Association of MicroRNA Expression and Serum Neurofilament Light Chain Levels with Clinical and Radiological Findings in Multiple Sclerosis
Abstract
:1. Introduction
2. Results
3. Discussion
4. Materials and Methods
4.1. Study Design
4.2. MicroRNA Selection and Serum Neurofilament Light Chain Analysis
4.3. MRI and Brain Volume Analysis
4.4. Statistics
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Correction Statement
References
- Dominguez-Mozo, M.I.; Casanova, I.; De Torres, L.; Aladro-Benito, Y.; Perez-Perez, S.; Garcia-Martínez, A.; Gomez, P.; Abellan, S.; De Antonio, E.; Lopez-De-Silanes, C.; et al. microRNA Expression and Its Association With Disability and Brain Atrophy in Multiple Sclerosis Patients Treated With Glatiramer Acetate. Front. Immunol. 2022, 13, 904683. [Google Scholar] [CrossRef] [PubMed]
- Casanova, I.; Domínguez-Mozo, M.I.; De Torres, L.; Aladro-Benito, Y.; García-Martínez, Á.; Gómez, P.; Abellán, S.; De Antonio, E.; Álvarez-Lafuente, R. MicroRNAs Associated with Disability Progression and Clinical Activity in Multiple Sclerosis Patients Treated with Glatiramer Acetate. Biomedicines 2023, 11, 2760. [Google Scholar] [CrossRef] [PubMed]
- Martín, M.M.-S.; Reverter, G.; Robles-Cedeño, R.; Buxò, M.; Ortega, F.J.; Gómez, I.; Tomàs-Roig, J.; Celarain, N.; Villar, L.M.; Perkal, H.; et al. Analysis of miRNA signatures in CSF identifies upregulation of miR-21 and miR-146a/b in patients with multiple sclerosis and active lesions. J. Neuroinflammation 2019, 16, 220. [Google Scholar] [CrossRef] [PubMed]
- Regev, K.; Healy, B.C.; Khalid, F.; Paul, A.; Chu, R.; Tauhid, S.; Tummala, S.; Diaz-Cruz, C.; Raheja, R.; Mazzola, M.A.; et al. Association Between Serum MicroRNAs and Magnetic Resonance Imaging Measures of Multiple Sclerosis Severity. JAMA Neurol. 2017, 74, 275–285. [Google Scholar] [CrossRef] [PubMed]
- Rao, S.M.; Martin, A.L.; Huelin, R.; Wissinger, E.; Khankhel, Z.; Kim, E.; Fahrbach, K. Correlations between MRI and Information Processing Speed in MS: A Meta-Analysis. Mult. Scler. Int. 2014, 2014, 975803. [Google Scholar] [CrossRef]
- Nabizadeh, F.; Zafari, R.; Mohamadi, M.; Maleki, T.; Fallahi, M.S.; Rafiei, N. MRI features and disability in multiple sclerosis: A systematic review and meta-analysis. J. Neuroradiol. 2024, 51, 24–37. [Google Scholar] [CrossRef]
- Lomer, N.B.; Asalemi, K.A.; Saberi, A.; Sarlak, K. Predictors of multiple sclerosis progression: A systematic review of conventional magnetic resonance imaging studies. PLoS ONE 2024, 19, e0300415. [Google Scholar] [CrossRef]
- Baulina, N.; Kulakova, O.; Kiselev, I.; Osmak, G.; Popova, E.; Boyko, A.; Favorova, O. Immune-related miRNA expression patterns in peripheral blood mononuclear cells differ in multiple sclerosis relapse and remission. J. Neuroimmunol. 2018, 317, 67–76. [Google Scholar] [CrossRef]
- Meira, M.; Sievers, C.; Hoffmann, F.; Derfuss, T.; Kuhle, J.; Kappos, L.; Lindberg, R.L. MiR-126: A novel route for natalizumab action? Mult. Scler. Journal. 2014, 20, 1363–1370. [Google Scholar] [CrossRef]
