Deep Immune and RNA Profiling Revealed Distinct Circulating CD163+ Monocytes in Diabetes-Related Complications
Abstract
:1. Introduction
2. Results
2.1. Clinical Characteristics of Individuals with Diabetes with or without Complications
2.2. RNA Profiling of CD163+ Monocytes
2.2.1. Gene Over-Representation Analysis
2.2.2. The List of ‘Genes of Interest’
2.2.3. Gene Interaction Network Analysis
2.3. Functional Phenotyping of CD163+ Monocytes
2.4. Gene–Protein Interaction Network
3. Discussion
4. Materials and Methods
4.1. Study Design
4.2. RNA Sequencing of CD163+ Monocytes
4.2.1. Isolation of CD163+ Cells
4.2.2. RNA Extraction and Sequencing
4.2.3. Quality Control and Differential Gene Expression Analysis
4.3. Functional Phenotyping by Mass Cytometry
4.3.1. Cell Preparation and Staining with Antibodies for Mass Cytometry
4.3.2. Gating Strategy Analysis of CD163+ Monocyte Profile
4.4. Gene–Protein Combined PPIs Network
4.5. Statistical Analysis
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Ogurtsova, K.; Guariguata, L.; Barengo, N.C.; Ruiz, P.L.-D.; Sacre, J.W.; Karuranga, S.; Sun, H.; Boyko, E.J.; Magliano, D.J. IDF diabetes Atlas: Global estimates of undiagnosed diabetes in adults for 2021. Diabetes Res. Clin. Pract. 2022, 183, 109118. [Google Scholar] [CrossRef] [PubMed]
- Whiting, D.R.; Guariguata, L.; Weil, C.; Shaw, J. IDF diabetes atlas: Global estimates of the prevalence of diabetes for 2011 and 2030. Diabetes Res. Clin. Pract. 2011, 94, 311–321. [Google Scholar] [CrossRef] [PubMed]
- Harcourt, B.E.; Penfold, S.A.; Forbes, J.M. Coming full circle in diabetes mellitus: From complications to initiation. Nat. Rev. Endocrinol. 2013, 9, 113–123. [Google Scholar] [CrossRef] [PubMed]
- Tesch, G.H. Role of macrophages in complications of type 2 diabetes. Clin. Exp. Pharmacol. Physiol. 2007, 34, 1016–1019. [Google Scholar] [CrossRef] [PubMed]
- Min, D.; Brooks, B.; Wong, J.; Aamidor, S.; Seehoo, R.; Sutanto, S.; Harrisberg, B.; Yue, D.K.; Twigg, S.M.; McLennan, S.V. Monocyte CD163 is altered in association with diabetic complications: Possible protective role. J. Leukoc. Biol. 2016, 100, 1375–1383. [Google Scholar] [CrossRef] [PubMed]
- Fabriek, B.O.; Dijkstra, C.D.; van den Berg, T.K. The macrophage scavenger receptor CD163. Immunobiology 2005, 210, 153–160. [Google Scholar] [CrossRef]
- Giacco, F.; Brownlee, M. Oxidative stress and diabetic complications. Circ. Res. 2010, 107, 1058–1070. [Google Scholar] [CrossRef]
- Siwan, E.; Twigg, S.M.; Min, D. Alterations of CD163 expression in the complications of diabetes: A systematic review. J. Diabetes Its Complicat. 2022, 36, 108150. [Google Scholar] [CrossRef]
- Levy, A.P.; Purushothaman, K.R.; Levy, N.S.; Purushothaman, M.; Strauss, M.; Asleh, R.; Marsh, S.; Cohen, O.; Moestrup, S.K.; Moller, H.J.; et al. Downregulation of the hemoglobin scavenger receptor in individuals with diabetes and the Hp 2-2 genotype: Implications for the response to intraplaque hemorrhage and plaque vulnerability. Circ. Res. 2007, 101, 106–110. [Google Scholar] [CrossRef]
