endocrinol. Metab. 2000, 278, E729–E737. [Google Scholar] [CrossRef] [PubMed]
- Bae, J.H.; Song, D.K.; Im, S.S. Regulation of IGFBP-1 in Metabolic Diseases. J. Lifestyle Med. 2013, 3, 73–79. [Google Scholar] [PubMed]
- Brismar, K.; Fernqvist-Forbes, E.; Wahren, J.; Hall, K. Effect of insulin on the hepatic production of insulin-like growth factor-binding protein-1 (IGFBP-1), IGFBP-3, and IGF-I in insulin-dependent diabetes. J. Clin. Endocrinol. Metab. 1994, 79, 872–878. [Google Scholar] [CrossRef]
- Clemmons, D.R. Role of insulin-like growth factor iin maintaining normal glucose homeostasis. Horm. Res. Dev. Endocrinol. Clin. Res. 2004, 62 (Suppl. S1), 77–82. [Google Scholar] [CrossRef]
- Kotronen, A.; Lewitt, M.; Hall, K.; Brismar, K.; Yki-Jarvinen, H. Insulin-like growth factor binding protein 1 as a novel specific marker of hepatic insulin sensitivity. J. Clin. Endocrinol. Metab. 2008, 93, 4867–4872. [Google Scholar] [CrossRef]
- Clemmons, D.R. Role of IGF-binding proteins in regulating IGF responses to changes in metabolism. J. Mol. Endocrinol. 2018, 61, T139–T169. [Google Scholar] [CrossRef]
- Brismar, K.; Hilding, A.; Ansurudeen, I.; Flyvbjerg, A.; Frystyk, J.; Ostenson, C.G. Adiponectin, IGFBP-1 and -2 are independent predictors in forecasting prediabetes and type 2 diabetes. Front. Endocrinol. 2022, 13, 1092307. [Google Scholar] [CrossRef]
- Lewitt, M.S.; Hilding, A.; Brismar, K.; Efendic, S.; Ostenson, C.G.; Hall, K. IGF-binding protein 1 and abdominal obesity in the development of type 2 diabetes in women. Eur. J. Endocrinol. 2010, 163, 233–242. [Google Scholar] [CrossRef]
- Lewitt, M.S.; Hilding, A.; Ostenson, C.G.; Efendic, S.; Brismar, K.; Hall, K. Insulin-like growth factor-binding protein-1 in the prediction and development of type 2 diabetes in middle-aged Swedish men. Diabetologia 2008, 51, 1135–1145. [Google Scholar] [CrossRef] [PubMed]
- Petersson, U.; Ostgren, C.J.; Brudin, L.; Brismar, K.; Nilsson, P.M. Low levels of insulin-like growth-factor-binding protein-1 (IGFBP-1) are prospectively associated with the incidence of type 2 diabetes and impaired glucose tolerance (IGT): The Soderakra Cardiovascular Risk Factor Study. Diabetes Metab. 2009, 35, 198–205. [Google Scholar] [CrossRef] [PubMed]
- Matthews, D.R.; Hosker, J.P.; Rudenski, A.S.; Naylor, B.A.; Treacher, D.F.; Turner, R.C. Homeostasis model assessment: Insulin resistance and beta-cell function from fasting plasma glucose and insulin concentrations in man. Diabetologia 1985, 28, 412–419. [Google Scholar] [CrossRef] [PubMed]
- Wang, X.; Li, Q.; Liu, Y.; Jiang, H.; Chen, W. Intermittent fasting versus continuous energy-restricted diet for patients with type 2 diabetes mellitus and metabolic syndrome for glycemic control: A systematic review and meta-analysis of randomized controlled trials. Diabetes Res. Clin. Pract. 2021, 179, 109003. [Google Scholar] [CrossRef]
- Zubrzycki, A.; Cierpka-Kmiec, K.; Kmiec, Z.; Wronska, A. The role of low-calorie diets and intermittent fasting in the treatment of obesity and type-2 diabetes. J. Physiol. Pharmacol. 2018, 69, 663–683. [Google Scholar] [CrossRef]