- Mattes, J.; Collison, A.; Plank, M.; Phipps, S.; Foster, P.S. Antagonism of microRNA-126 suppresses the effector function of TH2 cells and the development of allergic airways disease. Proc. Natl. Acad. Sci. USA 2009, 106, 18704–18709. [Google Scholar] [CrossRef]
- Wang, S.; Aurora, A.B.; Johnson, B.A.; Qi, X.; McAnally, J.; Hill, J.A.; Richardson, J.A.; Bassel-Duby, R.; Olson, E.N. The endothelial-specific microRNA miR-126 governs vascular integrity and angiogenesis. Dev. Cell 2008, 15, 261–271. [Google Scholar] [CrossRef] [PubMed]
- Cerutti, C.; Edwards, L.J.; de Vries, H.E.; Sharrack, B.; Male, D.K.; Romero, I.A. MiR-126 and miR-126* regulate shear-resistant firm leukocyte adhesion to human brain endothelium. Sci. Rep. 2017, 7, 45284. [Google Scholar] [CrossRef] [PubMed]
- Pan, J.; Qu, M.; Li, Y.; Wang, L.; Zhang, L.; Wang, Y.; Tang, Y.; Tian, H.-L.; Zhang, Z.; Yang, G.-Y. MicroRNA-126-3p/-5p Overexpression Attenuates Blood-Brain Barrier Disruption in a Mouse Model of Middle Cerebral Artery Occlusion. Stroke 2020, 51, 619–627. [Google Scholar] [CrossRef] [PubMed]
- Zhang, L.; Bai, W.; Sun, L.; Lin, Y.; Tian, M. Targeting Non-Coding RNA for CNS Injuries: Regulation of Blood-Brain Barrier Functions. Neurochem. Res. 2023, 48, 1997–2016. [Google Scholar] [CrossRef] [PubMed]
- Zhou, Y.; Chen, M.; Simpson, J.S.; Lucas, R.M.; Charlesworth, J.C.; Blackburn, N.; Van Der Mei, I.; Ponsonby, A.-L.; Taylor, B.V. Common genetic variation within miR-146a predicts disease onset and relapse in multiple sclerosis. Neurol. Sci. 2018, 39, 297–304. [Google Scholar] [CrossRef]
- Gandhi, R.; Healy, B.; Gholipour, T.; Egorova, S.; Musallam, A.; Hussain, M.S.; Nejad, P.; Patel, B.; Hei, H.; Khoury, S.; et al. Circulating MicroRNAs as biomarkers for disease staging in multiple sclerosis. Ann. Neurol. 2013, 73, 729–740. [Google Scholar] [CrossRef] [PubMed]
- Vistbakka, J.; Elovaara, I.; Lehtimäki, T.; Hagman, S. Circulating microRNAs as biomarkers in progressive multiple sclerosis. Mult. Scler. J. 2017, 23, 403–412. [Google Scholar] [CrossRef]
- Mancuso, R.; Hernis, A.; Agostini, S.; Rovaris, M.; Caputo, D.; Clerici, M. MicroRNA-572 expression in multiple sclerosis patients with different patterns of clinical progression. J. Transl. Med. 2015, 13, 148. [Google Scholar] [CrossRef]
- Saba, R.; Sorensen, D.L.; Booth, S.A. MicroRNA-146a: A Dominant, Negative Regulator of the Innate Immune Response. Front. Immunol. 2014, 5, 578. [Google Scholar] [CrossRef]
- Zhang, J.; Zhang, Z.G.; Lu, M.; Wang, X.; Shang, X.; Elias, S.B.; Chopp, M. MiR-146a promotes remyelination in a cuprizone model of demyelinating injury. Neuroscience 2017, 348, 252–263. [Google Scholar] [CrossRef]
- Zhang, J.; Zhang, Z.G.; Lu, M.; Zhang, Y.; Shang, X.; Chopp, M. MiR-146a promotes oligodendrocyte progenitor cell differentiation and enhances remyelination in a model of experimental autoimmune encephalomyelitis. Neurobiol. Dis. 2019, 125, 154–162. [Google Scholar] [CrossRef] [PubMed]
- Lassmann, H. Pathogenic Mechanisms Associated with Different Clinical Courses of Multiple Sclerosis. Front. Immunol. 2019, 9, 3116. [Google Scholar] [CrossRef]