- Klessens, C.Q.F.; Zandbergen, M.; Wolterbeek, R.; Bruijn, J.A.; Rabelink, T.J.; Bajema, I.M.; IJpelaar, D.H. Macrophages in diabetic nephropathy in patients with type 2 diabetes. Nephrol. Dial. Transplant. 2017, 32, 1322–1329. [Google Scholar] [CrossRef]
- Min, D.; Brooks, B.; Wong, J.; Salomon, R.; Bao, W.; Harrisberg, B.; Twigg, S.M.; Yue, D.K.; McLennan, S.V. Alterations in monocyte CD16 in association with diabetes complications. Mediat. Inflamm. 2012, 2012, 649083. [Google Scholar] [CrossRef] [PubMed]
- Jalili, V.; Afgan, E.; Gu, Q.; Clements, D.; Blankenberg, D.; Goecks, J.; Taylor, J.; Nekrutenko, A. The Galaxy platform for accessible, reproducible and collaborative biomedical analyses: 2020 update. Nucleic Acids Res. 2020, 48, W395–W402. [Google Scholar] [CrossRef] [PubMed]
- Rutter, L.; Moran Lauter, A.N.; Graham, M.A.; Cook, D. Visualization methods for differential expression analysis. BMC Bioinform. 2019, 20, 458. [Google Scholar] [CrossRef] [PubMed]
- Andrews, S. FastQC: A quality control tool for high throughput sequence data. In Babraham Bioinformatics; Babraham Institute: Cambridge, UK, 2010. [Google Scholar]
- Bolger, A.M.; Lohse, M.; Usadel, B. Trimmomatic: A flexible trimmer for Illumina sequence data. Bioinformatics 2014, 30, 2114–2120. [Google Scholar] [CrossRef] [PubMed]
- Kim, D.; Langmead, B.; Salzberg, S.L. HISAT: A fast spliced aligner with low memory requirements. Nat. Methods 2015, 12, 357–360. [Google Scholar] [CrossRef]
- Liao, Y.; Smyth, G.K.; Shi, W. FeatureCounts: An efficient general purpose program for assigning sequence reads to genomic features. Bioinformatics 2014, 30, 923–930. [Google Scholar] [CrossRef]
- Smyth, G.K.; Ritchie, M.; Thorne, N.; Wettenhall, J. LIMMA: Linear models for microarray data. In Bioinformatics and Computational Biology Solutions Using R and Bioconductor. In Statistics for Biology and Health; Springer: Berlin/Heidelberg, Germany, 2005. [Google Scholar]
- Lurier, E.B.; Dalton, D.; Dampier, W.; Raman, P.; Nassiri, S.; Ferraro, N.M.; Rajagopalan, R.; Sarmady, M.; Spiller, K.L. Transcriptome analysis of IL-10-stimulated (M2c) macrophages by next-generation sequencing. Immunobiology 2017, 222, 847–856. [Google Scholar] [CrossRef]
- Thomas, P.D.; Ebert, D.; Muruganujan, A.; Mushayahama, T.; Albou, L.P.; Mi, H. PANTHER: Making genome-scale phylogenetics accessible to all. Protein Sci. 2022, 31, 8–22. [Google Scholar] [CrossRef]
- Mi, H.; Muruganujan, A.; Huang, X.; Ebert, D.; Mills, C.; Guo, X.; Thomas, P.D. Protocol Update for large-scale genome and gene function analysis with the PANTHER classification system (v. 14.0). Nat. Protoc. 2019, 14, 703–721. [Google Scholar] [CrossRef]