- Msane, S.; Khathi, A.; Sosibo, A. Therapeutic Potential of Various Intermittent Fasting Regimens in Alleviating Type 2 Diabetes Mellitus and Prediabetes: A Narrative Review. Nutrients 2024, 16, 2692. [Google Scholar] [CrossRef]
- Harvie, M.; Wright, C.; Pegington, M.; McMullan, D.; Mitchell, E.; Martin, B.; Cutler, R.G.; Evans, G.; Whiteside, S.; Maudsley, S.; et al. The effect of intermittent energy and carbohydrate restriction v. daily energy restriction on weight loss and metabolic disease risk markers in overweight women. Br. J. Nutr. 2013, 110, 1534–1547. [Google Scholar] [CrossRef]
- Ekberg, N.R.; Falhammar, H.; Naslund, E.; Brismar, K. Predictors of normalized HbA1c after gastric bypass surgery in subjects with abnormal glucose levels, a 2-year follow-up study. Sci. Rep. 2020, 10, 15127. [Google Scholar] [CrossRef]
- World Health Organization. WHO Guidelines Approved by the Guidelines Review Committee. In Use of Glycated Haemoglobin (HbA1c) in the Diagnosis of Diabetes Mellitus: Abbreviated Report of a WHO Consultation; World Health Organization: Geneva, Switzerland, 2011. [Google Scholar]
- Wadden, T.A.; Volger, S.; Tsai, A.G.; Sarwer, D.B.; Berkowitz, R.I.; Diewald, L.K.; Carvajal, R.; Moran, C.H.; Vetter, M.; Group, P.-U.R. Managing obesity in primary care practice: An overview with perspective from the POWER-UP study. Int. J. Obes. 2013, 37 (Suppl. S1), S3–S11. [Google Scholar] [CrossRef]
- Varady, K.A.; Bhutani, S.; Klempel, M.C.; Kroeger, C.M.; Trepanowski, J.F.; Haus, J.M.; Hoddy, K.K.; Calvo, Y. Alternate day fasting for weight loss in normal weight and overweight subjects: A randomized controlled trial. Nutr. J. 2013, 12, 146. [Google Scholar] [CrossRef]
- Kallings, L.V.; Sierra Johnson, J.; Fisher, R.M.; Faire, U.; Stahle, A.; Hemmingsson, E.; Hellenius, M.L. Beneficial effects of individualized physical activity on prescription on body composition and cardiometabolic risk factors: Results from a randomized controlled trial. Eur. J. Cardiovasc. Prev. Rehabil. 2009, 16, 80–84. [Google Scholar] [CrossRef] [PubMed]
- Olsson, S.J.; Borjesson, M.; Ekblom-Bak, E.; Hemmingsson, E.; Hellenius, M.L.; Kallings, L.V. Effects of the Swedish physical activity on prescription model on health-related quality of life in overweight older adults: A randomised controlled trial. BMC Public Health 2015, 15, 687. [Google Scholar] [CrossRef] [PubMed]
- Unden, A.L.; Elofsson, S.; Andreasson, A.; Hillered, E.; Eriksson, I.; Brismar, K. Gender differences in self-rated health, quality of life, quality of care, and metabolic control in patients with diabetes. Gend. Med. 2008, 5, 162–180. [Google Scholar] [CrossRef] [PubMed]
- Bang, P.; Eriksson, U.; Sara, V.; Wivall, I.L.; Hall, K. Comparison of acid ethanol extraction and acid gel filtration prior to IGF-I and IGF-II radioimmunoassays: Improvement of determinations in acid ethanol extracts by the use of truncated IGF-I as radioligand. Acta Endocrinol. 1991, 124, 620–629. [Google Scholar] [CrossRef]
