Comparative Study of the Antioxidant Activity of the Conformers of C-tetra(4-methoxyphenyl)calix[4]resorcinarene
Abstract
:1. Introduction
2. Results and Discussion
2.1. Obtaining the Conformers of C-tetra(4-methoxyphenyl)calix[4]resorcinarene
2.2. Antioxidant Activity
3. Materials and Methods
3.1. Synthesis of C-tetra(4-methoxyphenyl)calix[4]resorcinarene
3.2. Chromatographic Analysis
3.3. DPPH Antioxidant Assay
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Forman, H.J.; Zhang, H. Targeting oxidative stress in disease: Promise and limitations of antioxidant therapy. Nat. Rev. Drug Discov. 2021, 20, 689–709. [Google Scholar] [CrossRef] [PubMed]
- Valko, M.; Leibfritz, D.; Moncol, J.; Cronin, M.T.D.; Mazur, M.; Telser, J. Free radicals and antioxidants in normal physiological functions and human disease. Int. J. Biochem. Cell Biol. 2007, 39, 44–84. [Google Scholar] [CrossRef] [PubMed]
- Salisbury, D.; Bronas, U. Reactive Oxygen and Nitrogen Species. Nurs. Res. 2015, 64, 53–66. [Google Scholar] [CrossRef] [PubMed]
- Arfin, S.; Jha, N.K.; Jha, S.K.; Kesari, K.K.; Ruokolainen, J.; Roychoudhury, S.; Rathi, B.; Kumar, D. Oxidative Stress in Cancer Cell Metabolism. Antioxidants 2021, 10, 642. [Google Scholar] [CrossRef] [PubMed]
- Reuter, S.; Gupta, S.C.; Chaturvedi, M.M.; Aggarwal, B.B. Oxidative Stress, Inflammation, and Cancer: How Are They Linked? Free Radic. Biol. Med. 2010, 49, 1603–1616. [Google Scholar] [CrossRef]
- Chen, X.; Guo, C.; Kong, J. Oxidative stress in neurodegenerative diseases. Neural Regen. Res. 2012, 7, 376. [Google Scholar] [CrossRef]
- Kim, G.H.; Kim, J.E.; Rhie, S.J.; Yoon, S. The Role of Oxidative Stress in Neurodegenerative Diseases. Exp. Neurobiol. 2015, 24, 325. [Google Scholar] [CrossRef]
- Singh, A.; Kukreti, R.; Saso, L.; Kukreti, S. Oxidative Stress: A Key Modulator in Neurodegenerative Diseases. Molecules 2019, 24, 1583. [Google Scholar] [CrossRef]
- Dubois-Deruy, E.; Peugnet, V.; Turkieh, A.; Pinet, F. Oxidative Stress in Cardiovascular Diseases. Antioxidants 2020, 9, 864. [Google Scholar] [CrossRef]
- Peoples, J.N.; Saraf, A.; Ghazal, N.; Pham, T.T.; Kwong, J.Q. Mitochondrial Dysfunction and Oxidative Stress in Heart Disease. Exp. Mol. Med. 2019, 51, 1–3. [Google Scholar] [CrossRef]
- Liguori, I.; Russo, G.; Curcio, F.; Bulli, G.; Aran, L.; Della-Morte, D.; Gargiulo, G.; Testa, G.; Cacciatore, F.; Bonaduce, D.; et al. Oxidative Stress, Aging, and Diseases. Clin. Interv. Aging 2018, 13, 757–772. [Google Scholar] [CrossRef] [PubMed]
- Lü, J.-M.; Lin, P.H.; Yao, Q.; Chen, C. Chemical and Molecular Mechanisms of Antioxidants: Experimental Approaches and Model Systems. J. Cell. Mol. Med. 2009, 14, 840–860. [Google Scholar] [CrossRef] [PubMed]
- Foti, M.C. Antioxidant Properties of Phenols. J. Pharm. Pharmacol. 2007, 59, 1673–1685. [Google Scholar] [CrossRef] [PubMed]
- Ali Al-Mamary, M.; Moussa, Z. Antioxidant Activity: The Presence and Impact of Hydroxyl Groups in Small Molecules of Natural and Synthetic Origin. In Antioxidants-Benefits, Sources, Mechanisms of Action; Intech Open: London, UK, 2021. [Google Scholar] [CrossRef]
- Lee, J.-S.; Song, I.; Shinde, P.B.; Nimse, S.B. Macrocycles and Supramolecules as Antioxidants: Excellent Scaffolds for Development of Potential Therapeutic Agents. Antioxidants 2020, 9, 859. [Google Scholar] [CrossRef] [PubMed]
- Español, E.S.; Villamil, M.M. Calixarenes: Generalities and Their Role in Improving the Solubility, Biocompatibility, Stability, Bioavailability, Detection, and Transport of Biomolecules. Biomolecules 2019, 9, 90. [Google Scholar] [CrossRef]
- Jain, V.K.; Kanaiya, P.H. Chemistry of calix[4]resorcinarenes. Russ. Chem. Rev. 2011, 80, 75–102. [Google Scholar] [CrossRef]