- Pitt, D.; Lo, C.H.; Gauthier, S.A.; Hickman, R.A.; Longbrake, E.; Airas, L.M.; Mao-Draayer, Y.; Riley, C.; De Jager, P.L.; Wesley, S.; et al. Toward Precision Phenotyping of Multiple Sclerosis. Neurol.-Neuroimmunol. Neuroinflammation 2022, 9, e200025. [Google Scholar] [CrossRef] [PubMed]
- Martin, N.A.; Hyrlov, K.H.; Elkjaer, M.L.; Thygesen, E.K.; Wlodarczyk, A.; Elbaek, K.J.; Aboo, C.; Okarmus, J.; Benedikz, E.; Reynolds, R.; et al. Absence of miRNA-146a Differentially Alters Microglia Function and Proteome. Front. Immunol. 2020, 11, 1110. [Google Scholar] [CrossRef] [PubMed]
- Kamma, E.; Lasisi, W.; Libner, C.; Ng, H.S.; Plemel, J.R. Central nervous system macrophages in progressive multiple sclerosis: Relationship to neurodegeneration and therapeutics. J. Neuroinflammation 2022, 19, 45. [Google Scholar] [CrossRef] [PubMed]
- Desi, N.; Teh, V.; Tong, Q.Y.; Lim, C.Y.; Tabatabaeian, H.; Chew, X.H.; Sanchez-Mejias, A.; Chan, J.J.; Zhang, B.; Pitcheshwar, P.; et al. MiR-138 is a potent regulator of the heterogenous MYC transcript population in cancers. Oncogene 2022, 41, 1178–1189. [Google Scholar] [CrossRef] [PubMed]
- Chen, J.; Qin, R. MicroRNA-138-5p regulates the development of spinal cord injury by targeting SIRT1. Mol. Med. Rep. 2020, 22, 328–336. [Google Scholar] [CrossRef]
- Wang, X.; Tan, L.; Lu, Y.; Peng, J.; Zhu, Y.; Zhang, Y.; Sun, Z. MicroRNA-138 promotes tau phosphorylation by targeting retinoic acid receptor alpha. FEBS Lett. 2015, 589, 726–729. [Google Scholar] [CrossRef]
- Fitzpatrick, J.-M.K.; Anderson, R.C.; McDermott, K.W. MicroRNA: Key regulators of oligodendrocyte development and pathobiology. Int. J. Biochem. Cell Biol. 2015, 65, 134–138. [Google Scholar] [CrossRef]
- Fattahi, M.; Rezaei, N.; Nematalahi, F.S.; Shaygannejad, V.; Fouladi, S.; Karimi, L.; Fathi, F.; Dehghani, L.; Mirmosayyeb, O.; Eskandari, N. MicroRNA-29b variants and MxA expression change during interferon beta therapy in patients with relapsing-remitting multiple sclerosis. Mult. Scler. Relat. Disord. 2019, 35, 241–245. [Google Scholar] [CrossRef]
- Arisi, I.; Malimpensa, L.; Manzini, V.; Brandi, R.; di Sturmeck, T.G.; D’Amelio, C.; Crisafulli, S.; Ferrazzano, G.; Belvisi, D.; Malerba, F.; et al. Cladribine and ocrelizumab induce differential miRNA profiles in peripheral blood mononucleated cells from relapsing–remitting multiple sclerosis patients. Front. Immunol. 2023, 14, 1234869. [Google Scholar] [CrossRef]
- Siller, N.; Kuhle, J.; Muthuraman, M.; Barro, C.; Uphaus, T.; Groppa, S.; Kappos, L.; Zipp, F.; Bittner, S. Serum neurofilament light chain is a biomarker of acute and chronic neuronal damage in early multiple sclerosis. Mult. Scler. J. 2019, 25, 678–686. [Google Scholar] [CrossRef] [PubMed]
- Monreal, E.; Fernández-Velasco, J.I.; García-Sánchez, M.I.; de la Maza, S.S.; Llufriu, S.; Álvarez-Lafuente, R.; Casanova, B.; Comabella, M.; Ramió-Torrentà, L.; Martínez-Rodríguez, J.E.; et al. Association of Serum Neurofilament Light Chain Levels at Disease Onset with Disability Worsening in Patients with a First Demyelinating Multiple Sclerosis Event Not Treated with High-Efficacy Drugs. JAMA Neurol. 2023, 80, 397–403. [Google Scholar] [CrossRef]