- Hilding, A.; Hall, K.; Wivall-Helleryd, I.L.; Saaf, M.; Melin, A.L.; Thoren, M. Serum levels of insulin-like growth factor I in 152 patients with growth hormone deficiency, aged 19–82 years, in relation to those in healthy subjects. J. Clin. Endocrinol. Metab. 1999, 84, 2013–2019. [Google Scholar] [CrossRef]
- Povoa, G.; Roovete, A.; Hall, K. Cross-reaction of serum somatomedin-binding protein in a radioimmunoassay developed for somatomedin-binding protein isolated from human amniotic fluid. Acta Endocrinol. 1984, 107, 563–570. [Google Scholar] [CrossRef]
T2D | Controls | p-Value | |
---|---|---|---|
No. (% women) | 35 (66%) | 62 (63%) | |
Age (year) | 66.63 ± 8.11 | 57.98 ± 11.76 | <0.001 |
Weight (kg) | 82.37 ± 15.26 | 86.35 ± 15.61 | 0.23 |
BMI (kg/m2) | 28.55 ± 3.46 | 28.85 ± 4.04 | 0.71 |
Waist (cm) | 103.83 ± 10.50 | 100.87 ± 10.83 | 0.19 |
Body fat (%) | 34.78 ± 7.28 | 34.50 ± 7.97 | 0.87 |
Trunk fat (%) | 33.73 ± 6.76 | 34.06 ± 6.94 | 0.82 |
Glucose (mmol/L) | 7.35 (6.45–8.71) | 5.38 (5.04–5.86) | <0.001 |
Insulin (mIU/L) | 10.53 (7.88–13.49) | 9.64 (6.65–12.55) | 0.053 |
C-peptide (nmol/L) | 1.10 (0.90–1.30) | 0.82 (0.64–1.00) | <0.001 |
IGF-SD | 0.18 ± 0.95 | 0.05 ± 1.26 | 0.38 |
IGFBP-1 (µg/L) | 31.14 ± 18.78 | 32.19 ± 18.34 | 0.10 |
HOMA-IR | 3.79 (2.65–4.69) | 2.28 (1.59–3.33) | <0.001 |
HbA1c | 47.0 (43.5–53.0) | 35.0 (33.0–38.0) | <0.001 |
T2D (66% Females) | Controls (63% Females) | |||||||
---|---|---|---|---|---|---|---|---|
Baseline (n = 35) | 6 Months (n = 35) | p-Value | Baseline (n = 62) | 6 Months (n = 58) | p-Value | Difference Diabetics-Controls | p-Value | |
Weight (kg) | 84.9 (79.8–89.9) | 79.6 (74.5–84.7) | <0.001 | 84.6 (80.8–88.4) | 80.4 (76.6–84.3) | <0.001 | 1.05 (−0.26–2.37) | 0.12 |
BMI (kg/m2) | 29.2 (27.9–30.5) | 27.4 (26.1–28.7) | <0.001 | 28.4 (27.5–29.4) | 27.0 (26.0–27.9) | <0.001 | 0.39 (−0.05–0.83) | 0.08 |
Waist (cm) | 104 (100–108) | 99 (95–103) | <0.001 | 101 (98–104) | 97 (94–100) | <0.001 | 1.7 (0.25–3.07) | 0.022 |
Body fat (%) | 35.3 (32.5–38.0) | 32.7 (30.0–35.5) | <0.001 | 34.2 (32.1–36.2) | 32.2 (30.2–34.3) | <0.001 | 0.60 (−0.34–1.53) | 0.21 |
Trunk fat (%) | 34.3 (31.7–36.9) | 31.6 (29.1–34.2) | <0.001 | 33.7 (31.8–35.6) | 31.4 (29.5–33.3) | <0.001 | 0.44 (−1.20–2.07) | 0.60 |
GlucoseL (mmol/L) | 7.54 (7.24–7.92) | 6.89 (6.55–7.17) | <0.001 | 5.47 (5.26–5.70) | 5.31 (5.16–5.47) | 0.15 | −0.93 (−0.98–−0.89) | 0.004 |
InsulinL (mIU/L) | 11.5 (9.5–14.0) | 10.2 (8.4–12.3) | 0.25 | 9.4 (8.2–10.8) | 7.9 (6.9–9.2) | 0.02 | −1.0 (−1.3–−0.9) | 0.66 |
C-peptideL (nmol/L) | 1.10 (0.97–1.24) | 0.99 (0.87–1.12) | 0.03 | 0.83 (0.76–0.91) | 0.77 (0.70–0.84) | 0.04 | −0.98 (−1.09–0.88) | 0.65 |
IGF-SD | 0.01 (−0.36–0.38) | 0.15 (−0.22–0.52) | 0.30 | 0.21 (−0.07–0.50) | −0.05 (−0.34–0.23) | 0.001 | −0.41 (−0.64–−0.17) | <0.001 |
IGFBP-1 (µg/L) | 28.0 (22.1–34.0) | 34.4 (28.5–40.4) | 0.04 | 34.3 (29.9–38.8) | 35.0 (30.5–39.5) | 0.94 | −5.7 (−12.2–0.7) | 0.08 |
HOMA-IRL | 3.88 (3.13–4.80) | 3.10 (2.50–3.85) | 0.023 | 2.28 (1.94–2.69) | 1.88 (1.60–2.22) | 0.0095 | −0.97 (−1.20–−0.79) | 0.79 |