- Shannon, P.; Markiel, A.; Ozier, O.; Baliga, N.S.; Wang, J.T.; Ramage, D.; Amin, N.; Schwikowski, B.; Ideker, T. Cytoscape: A software environment for integrated models of biomolecular interaction networks. Genome Res. 2003, 13, 2498–2504. [Google Scholar] [CrossRef]
- Doncheva, N.T.; Morris, J.H.; Gorodkin, J.; Jensen, L.J. Cytoscape StringApp: Network analysis and visualization of proteomics data. J. Proteome Res. 2018, 18, 623–632. [Google Scholar] [CrossRef] [PubMed]
- Rahman, A.H.; Tordesillas, L.; Berin, M.C. Heparin reduces nonspecific eosinophil staining artifacts in mass cytometry experiments. Cytom. Part A 2016, 89, 601–607. [Google Scholar] [CrossRef] [PubMed]
- Wang, P.; Lu, Y.C.; Wang, J.; Wang, L.; Yu, H.; Li, Y.F.; Kong, A.; Chan, J.; Lee, S. Type 2 diabetes promotes cell centrosome amplification via AKT-ROS-dependent signalling of ROCK1 and 14-3-3σ. Cell. Physiol. Biochem. 2018, 47, 356–367. [Google Scholar] [CrossRef] [PubMed]
- Lüders, J.; Stearns, T. Microtubule-organizing centres: A re-evaluation. Nat. Rev. Mol. Cell Biol. 2007, 8, 161–167. [Google Scholar] [CrossRef] [PubMed]
- Pancione, M.; Cerulo, L.; Remo, A.; Giordano, G.; Gutierrez-Uzquiza, Á.; Bragado, P.; Porras, A. Centrosome dynamics and its role in inflammatory response and metastatic process. Biomolecules 2021, 11, 629. [Google Scholar] [CrossRef]
- Bao, X.; Ma, L.; He, C. MicroRNA-23a-5p regulates cell proliferation, migration and inflammation of TNF-α-stimulated human fibroblast-like MH7A synoviocytes by targeting TLR4 in rheumatoid arthritis. Exp. Ther. Med. 2021, 21, 479. [Google Scholar] [CrossRef]
- Wang, Y.; Wang, D.; Jin, Z. MiR-27a suppresses TLR4-induced renal ischemia-reperfusion injury. Mol. Med. Rep. 2019, 20, 967–976. [Google Scholar] [CrossRef]
- Eshaq, R.S.; Harris, N.R. Loss of platelet endothelial cell adhesion molecule-1 (PECAM-1) in the diabetic retina: Role of matrix metalloproteinases. Investig. Ophthalmol. Vis. Sci. 2019, 60, 748–760. [Google Scholar] [CrossRef]
- Kawasaki, T.; Kawai, T. Toll-like receptor signaling pathways. Front. Immunol. 2014, 5, 461. [Google Scholar] [CrossRef]
- Kanhaiya, A.N.; Gupta, S.; Singh, K. Differential expression of toll like receptor 4 in type 2 diabetic patients with impaired wound healing. J. Diabetes Metab. 2013, 4, 260. [Google Scholar]
- Wang, Y.-L.; Wang, K.; Yu, S.-J.; Li, Q.; Li, N.; Lin, P.-Y.; Li, M.-M.; Guo, J.-Y. Association of the TLR4 signaling pathway in the retina of streptozotocin-induced diabetic rats. Graefe’s Arch. Clin. Exp. Ophthalmol. 2015, 253, 389–398. [Google Scholar] [CrossRef] [PubMed]
- Liu, L.; Jiang, Y.; Steinle, J. Epac1 regulates TLR4 signaling in the diabetic retinal vasculature. Cytokine 2021, 144, 155576. [Google Scholar] [CrossRef] [PubMed]
- Chen, H.; Yan, T.; Song, Z.; Ying, S.; Wu, B.; Ju, X.; Yang, X.; Qu, J.; Wu, W.; Zhang, Z.; et al. MD2 blockade prevents modified LDL-induced retinal injury in diabetes by suppressing NADPH oxidase-4 interaction with Toll-like receptor-4. Exp. Mol. Med. 2021, 53, 681–694. [Google Scholar] [CrossRef] [PubMed]