- Abdelhak, A.; Benkert, P.; Schaedelin, S.; Boscardin, W.J.; Cordano, C.; Oechtering, J.; Ananth, K.; Granziera, C.; Melie-Garcia, L.; Montes, S.C.; et al. Neurofilament Light Chain Elevation and Disability Progression in Multiple Sclerosis. JAMA Neurol. 2023, 80, 1317–1325. [Google Scholar] [CrossRef] [PubMed]
- Thebault, S.; Abdoli, M.; Fereshtehnejad, S.-M.; Tessier, D.; Tabard-Cossa, V.; Freedman, M.S. Serum neurofilament light chain predicts long term clinical outcomes in multiple sclerosis. Sci. Rep. 2020, 10, 10381. [Google Scholar] [CrossRef] [PubMed]
- Freedman, M.S.; Gnanapavan, S.; Booth, R.A.; Calabresi, P.A.; Khalil, M.; Kuhle, J.; Lycke, J.; Olsson, T. Guidance for use of neurofilament light chain as a cerebrospinal fluid and blood biomarker in multiple sclerosis management. EBioMedicine 2024, 101, 104970. [Google Scholar] [CrossRef] [PubMed]
- Meier, S.; Willemse, E.A.; Schaedelin, S.; Oechtering, J.; Lorscheider, J.; Melie-Garcia, L.; Cagol, A.; Barakovic, M.; Galbusera, R.; Subramaniam, S.; et al. Serum Glial Fibrillary Acidic Protein Compared With Neurofilament Light Chain as a Biomarker for Disease Progression in Multiple Sclerosis. JAMA Neurol. 2023, 80, 287–297. [Google Scholar] [CrossRef]
- Essandoh, K.; Li, Y.; Huo, J.; Fan, G.C. MiRNA-Mediated Macrophage Polarization and its Potential Role in the Regulation of Inflammatory Response. Shock 2016, 46, 122–131. [Google Scholar] [CrossRef]
- Yao, H.; Ma, R.; Yang, L.; Hu, G.; Chen, X.; Duan, M.; Kook, Y.; Niu, F.; Liao, K.; Fu, M.; et al. MiR-9 promotes microglial activation by targeting MCPIP1. Nat. Commun. 2014, 5, 4386. [Google Scholar] [CrossRef]
- Yue, P.; Jing, L.; Zhao, X.; Zhu, H.; Teng, J. Down-regulation of taurine-up-regulated gene 1 attenuates inflammation by sponging miR-9-5p via targeting NF-κB1/p50 in multiple sclerosis. Life Sci. 2019, 233, 116731. [Google Scholar] [CrossRef]
- Singh, J.; Deshpande, M.; Suhail, H.; Rattan, R.; Giri, S. Targeted Stage-Specific Inflammatory microRNA Profiling in Urine During Disease Progression in Experimental Autoimmune Encephalomyelitis: Markers of Disease Progression and Drug Response. J. Neuroimmune Pharmacol. 2016, 11, 84–97. [Google Scholar] [CrossRef] [PubMed]
- Choudhary, A.; Vanichkina, D.P.; Ender, C.; Crawford, J.; Baillie, G.J.; Calcino, A.D.; Ru, K.; Taft, R.J. Identification of miR-29b targets using 3-cyanovinylcarbazole containing mimics. RNA 2018, 24, 597–608. [Google Scholar] [CrossRef] [PubMed]
- Zheng, M.; Tan, J.; Liu, X.; Jin, F.; Lai, R.; Wang, X. miR-146a-5p targets Sirt1 to regulate bone mass. Bone Rep. 2021, 14, 101013. [Google Scholar] [CrossRef] [PubMed]
- Huang, W.; He, R.; Li, X.; Ma, J.; Peng, Z.; Zhong, J.; Hu, X.; Chen, G. miR-146a-5p targets TCSF and influences cell growth and apoptosis to repress NSCLC progression. Oncol. Rep. 2019, 41, 2226–2240. [Google Scholar] [CrossRef] [PubMed]