HbA1cL | 47.9 (45.6–50.4) | 45.2 (42.9–47.5) | 0.004 | 36.2 (34.8–37.3) | 36.6 (35.1–38.1) | 0.67 | −0.93 (−0.97–−0.88) | 0.002 |
T2D (66% Females) | Controls (62% Females) | |||||
---|---|---|---|---|---|---|
Baseline (n = 35) | 12 Months (n = 31) | p-Value | Baseline (n = 62) | 12 Months (n = 51) | p-Value | |
Weight (kg) | 84.9 (79.8–89.9) | 81.0 (75.9–86.1) | <0.001 | 84.6 (80.8–88.4) | 81.9 (78.1–85.8) | <0.001 |
BMI (kg/m2) | 29.2 (27.9–30.5) | 27.8 (26.5–29.1) | <0.001 | 28.4 (27.5–29.4) | 27.5 (26.5–28.5) | <0.001 |
Waist (cm) | 104 (100–108) | 100 (96–104) | <0.001 | 101 (98–104) | 97 (94–100) | <0.001 |
Body fat (%) | 35.3 (32.5–38.0) | 33.8 (31.0–36.6) | 0.001 | 34.2 (32.1–36.2) | 32.9 (30.9–35.0) | <0.001 |
Trunk fat (%) | 34.3 (31.7–36.9) | 32.2 (29.6–34.8) | 0.006 | 33.7 (31.8–35.6) | 31.7 (29.8–33.7) | 0.001 |
GlucoseL (mmol/L) | 7.54 (7.24–7.92) | 6.88 (6.55–7.24) | <0.001 | 5.47 (5.26–5.70) | 5.26 (5.05–5.47) | 0.049 |
InsulinL (mIU/L) | 11.5 (9.5–14.0) | 9.7 (7.9–11.7) | 0.06 | 9.4 (8.2–10.8) | 7.0 (6.0–8.2) | <0.001 |
C-peptideL (nmol/L) | 1.10 (0.97–1.24) | 1.10 (0.97–1.25) | 0.99 | 0.83 (0.76–0.91)) | 0.80 (0.73–0.88) | 0.59 |
IGF-SD | 0.01 (−0.36–0.38) | 0.25 (−0.12–0.63) | 0.03 | 0.21 (−0.07–0.50) | 0.07 (−0.22–0.36) | 0.17 |
IGFBP-1 (µg/L) | 28.0 (22.1–34.0) | 29.4 (23.2–35.5) | 0.87 | 34.3 (29.9–38.8) | 38.0 (33.3–42.7) | 0.20 |
HOMA-IRL | 3.88 (3.13–4.80) | 2.91 (2.34–3.63) | 0.004 | 2.28 (1.94–2.69) | 1.64 (1.38–1.94) | <0.001 |
HbA1cL | 47.9 (45.6–50.4) | 46.1 (43.8–48.4) | 0.14 | 36.2 (34.8–37.3) | 36.6 (35.1–38.1) | 0.66 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ekberg, N.R.; Hellberg, A.; Sundqvist, M.L.; Hirschberg, A.L.; Catrina, S.-B.; Brismar, K. The 5:2 Diet Affects Markers of Insulin Secretion and Sensitivity in Subjects with and without Type 2 Diabetes—A Non-Randomized Controlled Trial. Int. J. Mol. Sci. 2024, 25, 9731. https://doi.org/10.3390/ijms25179731
Ekberg NR, Hellberg A, Sundqvist ML, Hirschberg AL, Catrina S-B, Brismar K. The 5:2 Diet Affects Markers of Insulin Secretion and Sensitivity in Subjects with and without Type 2 Diabetes—A Non-Randomized Controlled Trial. International Journal of Molecular Sciences. 2024; 25(17):9731. https://doi.org/10.3390/ijms25179731
Chicago/Turabian StyleEkberg, Neda Rajamand, Anton Hellberg, Michaela Linn Sundqvist, Angelica Lindén Hirschberg, Sergiu-Bogdan Catrina, and Kerstin Brismar. 2024. "The 5:2 Diet Affects Markers of Insulin Secretion and Sensitivity in Subjects with and without Type 2 Diabetes—A Non-Randomized Controlled Trial" International Journal of Molecular Sciences 25, no. 17: 9731. https://doi.org/10.3390/ijms25179731
APA StyleEkberg, N. R., Hellberg, A., Sundqvist, M. L., Hirschberg, A. L., Catrina, S. -B., & Brismar, K. (2024). The 5:2 Diet Affects Markers of Insulin Secretion and Sensitivity in Subjects with and without Type 2 Diabetes—A Non-Randomized Controlled Trial. International Journal of Molecular Sciences, 25(17), 9731. https://doi.org/10.3390/ijms25179731