- Antonioli, L.; Pacher, P.; Vizi, E.S.; Haskó, G. CD39 and CD73 in immunity and inflammation. Trends Mol. Med. 2013, 19, 355–367. [Google Scholar] [CrossRef]
- Abdel Wahab, S.E.E.A.; Eissa, D.S.; Habib, C.A.; Abdelsalam, M.M. Expression of CD73 and CD39 on Peripheral Blood Leukocytes in Type II Diabetes Patients. Egypt. J. Hosp. Med. 2018, 72, 4746–4752. [Google Scholar] [CrossRef]
- Mizumoto, N.; Kumamoto, T.; Robson, S.C.; Sévigny, J.; Matsue, H.; Enjyoji, K.; Takashima, A. CD39 is the dominant Langerhans cell–associated ecto-NTPDase: Modulatory roles in inflammation and immune responsiveness. Nat. Med. 2002, 8, 358–365. [Google Scholar] [CrossRef]
- Wood, G.S.; Freudenthal, P. CD5 monoclonal antibodies react with human peripheral blood dendritic cells. Am. J. Pathol. 1992, 141, 789. [Google Scholar]
- Pinto, B.F.; Medeiros, N.I.; Teixeira-Carvalho, A.; Eloi-Santos, S.M.; Fontes-Cal, T.C.M.; Rocha, D.A.; Dutra, W.O.; Correa-Oliveira, R.; Gomes, J.A.S. CD86 expression by monocytes influences an immunomodulatory profile in asymptomatic patients with chronic Chagas disease. Front. Immunol. 2018, 9, 454. [Google Scholar] [CrossRef]
- Wang, H.; Kadlecek, T.A.; Au-Yeung, B.B.; Goodfellow, H.E.S.; Hsu, L.-Y.; Freedman, T.S.; Weiss, A. ZAP-70: An essential kinase in T-cell signaling. Cold Spring Harb. Perspect. Biol. 2010, 2, a002279. [Google Scholar] [CrossRef]
- Chambers, E.T.; Kirk, A.D. 19 Antilymphocyte Globulin, Monoclonal Antibodies, and Fusion Proteins. In Kidney Transplantation-Principles and Practice E-Book; Elsevier Health Sciences: Amsterdam, The Netherlands, 2019; p. 283. [Google Scholar]
- D’arena, G.; De Feo, V.; Pietrantuono, G.; Seneca, E.; Mansueto, G.; Villani, O.; La Rocca, F.; D’auria, F.; Statuto, T.; Valvano, L.; et al. CD200 and chronic lymphocytic leukemia: Biological and clinical relevance. Front. Oncol. 2020, 10, 584427. [Google Scholar] [CrossRef]
- Gram, D.X.; Holst, J.J.; Szallasi, A. TRPV1: A potential therapeutic target in type 2 diabetes and comorbidities? Trends Mol. Med. 2017, 23, 1002–1013. [Google Scholar] [CrossRef] [PubMed]
D+Comps (n = 6) | D−Comps (n = 6) | p-Value | |
---|---|---|---|
Age (years) | 67.5 ± 18.3 | 73.2 ± 5.2 | ns |
Men/women (n) | 4/2 | 3/3 | ns |
Duration of diabetes (years) | 26.9 ± 5.3 | 22.0 ± 5.9 | ns |
BMI (kg/m2) | 26.8 ± 4.0 | 30.5 ± 5.9 | ns |
HbA1c (mmol/mol) | 64 (55–66) | 61 (40–64) | ns |
HbA1c (%NGSP units) | 8.0 (7.2–8.2) | 7.7 (5.8–8.0) | ns |
Total cholesterol (mmol/L) | 3.7 ± 0.6 | 4.3 ± 1.0 | ns |
HDL-c (mmol/L) | 1.4 ± 0.4 | 1.4 ± 0.1 | ns |
LDL-c (mmol/L) | 1.7 ± 0.5 | 2.3 ± 0.9 | ns |
Triglycerides (mmol/L) | 1.4 ± 0.2 | 1.6 ± 0.8 | ns |
Serum creatinine (µmol/L) | 142.0 (83.8–165.8) | 67.5 (48.6–75.5) | ns |
U Alb (mg/24 hrs) | 36 (19–212) | 8.6 (5.1–14.15) | ns |
UACR (mg/mol) | 4 (2.1–12.5) | 1.2 (0.8–5.6) | ns |