- Castillo-Aguirre, A.; Esteso, M.A.; Maldonado, M. Resorcin[4]arenes: Generalities and Their Role in the Modification and Detection of Amino Acids. Curr. Org. Chem. 2020, 24, 2412–2425. [Google Scholar] [CrossRef]
- Tunstad, L.M.; Tucker, J.A.; Dalcanale, E.; Weiser, J.; Bryant, J.A.; Sherman, J.C.; Helgeson, R.C.; Knobler, C.B.; Cram, D.J. Host-Guest Complexation. 48. Octol Building Blocks for Cavitands and Carcerands. J. Org. Chem. 1989, 54, 1305–1312. [Google Scholar] [CrossRef]
- Iwanek, W.; Wzorek, A. Introduction to the Chirality of Resorcinarenes. Mini-Rev. Org. Chem. 2009, 6, 398–411. [Google Scholar] [CrossRef]
- Böhmer, V.; Kraft, D.; Tabatabai, M. Inherently chiral calixarenes. J. Incl. Phenom. Mol. Recognit. Chem. 1994, 19, 17–39. [Google Scholar] [CrossRef]
- Tero, T.-R.; Suhonen, A.; Salorinne, K.; Campos-Barbosa, H.; Nissinen, M. The Missing Member of the Partially O-Alkylated Resorcinarene Family: Synthesis and Conformation of Methyl Tetramethoxy Resorcinarene. Org. Lett. 2013, 15, 1096–1099. [Google Scholar] [CrossRef] [PubMed]
- Helttunen, K.; Shahgaldian, P. Self-assembly of amphiphilic calixarenes and resorcinarenes in water. New J. Chem. 2010, 34, 2704. [Google Scholar] [CrossRef]
- Vovk, A.I.; Shivanyuk, A.M.; Bugas, R.V.; Muzychka, O.V.; Melnyk, A.K. Antioxidant and Antiradical Activities of Resorcinarene Tetranitroxides. Bioorganic Med. Chem. Lett. 2009, 19, 1314–1317. [Google Scholar] [CrossRef]
- Oliveira, C.; Meurer, Y.; Oliveira, M.; Medeiros, W.; Silva, F.; Brito, A.; Pontes, D.; Andrade-Neto, V. Comparative Study on the Antioxidant and Anti-Toxoplasma Activities of Vanillin and Its Resorcinarene Derivative. Molecules 2014, 19, 5898–5912. [Google Scholar] [CrossRef] [PubMed]
- Budiana, I.; Gusti, M.; Ngurah, B.I.G.M. Synthetic C-Methoxyphenyl Calix [4] Resorcinarene and Its Antioxidant Activity. J. Appl. Chem. Sci. 2018, 5, 403–408. [Google Scholar] [CrossRef]
- Bishnoi, A.; Chawla, H.M.; Pant, N.; Mrig, S.; Kumar, S. Evaluation of the Radical Scavenging Activity of Resorcinarenes by DPPH• Free Radical Assay. J. Chem. Res. 2010, 34, 440–444. [Google Scholar] [CrossRef]
- Abosadiya, H.; Hasbullah, S.; Mackeen, M.; Low, S.; Ibrahim, N.; Koketsu, M.; Yamin, B. Synthesis, Characterization, X-Ray Structure and Biological Activities of C-5-Bromo-2-Hydroxyphenylcalix[4]-2-Methyl Resorcinarene. Molecules 2013, 18, 13369–13384. [Google Scholar] [CrossRef]
- Pineda-Castañeda, H.M.; Maldonado-Villamil, M.; Parra-Giraldo, C.M.; Leal-Castro, A.L.; Fierro-Medina, R.; Rivera-Monroy, Z.J.; García-Castañeda, J.E. Peptide-Resorcinarene conjugates obtained via Click Chemistry: Synthesis and antimicrobial activity. Antibiotics 2023, 12, 773. [Google Scholar] [CrossRef]
- Ramírez, G.; Cadavid-Montoya, N.A.; Maldonado, M. Evaluation of a Resorcinarene-Based Sorbent as a Solid-Phase Extraction Material for the Enrichment of L-Carnitine from Aqueous Solutions. Processes 2023, 11, 1705. [Google Scholar] [CrossRef]
- Matiz, C.; Castillo-Aguirre, A.; Maldonado, M. Synthesis of C-tetra(aryl)resorcin[4]arenes using various types of catalysts under solvent free conditions: A comparative study. Green Chem. Lett. Rev. 2024, 17, 2290847. [Google Scholar] [CrossRef]
- Castillo-Aguirre, A.; Pérez-Redondo, A.; Maldonado, M. Influence of the hydrogen bond on the iteroselective O-alkylation of calix[4]resorcinarenes. J. Mol. Struct. 2020, 1202, 127402. [Google Scholar] [CrossRef]
- Munteanu, I.G.; Apetrei, C. Analytical Methods Used in Determining Antioxidant Activity: A Review. Int. J. Mol. Sci. 2021, 22, 3380. [Google Scholar] [CrossRef] [PubMed]