Sex N (F:M) | Age Diagnosis Mean (±SD) (Years) | Age Study Mean (±SD) (Years) | EDSS Mean (±SD) Median (P25, P75) | PST (Percentiles) Mean (±SD) | sNfL Mean (±SD) (pg/mL) | |
---|---|---|---|---|---|---|
All patients | 73 (48:25) | 35.3 (10.6) | 39.5 (10.6) | 2.0 (1.4) 2.0 (1.0, 3.0) | 49.3 (29.7) | 12.3 (7.3) |
RIS | 5 (4:1) | 44.2 (4.6) | 45.9 (3.3) | 1.4 (1.1) 1.0 (1.0, 2.5) | 50.9 (29.1) | 13.3 (11.4) |
CIS | 6 (4:2) | 37.4 (9.6) | 37.6 (9.5) | 1.4 (0.4) 1.5 (1.0, 1.5) | 65.3 (25.3) | 5.8 (2.4) |
RRMS | 49 (34:15) | 32.8 (10.4) | 37.1 (10.5) | 1.7 (1.3) 1.5 (0, 2.5) | 53.8 (29.1) | 13.7 (7.5) |
SPMS | 7 (4:3) | 41.5 (10.6) | 51.6 (7.8) | 3.7 (1.5) 4.0 (2.5, 5.0) | 12.9 (13.9) | 13.5 (8.2) |
PPMS | 6 (2:4) | 38.8 (11.5) | 41.7 (9.1) | 3.3 (0.9) 3.0 (2.5, 4.0) | 32.3 (20.3) | 9.5 (1.4) |
PST rs; p | WBV rs; p | WMV rs; p | CGMV rs; p | Cerebellum rs; p | Caudate rs; p | Putamen rs; p | Pallidum rs; p | Thalamus rs; p | |
---|---|---|---|---|---|---|---|---|---|
EDSS | * −0.66; < 0.001 | * −0.36; 0.026 | * −0.36; 0.026 | * −0,35; 0.03 | * −0,53; <0.001 | * −0.48; 0.002 | * −0.53; <0.001 | 0.24; 0.14 | * −0.44; 0.005 |
PST | - | * 0.41; 0.011 | * 0.34; 0.038 | * 0.44; 0.006 | * 0.48; 0.002 | * 0.24; 0.16 | * 0.51; 0.001 | −0.17; 0.31 | * 0.47; 0.003 |
EDSS rs; p | PST rs; p | PST-Change rs; p | Z-sNfL rs; p | |
---|---|---|---|---|
miR-9.5p | 0.17; 0.33 | 0.03; 0.87 | * 0.57; 0.041 | * 0.53; 0.043 |
miR-29b.3p | 0.06; 0.65 | 0.02; 0.89 | 0.33; 0.11 | 0.34; 0.058 |
miR-34a.5p | 0.11; 0.42 | 0.1; 0.46 | −0.25; 0.26 | −0.04; 0.84 |
miR-126.3p | * 0.3; 0.019 | * −0.28; 0.028 | * −0.41; 0.04 | −0.33; 0.067 |
miR-138.5p | 0.38; 0.1 | −0.3; 0.22 | −0.68; 0.09 | 0.14; 0.76 |
miR-146a.5p | −0.11; 0.39 | 0.17; 0.19 | 0.06; 0.78 | 0.28; 0.12 |
miR-200c.3p | 0.08; 0.52 | −0.01; 0.96 | 0.35; 0.08 | 0.26; 0.15 |
miR-223.3p | 0.05; 0.71 | 0.15; 0.24 | 0.24; 0.26 | 0.24; 0.18 |
Z-sNfL | 0.32; 0.85 | −0.17; 0.32 | 0.26; 0.27 | - |
WBV rs; p | WMV rs; p | CGMV rs; p | Cerebellum rs; p | Caudate rs; p | Putamen rs; p | Pallidum rs; p | Thalamus rs; p | |
---|---|---|---|---|---|---|---|---|
miR-9.5p | −0.24; 0.27 | −0.29; 0.17 | −0.08; 0.69 | 0.06; 0.78 | −012; 0.58 | −0.08; 0.72 | −0.36; 0.088 | * −0.44; 0.03 |
miR-29b.3p | −0.16; 0.35 | * −0.33; 0.05 | −0.01; 0.97 | 0.2; 0.23 | −0.09; 0.6 | −0.04; 0.82 | * −0.35; 0.034 | −0.28; 0.088 |
miR-34a.5p | −0.16; 0.39 | −0.24; 0.2 | −0.03; 0.86 | 0.12; 0.51 | 0.15; 0.42 | −0.09; 0.6 | −0.24; 0.2 | −0.15; 0.41 |
miR-126.3p | −0.17; 0.32 | −0.02; 0.92 | * −0.34; 0.043 | * −0.6; <0.0001 | 0.02; 0.91 | * −0.48; 0.003 | * 0.39; 0.017 | −0.13; 0.44 |
miR-138.5p | 0.04; 0.89 | −0.04; 0.91 | 0.28; 0.38 | −0.13; 0.7 | 0.32; 0.31 | 0.05; 0.88 | * 0.72; 0.008 | 0.19; 0.56 |
miR-146a.5p | −0.08; 0.62 | −0.25; 0.13 | 0.07; 0.7 | * 0.58; <0.001 | −0.17; 0.33 | 0.25; 0.14 | * −0.64; <0.001 | −0.26; 0.12 |
miR-200c.3p | −0.12; 0.5 | −0.11; 0.52 | −0.04; 0.63 | 0.08; 0.65 | −0.11; 0.54 | 0.1; 0.56 | −0.31; 0.068 | −0.17; 0.34 |
miR-223.3p | −0.13; 0.43 | −0.01; 0.95 | −0.15; 0.37 | 0.19; 0.25 | 0.003; 0.99 | 0.12; 0.47 | 0.19; 0.27 | 0.11; 0.52 |