eGFR (mL/min/1.73 m2) | 59.8 (40.1–97.6) | 84 (66.3–91.3) | ns |
Systolic BP (mmHg) | 130 (121–143) | 134 (120–146) | ns |
Diastolic BP (mmHg) | 64 ± 7 | 76 ± 9 | 0.03 |
Medications | |||
Statin (n) | 5 | 5 | ns |
Aspirin (n) | 2 | 3 | ns |
Insulin (n) | 5 | 1 | 0.01 |
Glucose-lowering therapy (n) | 2 | 6 | ns |
Function | Positive % of CD163+ Cells | D+Comps (n = 6) | D−Comps (n = 6) | Fold Change | p Value |
---|---|---|---|---|---|
Activation | CD282 (TLR2) | 0.4 (0.1–3.7) | 0.45 (0.2–0.8) | −0.1 | ns |
CD284 (TLR4) | 0.3 (0.2–3.6) | 0.5 (0.3–0.7) | −1.9 | ns | |
CD38 | 0.4 (0.2–3.1) | 2.4 (1.7–4.1) | −6.0 | p = 0.06 | |
Chemokine receptors | CD192 (CCR2) | 2.6 (1.7–4.8) | 0.9 (0.5–3.6) | 2.6 | ns |
CD195 (CCR5) | 59.6 (45.9–70.9) | 78.4 (72.9–78.7) | −1.3 | p < 0.05 | |
CX3CR1 | 0.8 (0.7–2.1) | 0.8 (0.4–0.9) | −1.1 | ns | |
CXCR3 | 9.6 ± 7.3 | 8.2 ± 9.6 | 0.8 | ns | |
Adhesion and migration | CD11b | 12.1 (7.8–22.2) | 54.4 (29.9–58.6) | −4.5 | p < 0.05 |
CD11c | 27.8 ± 11.5 | 60.1 ± 22.3 | −2.2 | p < 0.05 | |
CD31 (PECAM-1) | 4.7 (3.5–13.9) | 41.0 (18.8–52.3) | −8.7 | p < 0.05 | |
Immune regulation | CD39 | 4.2 ± 2.4 | 13.0 ± 6.8 | −3.1 | p < 0.05 |
CD73 | 0.7 (0.5–3.6) | 1.3 (0.9–2.1) | −1.9 | p = 0.06 | |
CD80 | 1.8 (1.3–3.1) | 1.3 (0.8–1.6) | 0.7 | ns | |
CD86 | 3.2 ± 1.1 | 12.5 ± 7.2 | −3.9 | p < 0.05 | |
CD206 | 0.1 (0.05–1.05) | 0.25 (0.03–1.9) | −2.8 | ns | |
Phagocytosis and clearance | CD36 | 99.2 (82.2–99.6) | 92.0 (65.7–99.5) | 1.1 | ns |
CD68 | 97.3 (93.7–98.2) | 98.8 (98.1–99.7) | −1.0 | p < 0.05 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Siwan, E.; Wong, J.; Brooks, B.A.; Shinko, D.; Baker, C.J.; Deshpande, N.; McLennan, S.V.; Twigg, S.M.; Min, D. Deep Immune and RNA Profiling Revealed Distinct Circulating CD163+ Monocytes in Diabetes-Related Complications. Int. J. Mol. Sci. 2024, 25, 10094. https://doi.org/10.3390/ijms251810094
Siwan E, Wong J, Brooks BA, Shinko D, Baker CJ, Deshpande N, McLennan SV, Twigg SM, Min D. Deep Immune and RNA Profiling Revealed Distinct Circulating CD163+ Monocytes in Diabetes-Related Complications. International Journal of Molecular Sciences. 2024; 25(18):10094. https://doi.org/10.3390/ijms251810094
Chicago/Turabian StyleSiwan, Elisha, Jencia Wong, Belinda A. Brooks, Diana Shinko, Callum J. Baker, Nandan Deshpande, Susan V. McLennan, Stephen M. Twigg, and Danqing Min. 2024. "Deep Immune and RNA Profiling Revealed Distinct Circulating CD163+ Monocytes in Diabetes-Related Complications" International Journal of Molecular Sciences 25, no. 18: 10094. https://doi.org/10.3390/ijms251810094
APA StyleSiwan, E., Wong, J., Brooks, B. A., Shinko, D., Baker, C. J., Deshpande, N., McLennan, S. V., Twigg, S. M., & Min, D. (2024). Deep Immune and RNA Profiling Revealed Distinct Circulating CD163+ Monocytes in Diabetes-Related Complications. International Journal of Molecular Sciences, 25(18), 10094. https://doi.org/10.3390/ijms251810094