- Alam, M.N.; Bristi, N.J.; Rafiquzzaman, M. Review on in vivo and in vitro methods evaluation of antioxidant activity. Saudi Pharm. J. 2013, 21, 143–152. [Google Scholar] [CrossRef] [PubMed]
- Jumina, J.; Siswanta, D.; Zulkarnain, A.K.; Triono, S.; Priatmoko, P.; Yuanita, E.; Fatmasari, N.; Nursalim, I. Development of C-Arylcalix[4]resorcinarenes and C-Arylcalix[4]pyrogallolarenes as Antioxidant and UV-B Protector. Indones. J. Chem. 2019, 19, 273. [Google Scholar] [CrossRef]
- Zhang, N.; Fu, J.N.; Chou, T.C. Synergistic combination of microtubule targeting anticancer fludelone with cytoprotective panaxytriol derived from panax ginseng against MX-1 cells in vitro: Experimental design and data analysis using the combination index method. Am. J. Cancer Res. 2015, 6, 97–104. [Google Scholar] [PubMed] [PubMed Central]
- Zhang, Y.; Kim, C.D.; Coppenes, P. Does C-methylcalix[4]resorcinarene always adopt the crown shape conformation? A resorcinarene/bipyridine/decamethylruthenocene supramolecular clathrate with a novel framework structure. Chem. Commun. 2000, 2299–2300. [Google Scholar] [CrossRef]
- Shebitha, A.A.; Sreejith, S.S.; Sherly Mole, P.B.; Nithya Mohan, N.; Avudaiappan, G.; Hiba, K.; Priya, K.S.; Sreekumar, K. Facile synthesis, X-ray diffraction studies, photophysical properties and DFT-D based conformational analysis of octa and dodecacyanomethoxycalix[4]resorcinarenes. J. Mol. Struct. 2020, 1214, 128215. [Google Scholar] [CrossRef]
- Sathiyaseelan, K.; Muthu Prabhu, A.A.; Rajendiran, N. Photophysical, Antioxidant, Antibacterial and NBO, LOL, ELF Analysis of Alkyl Groups Substituted Calix[4]resorcinarenes. J. Fluoresc. 2024, 34, 885–903. [Google Scholar] [CrossRef]
- Chou, T. Theoretical basis, experimental design, and computerized simulation of synergism and antagonism in drug combination studies. Pharmacol. Rev. 2006, 58, 621–681. [Google Scholar] [CrossRef]
Substance | IC50 (ppm) |
---|---|
Chair conformer | 47.46 ± 0.45 |
Crown conformer | 78.46 ± 0.35 |
Conformational mixture 1 | 121.48 ± 3.80 |
Ascorbic acid | 13.03 ± 0.08 |
Chair Conformer (ppm) | Crown Conformer (ppm) | CI Value |
---|---|---|
12.5 | 12.5 | 1.73 |
25 | 25 | 1.86 |
50 | 50 | 2.58 |
100 | 100 | 3.76 |
200 | 200 | 5.69 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Maldonado-Sanabria, L.A.; Rodriguez-Saavedra, I.N.; Reyes-Peña, I.V.; Castillo-Aguirre, A.; Maldonado, M.; Crespo, A.; Esteso, M.A. Comparative Study of the Antioxidant Activity of the Conformers of C-tetra(4-methoxyphenyl)calix[4]resorcinarene. Int. J. Mol. Sci. 2024, 25, 10010. https://doi.org/10.3390/ijms251810010
Maldonado-Sanabria LA, Rodriguez-Saavedra IN, Reyes-Peña IV, Castillo-Aguirre A, Maldonado M, Crespo A, Esteso MA. Comparative Study of the Antioxidant Activity of the Conformers of C-tetra(4-methoxyphenyl)calix[4]resorcinarene. International Journal of Molecular Sciences. 2024; 25(18):10010. https://doi.org/10.3390/ijms251810010
Chicago/Turabian StyleMaldonado-Sanabria, Laura Angélica, Ivette Nicole Rodriguez-Saavedra, Ingrid Valentina Reyes-Peña, Alver Castillo-Aguirre, Mauricio Maldonado, Almudena Crespo, and Miguel A. Esteso. 2024. "Comparative Study of the Antioxidant Activity of the Conformers of C-tetra(4-methoxyphenyl)calix[4]resorcinarene" International Journal of Molecular Sciences 25, no. 18: 10010. https://doi.org/10.3390/ijms251810010
APA StyleMaldonado-Sanabria, L. A., Rodriguez-Saavedra, I. N., Reyes-Peña, I. V., Castillo-Aguirre, A., Maldonado, M., Crespo, A., & Esteso, M. A. (2024). Comparative Study of the Antioxidant Activity of the Conformers of C-tetra(4-methoxyphenyl)calix[4]resorcinarene. International Journal of Molecular Sciences, 25(18), 10010. https://doi.org/10.3390/ijms251810010