Z-sNfL | −0.16; 0.57 | −0.14; 0.63 | 0.18; 0.52 | 0.09; 0.75 | 0.26; 0.36 | −0.001; 0.9 | −0.12; 0.67 | −0.29; 0.29 |
MiRNA | Spearman Correlation | Multivariate Regression | ||
---|---|---|---|---|
Clinical/MRI | rs; p | Clinical/MRI | beta; p | |
miR-9.5p | Thalamus PST-change | rs = −0.44; 0.03 rs = 0.571; 0.041 | Thalamus PST-change | p = 0.207 * b = 0.04; 0.007 |
miR-29b | WMV Pallidum | rs = −0.33; 0.05 rs = −0.35; 0.034 | WMT Pallidum | p = 0.084 p = 0.23 |
miR-126.3p | EDSS PST PST-change CGMV Cerebellum Putamen Pallidum | rs = 0.29, 0.019 rs = −0.28; 0.028 rs = 0.414; 0.04 rs = −0.34; 0.043 rs = −0.6; <0.0001 rs = −0.45; 0.003 rs = −0.39; 0.017 | EDSS PST PST-change CGMV Cerebellum Putamen Pallidum | * b = 1.07; 0.008 (and RRMS/SPMS-PPMS) p = 0.127 (SPMS-PPMS) * b = −0.131; 0.031 p = 0.256 (sex) * b = −22.4; 0.037 * b = −2.1; 0.017 (and age) p = 0.362 |
miR-138.3p | Pallidum | rs = 0.72; 0.008 | Pallidum | p = 0.173 |
miR-146a.5p | Cerebellum Pallidum | rs = 0,58; <0.0001 rs= −0.64; <0.0001 | Cerebellum Pallidum | * b = 12.72; <0.0001 (and sex; and SPMS-PPMS) * b = −0.39; <0.0001 (and age) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Domínguez-Mozo, M.I.; Casanova, I.; Monreal, E.; Costa-Frossard, L.; Sainz-de-la-Maza, S.; Sainz-Amo, R.; Aladro-Benito, Y.; Lopez-Ruiz, P.; De-Torres, L.; Abellán, S.; et al. Association of MicroRNA Expression and Serum Neurofilament Light Chain Levels with Clinical and Radiological Findings in Multiple Sclerosis. Int. J. Mol. Sci. 2024, 25, 10012. https://doi.org/10.3390/ijms251810012
Domínguez-Mozo MI, Casanova I, Monreal E, Costa-Frossard L, Sainz-de-la-Maza S, Sainz-Amo R, Aladro-Benito Y, Lopez-Ruiz P, De-Torres L, Abellán S, et al. Association of MicroRNA Expression and Serum Neurofilament Light Chain Levels with Clinical and Radiological Findings in Multiple Sclerosis. International Journal of Molecular Sciences. 2024; 25(18):10012. https://doi.org/10.3390/ijms251810012
Chicago/Turabian StyleDomínguez-Mozo, María Inmaculada, Ignacio Casanova, Enric Monreal, Lucienne Costa-Frossard, Susana Sainz-de-la-Maza, Raquel Sainz-Amo, Yolanda Aladro-Benito, Pedro Lopez-Ruiz, Laura De-Torres, Sara Abellán, and et al. 2024. "Association of MicroRNA Expression and Serum Neurofilament Light Chain Levels with Clinical and Radiological Findings in Multiple Sclerosis" International Journal of Molecular Sciences 25, no. 18: 10012. https://doi.org/10.3390/ijms251810012
APA StyleDomínguez-Mozo, M. I., Casanova, I., Monreal, E., Costa-Frossard, L., Sainz-de-la-Maza, S., Sainz-Amo, R., Aladro-Benito, Y., Lopez-Ruiz, P., De-Torres, L., Abellán, S., Garcia-Martinez, M. A., De-la-Cuesta, D., Lourido, D., Torrado-Carvajal, A., Gomez-Barbosa, C., Linares-Villavicencio, C., Villar, L. M., López-De-Silanes, C., Arroyo, R., & Alvarez-Lafuente, R. (2024). Association of MicroRNA Expression and Serum Neurofilament Light Chain Levels with Clinical and Radiological Findings in Multiple Sclerosis. International Journal of Molecular Sciences, 25(18), 10012. https://doi.org/10.3390/ijms251810012